JPS5920969A - Gas-diffusion electrode for cell - Google Patents

Gas-diffusion electrode for cell

Info

Publication number
JPS5920969A
JPS5920969A JP12936082A JP12936082A JPS5920969A JP S5920969 A JPS5920969 A JP S5920969A JP 12936082 A JP12936082 A JP 12936082A JP 12936082 A JP12936082 A JP 12936082A JP S5920969 A JPS5920969 A JP S5920969A
Authority
JP
Japan
Prior art keywords
manganese oxide
diffusion electrode
mixed
platinum
button
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12936082A
Other languages
Japanese (ja)
Inventor
Fumio Oo
大尾 文夫
Akira Oota
太田 「あ」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12936082A priority Critical patent/JPS5920969A/en
Publication of JPS5920969A publication Critical patent/JPS5920969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Abstract

PURPOSE:To provide a button-type air cell having higher average continuous voltage and larger net capacity, by employing a manganese oxide carrying a metal with catalytic activity and activated carbon as catalyzers so as to prevent deterioration in catalytic activity of the manganese oxide due to its hydrophilic property. CONSTITUTION:Preparing a solution of 200ml of water mixed with 300ml of methanol, 1.5g of polyvinyl alcohol is dissolved therein, 20ml of chloroplatinic acid solution containing 10mg/ml of platinum is added thereto, and 10g of a manganese oxide whose degree of oxidation being 1.6 is further added thereto, and the solution is suitably stirred at the temperature of 70 deg.C and left as it is for 3-5hr. The manganese oxide thus obtained has 20-30Angstrom of grain sizes of platinum grains uniformly distributed over and sticking to the surface thereof, the stuck amount being 1.8% by weight of the manganese oxide. The same is mixed with active carbon, and further mixed with dispersion of polytetrafluoroethylene which offers thereto binding effect and water repellency. The same is then applied to the nickel screen 3 and gets dried, and the gas-diffusion electrode is thus constructed thereby. The button-type air zinc cell using the electrode described above as its anode exhibits much better characteristics in the average comfinuous voltage and net capacity compared with conventional cells.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、正極活物質に酸素を使用する電池、例えば空
気電池のガス拡散電極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gas diffusion electrode for a battery using oxygen as a positive electrode active material, such as an air battery.

従来の構成とその問題点 従来、ガス拡散電極の触媒には種々のものが提案されて
いる。白金族元素や銀などの貴金属を活性炭に析出させ
たもの、活性炭と二酸化マンガンを混合したもの、活性
炭とポルフィリン系金属錯体を混合したものなどを用い
ることが提案されている。一般に、白金族元素、銀など
の触媒効果は大きいが、その効′果を十分に発揮させる
ためには添加量が10〜20重量係程度必要であり、資
源的、コスト的にも極めて不都合である。またJ在補聴
器用として注目されているボタン形空気電池に貴金属を
多量に使用することは、−次電池が一般に再生、再使用
し難い点を考慮すると高価なものとなる。
Conventional configurations and their problems Various types of catalysts for gas diffusion electrodes have been proposed in the past. It has been proposed to use activated carbon in which noble metals such as platinum group elements and silver are precipitated, mixtures of activated carbon and manganese dioxide, and mixtures of activated carbon and porphyrin metal complexes. In general, platinum group elements, silver, etc. have a large catalytic effect, but in order to fully demonstrate their effects, the amount of addition is approximately 10 to 20% by weight, which is extremely inconvenient in terms of resources and cost. be. Furthermore, the use of large amounts of precious metals in button-type air batteries, which are attracting attention for use in hearing aids, is expensive, considering that rechargeable batteries are generally difficult to reproduce and reuse.

このだめ、安価なマンガン酸化物、例えば二酸化マンガ
ンを空気電池用触媒にすることが過去から種々考えられ
ているが、初度の開路電圧を高くすることには効果は示
すものの、放電々圧を高めることには必ずしも十分でな
かった。これはマンガン酸化物が、それ自身の親水性に
より放電、又は保存中に浸透あるいは拡散する電解液に
より、正極触媒中のマンガン酸化物と活性炭との間で電
気化学反応が生じ、マンガンの低級酸化物を生成するこ
とにより、マンガン酸化物の触媒能が低下することに原
因がある。
To solve this problem, various attempts have been made in the past to use cheap manganese oxides, such as manganese dioxide, as catalysts for air batteries, but although they are effective in increasing the initial open circuit voltage, they also increase the discharge voltage. It wasn't always enough. This is because manganese oxide discharges due to its own hydrophilic nature, or due to the electrolyte that permeates or diffuses during storage, an electrochemical reaction occurs between manganese oxide and activated carbon in the positive electrode catalyst, resulting in lower oxidation of manganese. The cause is that the catalytic ability of manganese oxide decreases due to the production of manganese oxides.

発明の目的 本発明は、以上の様にマンガン酸化物の親水性に基づく
触媒能が低下する問題点を解決し、さらには触媒能の大
巾な向上を図ることを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to solve the above-mentioned problem of reduced catalytic ability due to the hydrophilicity of manganese oxides, and further to significantly improve the catalytic ability.

発明の構成 本発明は、触媒能を有する金属を担持したマンガン酸化
物と活性炭とを触媒に用いることを特徴とする。
Structure of the Invention The present invention is characterized in that a manganese oxide supporting a metal having catalytic ability and activated carbon are used as a catalyst.

ここで、マンガン酸化物に金属を担持させるには、触媒
能を有した金属塩の溶液に、分散剤である水溶性高分子
物質、例えばポリビニルアルコール、ポリビニルピロリ
ドン、ポリエチレンオキサイドを添加し、これにマンガ
ン酸化物を加えて良く攪拌し、その後還元剤、例えばア
ルコール類。
Here, in order to support a metal on manganese oxide, a water-soluble polymer substance as a dispersant, such as polyvinyl alcohol, polyvinylpyrrolidone, or polyethylene oxide, is added to a solution of a metal salt having catalytic ability. Add manganese oxide and stir well, then add reducing agent, such as alcohol.

ホルマリン等を加えて金属塩を還元し、マンガン酸化物
表面に金属を析出させる方法を用いるのがよい○ ことに使用する金属塩としては、それぞれの金属の塩化
物が溶解度も高く有効である。また、マンガン酸化物を
MnO工で表したとき、酸化度Xは1.4〜2.0のも
のが好ましい。マンガン酸化物の酸化度が1.4以下又
は2.0以上であると、極めて不安定な酸化物の状態と
なっているだめ、還元剤等と作用した時に分解してしま
い、マンガン酸化物としての特性を維持できにくいだめ
である。
It is preferable to use a method in which formalin or the like is added to reduce the metal salt and deposit the metal on the surface of the manganese oxide.○ In particular, as the metal salt to be used, chlorides of the respective metals have high solubility and are effective. Further, when manganese oxide is expressed as MnO, the oxidation degree X is preferably 1.4 to 2.0. If the oxidation degree of manganese oxide is less than 1.4 or more than 2.0, it will be in an extremely unstable oxide state, and will decompose when it interacts with a reducing agent, etc., resulting in the formation of manganese oxide. It is difficult to maintain these characteristics.

実施例の説明 以下に、実施例によって本発明の詳細な説明するO 実施例 1 メタノール300m1に水200 mlを混合した溶液
に、ポリビニルアルコールを1.6g溶解サセ、これに
白金量として10 mi 7mll含有する塩化白金酸
溶液20 m 71を加え、さらに酸化度1.6のマン
ガン酸化物10gを加え、温度70℃で適宜攪拌しなが
ら3〜5時間放置する。
DESCRIPTION OF EXAMPLES Below, the present invention will be explained in detail with reference to examples. Add 20 m 71 of a chloroplatinic acid solution containing the mixture, and further add 10 g of manganese oxide with an oxidation degree of 1.6, and leave it for 3 to 5 hours at a temperature of 70° C. with appropriate stirring.

実施例 2 メタノール300 mlに水200 m7を混合した溶
液にポリビニルアルコールを1.5g溶解させ、これに
金属コバルト量として50 mi 7 ml含有する塩
化コバルト溶液20m1を加え、さらに酸化度2、○の
マンガン酸化物を109加えて、適宜攪拌しながら温度
70℃で1〜2時間放置する0実施例 3 ホルマリン30m1に水600m1を混合した溶液にポ
リビニルピロリドンを2.0g溶解させ、これに金属ラ
ンタン量として20mg/ml含有する塩化ランタン溶
液20m1を加え、酸化度1.8のマンガン酸化物10
gを加えて、適宜攪拌しながら温度60’Cで3〜4時
間放置する。
Example 2 1.5 g of polyvinyl alcohol was dissolved in a solution of 300 ml of methanol mixed with 200 m7 of water, 20 ml of cobalt chloride solution containing 50 mi 7 ml of metal cobalt was added thereto, and the solution was further dissolved with an oxidation degree of 2 and ○. Add 109 manganese oxides and leave for 1 to 2 hours at a temperature of 70°C with appropriate stirring. Example 3 2.0 g of polyvinylpyrrolidone is dissolved in a solution of 30 ml of formalin and 600 ml of water, and the amount of metal lanthanum is dissolved in this solution. Add 20ml of lanthanum chloride solution containing 20mg/ml of manganese oxide with an oxidation degree of 1.8.
g and left to stand at a temperature of 60'C for 3 to 4 hours with appropriate stirring.

実施例1によって得られたマンガン酸化物表面には、粒
径が20〜30への白金粒子が一様に付着しており、付
着量はマンガン酸化物に対し1.8重量%であった。実
施例2では、粒径10〜30人のコバルト粒子が一様に
付着し、付着量は8.7重量%、実施例3では、粒径1
5〜30人のランタン粒子が一様に付着し、付着量は3
.6重量%であ −)/こ。
Platinum particles having a particle size of 20 to 30 were uniformly adhered to the surface of the manganese oxide obtained in Example 1, and the amount of adhesion was 1.8% by weight based on the manganese oxide. In Example 2, cobalt particles with a particle size of 10 to 30 were uniformly adhered, and the adhesion amount was 8.7% by weight, and in Example 3, cobalt particles with a particle size of 1
5 to 30 lanthanum particles adhere uniformly, and the amount of adhesion is 3
.. 6% by weight -)/ko.

実施例1.2.3で得だそれぞれのマンガン酸化物と、
活性炭、ならびにこれらに結着性と撥水噴 ヨンを混合し、これをニッケルスクリーンに塗着、乾燥
してそれぞれガス拡散極A、B、Cを構成した。マンガ
ン酸化物と活性炭とポリ4フフ化エチレンの配合量は、
重量比で9:5:4とした。また、比較例として、単に
マンガン酸化物を用いて同様の配合で構成した電極をD
とした。
Each manganese oxide obtained in Example 1.2.3,
Activated carbon and a binding agent and a water repellent spray were mixed therein, applied to a nickel screen, and dried to form gas diffusion electrodes A, B, and C, respectively. The compounding amounts of manganese oxide, activated carbon, and polytetrafluoroethylene are as follows:
The weight ratio was 9:5:4. In addition, as a comparative example, an electrode made of manganese oxide with a similar composition was
And so.

これらの電極を正極として、図に示すR44サイズのボ
タン形空気亜鉛電池(電池容量420mAh)を構成し
、2 mA 、 5 mA 、 10mAの定電流放電
をした時の平均維持電圧、及び実容量を比較した結果を
次表に示す。
Using these electrodes as the positive electrode, configure the R44 size button-type zinc-air battery shown in the figure (battery capacity 420 mAh), and calculate the average maintaining voltage and actual capacity when constant current discharge of 2 mA, 5 mA, and 10 mA is performed. The comparison results are shown in the table below.

以   下   余   白 なお、図において、1は正極容器で、その内部には触媒
層2をニッケルスクリーン3に塗着、乾燥したガス拡散
電極4、撥水膜5、セパレータ6が挿入されており、負
極亜鉛7は負極容器8内に充填されている。9はガスケ
ット、1oは漏液防止のだめの支持紙、11は容器1の
底部に設けた空気供給孔である。
In the figure, 1 is a positive electrode container, inside which a catalyst layer 2 is coated on a nickel screen 3, a dried gas diffusion electrode 4, a water-repellent film 5, and a separator 6 are inserted. Negative electrode zinc 7 is filled in negative electrode container 8 . 9 is a gasket, 1o is a supporting paper for preventing liquid leakage, and 11 is an air supply hole provided at the bottom of the container 1.

上記の結果から明らかなように、本発明のガス拡散電極
を用いた電池は、比較例に比べて平均維持電圧が高く実
容量も大きい。
As is clear from the above results, the battery using the gas diffusion electrode of the present invention has a higher average maintenance voltage and a larger actual capacity than the comparative example.

実施例では、マンガン酸化物゛に担持させる触媒金属と
して、白金、コバルト、ランタンを用いだが、この種電
極の触媒として用いられるルテニウム、ジルコニウムを
適用しても同様の効果が得られる。
In the examples, platinum, cobalt, and lanthanum were used as catalyst metals supported on manganese oxide, but similar effects can be obtained by using ruthenium and zirconium, which are used as catalysts for this type of electrode.

発明の効果 本発明では、マンガン酸化物に触媒能を有する金属を担
持させた結果、触媒の活性点を増大させ、かつまだマン
ガン酸化物の電解液に対する親和力を弱めることにより
、正極活物質である酸素との親和力を強化することがで
きるため、極めて優秀な触媒活性を示す。まだマンガン
酸化物自身、触媒能を有しているだめ、高価な貴金属触
媒の添加量も従来に比して約%程度で同等の効果を発揮
し、安価々電極とすることができる。
Effects of the Invention In the present invention, as a result of supporting a metal having catalytic ability on manganese oxide, the active sites of the catalyst are increased, and the affinity of the manganese oxide to the electrolyte is weakened, so that it can be used as a positive electrode active material. Because it can strengthen its affinity with oxygen, it exhibits extremely excellent catalytic activity. Since manganese oxide itself still has catalytic ability, the amount of expensive noble metal catalyst added can be about 1% compared to the conventional method, and the same effect can be achieved, making it possible to form an electrode at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に用いた空気亜鉛電池の要部を断
面にした側面図である。 1・・・・・・正極容器、2・・・・・・触媒層、3・
・・・・・ニッケルスクリーン、4・・・・・・ガス拡
散電極、5・・・・・・撥水膜O
The drawing is a cross-sectional side view of a main part of a zinc-air battery used in an example of the present invention. 1...Positive electrode container, 2...Catalyst layer, 3.
... Nickel screen, 4 ... Gas diffusion electrode, 5 ... Water repellent film O

Claims (3)

【特許請求の範囲】[Claims] (1)触媒能を有する金属を担持したマンガン酸化物と
、活性炭とを主体とする触媒層を備えだ電池用ガス拡散
電極。
(1) A gas diffusion electrode for batteries comprising a catalyst layer mainly consisting of manganese oxide supporting a metal with catalytic ability and activated carbon.
(2)  マンガン酸化物をMnOxで表したときの酸
化度Xが1.4〜2.0である特許請求の範囲第1項記
載の電池用ガス拡散電極。
(2) The gas diffusion electrode for a battery according to claim 1, wherein the manganese oxide has an oxidation degree X of 1.4 to 2.0 when expressed as MnOx.
(3)触媒能を有する金属が、白金、ランタン、コバル
ト、ルテニウム又はジルコニウムである特許請求の範囲
第1項記載のガス拡散電極。
(3) The gas diffusion electrode according to claim 1, wherein the metal having catalytic ability is platinum, lanthanum, cobalt, ruthenium, or zirconium.
JP12936082A 1982-07-23 1982-07-23 Gas-diffusion electrode for cell Pending JPS5920969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12936082A JPS5920969A (en) 1982-07-23 1982-07-23 Gas-diffusion electrode for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12936082A JPS5920969A (en) 1982-07-23 1982-07-23 Gas-diffusion electrode for cell

Publications (1)

Publication Number Publication Date
JPS5920969A true JPS5920969A (en) 1984-02-02

Family

ID=15007659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12936082A Pending JPS5920969A (en) 1982-07-23 1982-07-23 Gas-diffusion electrode for cell

Country Status (1)

Country Link
JP (1) JPS5920969A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136307A (en) * 1974-04-08 1975-10-29
JPS555772A (en) * 1978-06-30 1980-01-16 Agency Of Ind Science & Technol Dual type oxide catalyst for hydrogen contact combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136307A (en) * 1974-04-08 1975-10-29
JPS555772A (en) * 1978-06-30 1980-01-16 Agency Of Ind Science & Technol Dual type oxide catalyst for hydrogen contact combustion

Similar Documents

Publication Publication Date Title
US5626988A (en) Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
EP1393393B1 (en) Ionically conductive additive for zinc-based anode in alkaline electrochemical cells
US20110091796A1 (en) Electrochemical catalysts
US20030173548A1 (en) Manganese oxide based catalyst and electrode for alkaline electrochemical system and method of its production
CN110534847B (en) Rechargeable aluminum-air battery and preparation method thereof
US6632557B1 (en) Cathodes for metal air electrochemical cells
US6593023B2 (en) Battery and method of making the same
WO1997017737A1 (en) Rechargeable alkaline cells containing zinc anodes without added mercury
US8148020B2 (en) Molybdenum/air battery and cell design
US4121018A (en) Positive electrode for air-depolarized alkaline primary cell with thickened electrolyte
JPH09167622A (en) Electrode catalyst and solid polymer type fuel cell using same
JPH06196171A (en) Solid high polymer type fuel cell
EP0527793B1 (en) Catalytic recombination of hydrogen in alkaline cells
JP2013176717A (en) Metal oxide catalyst and method of manufacturing the same, and fuel cell using the same
JPS5920969A (en) Gas-diffusion electrode for cell
US6465128B1 (en) Method of making a cathode or battery from a metal napthenate
JP3647218B2 (en) Air zinc battery
US4020239A (en) Cathode for hydrazine/air cell
JPH06500659A (en) Metal and metal oxide catalyst electrodes for electrochemical cells and their manufacturing method
JPS59143276A (en) Air cell
CN1205116A (en) Rechangable alkaline cells containing zinc anodes without added mercury
CN115149013A (en) Preparation method of fuel cell mixed catalyst slurry and mixed catalyst slurry
JPS5861570A (en) Air cell
JPH0522346B2 (en)
JPH11345633A (en) Air-zinc cell