JPS59209827A - Manufacture of fiber reinforced plastic structural member - Google Patents

Manufacture of fiber reinforced plastic structural member

Info

Publication number
JPS59209827A
JPS59209827A JP58084839A JP8483983A JPS59209827A JP S59209827 A JPS59209827 A JP S59209827A JP 58084839 A JP58084839 A JP 58084839A JP 8483983 A JP8483983 A JP 8483983A JP S59209827 A JPS59209827 A JP S59209827A
Authority
JP
Japan
Prior art keywords
molding
angle
structural member
molds
reinforced plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58084839A
Other languages
Japanese (ja)
Inventor
Yoichi Sasajima
洋一 笹島
Hirohisa Ito
博久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58084839A priority Critical patent/JPS59209827A/en
Publication of JPS59209827A publication Critical patent/JPS59209827A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a corner of a structural member have a precise angle, by making the corners of molding surfaces of molds a little larger than 90 deg. so that the corner of a structural member placed in combined molds has an angle that allows the deformation after the molding. CONSTITUTION:The corner angles beta of molding surfaces of a top force 10 and side forces 20 are 90 deg. or more, and the opposite molding surfaces of the molds are parallel so that beta -90 deg. is an angle that allows the deformation of the intended structural member. The allowance angle beta -90 deg. of the molds is determined in accordance with the thermal stress that will depend on the thickness and the size of the intended structural member, the rigidity of the reinforcing fiber, etc., and is most preferably on the order of 0.5 deg..

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、軽量で耐衝撃性にも優れる繊維強化プラスチ
ック(FRP)構造材、特に、連続繊維によって補強さ
れ、かつ長さ方向と直角な断面の一部に直角な交差部や
直角な屈曲部を有する繊維強化プラスチツク構造材の製
造方法に関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a fiber reinforced plastic (FRP) structural material that is lightweight and has excellent impact resistance, particularly a fiber reinforced plastic (FRP) structural material that is reinforced with continuous fibers and that is perpendicular to the longitudinal direction. The present invention relates to a method for producing a fiber-reinforced plastic structural material having a right-angled intersection or a right-angled bend in a part of its cross section.

(ロ) 従来技術 横断時の断面の一部に直角な交差部、屈曲部を有するF
RP構造材、例えばT形断面、■又はH形断面、等辺又
は不等辺の山形(L形)断面、U字等の溝形断面を有す
る構造材の製造方法には、引抜き成形法、プレス成形法
、真空注入成形法等がある。本発明はそのうちのプレス
成形法と真空注入成形法に有効なものである。
(b) Conventional technology F with a part of the cross section at right angles and bends
Manufacturing methods for RP structural materials, such as structural materials having a T-shaped cross section, a ■ or H-shaped cross section, an equilateral or scalene chevron (L-shaped) cross section, and a groove-shaped cross section such as a U-shape, include pultrusion molding, press molding, etc. method, vacuum injection molding method, etc. The present invention is effective for press molding and vacuum injection molding.

ます、第1図乃至第4図に基いて本発明の改善の対象と
なる従来法を説明すると、第1図に示す如きT形材Aの
成形では上金型1と横金型2,2を、第2図に示す■又
はH形材A′では上金型1と(角金型2,2及び下金型
3を、また、第3図に示す山形材A″や第4図に示す溝
形材A″′の成形では」−金型1と下金型3を組合せ、
プレス成形の場合は、プリプレグ(樹脂含浸クロス)等
の積層品をこれ等の組合せ金型間に配して加圧・加熱し
所望の断面形状の構造材を得ている。一方、真空注入成
形の際は、上記と同様の金型間に、まず、補強繊維のみ
を設計製作上要求される向きに積層配置し、次に全体を
真空シールして積層繊維間に樹脂を注入し、その後積層
品を加熱硬化させている。
First, to explain the conventional method that is the object of improvement of the present invention based on FIGS. 1 to 4, in the molding of T-shaped material A as shown in FIG. For the ■ or H-shaped material A′ shown in FIG. 2, the upper mold 1 (square molds 2, 2 and lower mold 3) In the molding of the channel-shaped material A''' shown, the mold 1 and the lower mold 3 are combined,
In the case of press molding, a laminated product such as prepreg (resin-impregnated cloth) is placed between these combination molds and pressurized and heated to obtain a structural material with a desired cross-sectional shape. On the other hand, when performing vacuum injection molding, first, only reinforcing fibers are stacked in the direction required for design and manufacturing between the same molds as above, and then the whole is vacuum sealed and resin is placed between the stacked fibers. The laminate is then heated and cured.

(ハ) 発明が解決しようとする問題点ところが、上述
の方法では、構造材の直角部を成形する金型成形面のコ
ーナ角を90°にしているにも拘らず、構造材の交差部
や屈曲部を正確に90゜にすることができず(第1図の
αが89°ぐらいになる)、そのため、他部材との組合
わせに支障を来たしたり、組合せ後に隙間が生じる等の
不都合な事態か生じている。
(C) Problems to be Solved by the Invention However, in the above-mentioned method, although the corner angle of the molding surface of the mold for forming the right-angled portion of the structural material is set to 90°, the intersection of the structural material and the It is not possible to make the bent part exactly 90 degrees (α in Figure 1 is about 89 degrees), which may cause problems such as problems in assembling other parts or creating gaps after assembling. Something is happening.

に) 問題点を解決するための手段 本発明者等は、成形時に90°に保たれた構造材の交差
部又は屈曲部の角度が成形後に小さくなるのは、FRP
構造材が加熱硬化時の熱残留応力により若干の変形を起
こすことに起因していること゛をつきとめ、本発明をす
るに至ったもので、本発明の目的は、構造材の正確な直
角出しを行うことにある。また、その特徴は、金型成形
面のコーナ角を90°よりも若干大きくしておき、組合
せ金型間に配した構造材の直角部を、成形後の変形量を
見込んだ角度に成形するところにある。
2) Means for Solving the Problems The present inventors believe that the reason why the angle of the intersection or bend of the structural material, which was kept at 90° during molding, becomes smaller after molding is due to FRP.
The present invention was developed after discovering that structural materials undergo slight deformation due to thermal residual stress during heat curing.The purpose of the present invention is to accurately square structural materials. The goal is to do the following. In addition, the feature is that the corner angle of the molding surface is made slightly larger than 90°, and the right angle part of the structural material placed between the combined molds is molded at an angle that takes into account the amount of deformation after molding. It's there.

即ち、本発明に使用する金型は、第5図乃至第8図に示
すように、上金型1o、横金型20、下金型30の直角
部成形に用いる成形面のコーナ角βを90°以上とし、
かつ各金型の対向した成形面は平行にしてあり、β−9
0°が構造材の変形を吸収する見込角となる。
That is, as shown in FIGS. 5 to 8, the molds used in the present invention have corner angles β of the molding surfaces used for molding the right-angled portions of the upper mold 1o, the horizontal mold 20, and the lower mold 30. 90° or more,
And the opposing molding surfaces of each mold are parallel, β-9
0° is the expected angle that absorbs the deformation of the structural material.

なお、金型に付す見込角は、構造材の厚さ、大きさ、補
強繊維の剛性等によって熱応力変形量が変わることが考
えられるので、その点を考慮して決定する。厚みの異な
るCFRP (炭素繊維強化プラスチック)構造材の試
作結果では、βを90.5゜としたときにいずれも交差
部又は屈曲部の角度が90°になり、βを91°とした
場合は、構造材の直角部か90.5°となった、従って
見込角は0.5°程度とするのが最も望ましいと思われ
るが、それに限定されるものではない。
Note that the expected angle to be attached to the mold is determined in consideration of the fact that the amount of thermal stress deformation may change depending on the thickness and size of the structural material, the rigidity of the reinforcing fibers, etc. The results of trial production of CFRP (carbon fiber reinforced plastic) structural materials with different thicknesses show that when β is set to 90.5°, the angle of the intersection or bend is 90°, and when β is set to 91°, the angle is 90°. , the right angle part of the structural member is 90.5°. Therefore, it is considered most desirable that the angle of view is about 0.5°, but it is not limited thereto.

〔実施例1〕 第7図に示す金型の成形面のコーナ角βを90.5゜±
5′として、上下の金型10,30間にエポキシ樹脂を
含浸した炭素繊維クロス(東し・トレカ#6341)の
30枚を積層配置し、それを一般的に採られる圧力・温
度で加圧・加熱して肉厚10mm 、辺の長さ、200
 X 200 mm 、長さ300mmの山形構造材を
得た。そして、この構造材の屈曲部の角度を測定したと
ころ正確に90° となっていた。
[Example 1] The corner angle β of the molding surface of the mold shown in Fig. 7 was set to 90.5°±
5', 30 sheets of carbon fiber cloth impregnated with epoxy resin (Toshi Trading Card #6341) are stacked and placed between the upper and lower molds 10 and 30, and then pressurized at commonly used pressures and temperatures.・Heat to 10mm thick, side length 200mm
A chevron-shaped structural member having a width of 200 mm and a length of 300 mm was obtained. When the angle of the bent portion of this structural material was measured, it was found to be exactly 90°.

〔実施例2〕 第8図に示す金型の成形面のコーナ角βを90.5゜±
5′として上下の金型10 、30間に上記と同じ樹脂
含浸クロスの9枚を積層配置し、それを加圧、加熱して
肉厚3mmの溝形構造材を製作し、屈曲部の角度を測定
したところ、その角度は90°であった。
[Example 2] The corner angle β of the molding surface of the mold shown in Fig. 8 was set to 90.5° ±
As 5', nine sheets of the same resin-impregnated cloth as above were stacked between the upper and lower molds 10 and 30, and they were pressed and heated to produce a groove-shaped structural material with a wall thickness of 3 mm. When measured, the angle was 90°.

(旬 効果 以上説明したように、本発明によれば、FRP構造材の
交差部や屈曲部の角度を正確に90°にすることができ
、従って、他部材との組合せ結合、或いはF RP構造
材相互の組合わせ結合が容易に行え、ライナー調整等の
必要がなくなる。
(Effects) As explained above, according to the present invention, the angles of the intersections and bends of the FRP structural material can be accurately set to 90 degrees, and therefore, the angles of the intersections and bends of the FRP structural material can be accurately set to 90 degrees. Materials can be combined and bonded easily, eliminating the need for liner adjustment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、いずれも従来法による1; RP
構造材の成形状態を示す断面図、第5図乃至第8図は本
発明の方法に使用する金型の概略正面図である。 10・・・上金型、20・・・横金型、30・・・下金
型特許出願人  住友電気工業株式会社 同 代理人 鎌 1)文 二 10            10 第3図 1         策4図 第7図       第8図 0 133
Figures 1 to 4 are all based on the conventional method 1; RP
5 to 8 are cross-sectional views showing the state of molding of the structural material, and are schematic front views of the mold used in the method of the present invention. 10...Upper mold, 20...Horizontal mold, 30...Lower mold Patent applicant Sumitomo Electric Industries, Ltd. Agent Kama 1) Text 210 10 Figure 3 1 Measure 4 Figure 7 Figure 8 0 133

Claims (1)

【特許請求の範囲】[Claims] 横断時の断面の一部に直角な交差部又は直角な屈曲部を
有する繊維強化プラスチツク構造材のプレス成形又は真
空注入成形用金型の直角即成形に使用する成形面のコー
ナ角を90’よりも若干大きくし、組合せ金型間に配し
た構造材の直角部を、成形後の熱残留応力による変形量
を見込んだ角度に成形することを特徴とする繊維強化プ
ラスチツク構造材の製造方法。
The corner angle of the molding surface used for press molding of fiber-reinforced plastic structural materials having a right-angled intersection or right-angled bend in a part of the cross section or right-angled instant molding of a vacuum injection molding mold is 90' or more. A method for manufacturing a fiber-reinforced plastic structural material, characterized in that the right angle part of the structural material placed between the combined molds is formed at an angle that takes into account the amount of deformation due to thermal residual stress after molding.
JP58084839A 1983-05-13 1983-05-13 Manufacture of fiber reinforced plastic structural member Pending JPS59209827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084839A JPS59209827A (en) 1983-05-13 1983-05-13 Manufacture of fiber reinforced plastic structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084839A JPS59209827A (en) 1983-05-13 1983-05-13 Manufacture of fiber reinforced plastic structural member

Publications (1)

Publication Number Publication Date
JPS59209827A true JPS59209827A (en) 1984-11-28

Family

ID=13841957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084839A Pending JPS59209827A (en) 1983-05-13 1983-05-13 Manufacture of fiber reinforced plastic structural member

Country Status (1)

Country Link
JP (1) JPS59209827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043027A (en) * 1996-07-31 1998-02-17 Toyo Alumifoil Prod Kk Paper container and forming method thereof
CN108724767A (en) * 2017-04-25 2018-11-02 波音公司 Thermoplastic composite component manufacturing system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1043027A (en) * 1996-07-31 1998-02-17 Toyo Alumifoil Prod Kk Paper container and forming method thereof
CN108724767A (en) * 2017-04-25 2018-11-02 波音公司 Thermoplastic composite component manufacturing system and method
US11633931B2 (en) 2017-04-25 2023-04-25 The Boeing Company Thermoplastic composite part manufacturing system and method

Similar Documents

Publication Publication Date Title
JP6563284B2 (en) Manufacturing apparatus for fiber-reinforced plastic molded product and manufacturing method thereof
US4492607A (en) Method for producing integrally stiffened fiber reinforced plastic panels
US6355133B1 (en) Forming reinforcing components
US7922957B2 (en) Method for forming composite components and tool for use therein
US5714179A (en) Rigid tooling with compliant forming surface for forming parts from composite materials
RU2479424C2 (en) Method of making workpiece
JP5315713B2 (en) Method for manufacturing preform for FRP member
JPH091681A (en) Structure of fiber reinforced composite material and manufacture thereof
US6696009B2 (en) Method for controlling thickness during lay-up and fabrication of composite components
JP6220162B2 (en) Apparatus and method for manufacturing fiber reinforced plastic structure
US20110036495A1 (en) Method of manufacturing a complex structure made of a composite by assembling rigid components
MXPA04002525A (en) Three-dimensional knit spacer fabric sandwich composite.
EP3677397B1 (en) Composite part
US5124196A (en) Prestressed article and method
US4784920A (en) Thin fiber-reinforced plastic composite plate and method of molding the same
JP3016786B2 (en) Method of manufacturing fiber reinforced resin member
JP4941811B2 (en) Manufacturing method of preform and FRP molded body
JPWO2019031478A1 (en) Fiber-reinforced plastic and method for producing fiber-reinforced plastic
JPS59209827A (en) Manufacture of fiber reinforced plastic structural member
JP4459401B2 (en) Composite beam forming method
JPS6010840Y2 (en) Composite tensile structure
JP7255025B2 (en) Jig and composite material processing method
JP2018094751A (en) Method for manufacturing composite material molded body
JPS6316510Y2 (en)
JPS6331291B2 (en)