JPS59209279A - Molten salt fuel cell - Google Patents

Molten salt fuel cell

Info

Publication number
JPS59209279A
JPS59209279A JP58084404A JP8440483A JPS59209279A JP S59209279 A JPS59209279 A JP S59209279A JP 58084404 A JP58084404 A JP 58084404A JP 8440483 A JP8440483 A JP 8440483A JP S59209279 A JPS59209279 A JP S59209279A
Authority
JP
Japan
Prior art keywords
fuel cell
moisture
container
gas
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58084404A
Other languages
Japanese (ja)
Other versions
JPH0582028B2 (en
Inventor
Nobuyuki Yanagihara
伸行 柳原
Junji Niikura
順二 新倉
Hisao Giyouten
久朗 行天
Akihiro Hosoi
昭宏 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58084404A priority Critical patent/JPS59209279A/en
Publication of JPS59209279A publication Critical patent/JPS59209279A/en
Publication of JPH0582028B2 publication Critical patent/JPH0582028B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep an atmosphere of a gas chamber dry with a moisture absorber when a cell is stopped and regenerating the absorber with heat generated in the cell by arranging a dryer containing moisture absorber and a fuel cell main body in a sealable container. CONSTITUTION:A fuel cell main body 2 and a dryer 4 containing moisture absorber 3 are arranged in a sealable and pressure resistant container 1. Temperature of a fuel cell 2 is raised with a supporting power source 22, and power generation is initiated at 500-650 deg.C by combining with heat generation of the fuel cell 2. When power generation is stopped, each of valves 13, 14, 18, 19, and 24 is directly closed, or after replacing hydrogen gas with an inactive gas, each of valves is closed. When temperature in a container falls near room temperature, moisture contained in air in the container is absorbed in the moisture absorber 3 in the dryer, and moisture in the container is decreased with time elapsed. The moisture absorbed in the absorber is exhaust from an exhausting pipe 23 with heat in power generation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は水素・−酸化炭素などを燃料とし、酸素、空気
、炭酸ガスなどを酸化剤として、溶融塩を電解質とする
高温作動型燃料電池装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-temperature operating fuel cell device using hydrogen, carbon oxide, etc. as a fuel, oxygen, air, carbon dioxide, etc. as an oxidizing agent, and a molten salt as an electrolyte. .

高温作動型燃料電池装置は高温下での化学反応速度が大
きいことを利用して高電流密度を得ようと2、、−ザ したものである。
High-temperature operating fuel cell devices are designed to obtain high current densities by taking advantage of the high rate of chemical reactions at high temperatures.

従来例の構成とその問題点 一般に、高温作動型燃料電池は電解質として高温下でも
イオンの移動が可能である溶融塩、たとえばCO&−の
導電性を有する炭酸塩などが用いられている。そして燃
料として水素、酸化剤として空気中の酸素と炭酸ガスの
混合物を用いて、つぎに示すよう外反応を行わせる溶融
塩燃料電池を構成する。
Conventional Structures and Problems Generally, high-temperature operating fuel cells use, as an electrolyte, a molten salt that allows ion movement even at high temperatures, such as a carbonate having CO&- conductivity. Using hydrogen as a fuel and a mixture of oxygen and carbon dioxide in the air as an oxidizing agent, a molten salt fuel cell is constructed in which an external reaction is carried out as described below.

上記反応式から明らかなように燃料極側では水素が電解
質のco&−と反応して消費され、反応生成物として水
と炭酸ガスができる。一方酸化剤極側(以下空気極側と
する)では酸素と炭酸ガスは電解質へCO風−の形にな
って消費される。ここで燃料極で生成した炭酸ガスは空
気極に供給して消費されるので全体反応としてはH2+
!AO2→H20となり、水素と酸素から水が生成する
。電解質中で3ページ はCO3イオンの移動のみであり、炭酸ガスは物質収支
−に関与し々いことになる。しだがって、Co3を有す
る電解質は通常の発電時、捷たけ停止時においても変化
しないことが重要である。
As is clear from the above reaction equation, hydrogen reacts with co&- of the electrolyte and is consumed on the fuel electrode side, producing water and carbon dioxide as reaction products. On the other hand, on the oxidizing agent electrode side (hereinafter referred to as the air electrode side), oxygen and carbon dioxide gas are consumed in the form of CO wind to the electrolyte. Here, the carbon dioxide gas generated at the fuel electrode is supplied to the air electrode and consumed, so the overall reaction is H2+
! AO2→H20, and water is generated from hydrogen and oxygen. Page 3 in the electrolyte is only the movement of CO3 ions, and carbon dioxide gas is largely involved in the mass balance. Therefore, it is important that the electrolyte containing Co3 does not change during normal power generation or when the grinding is stopped.

この種の燃料電池は溶融塩を電解質とし、この電解質を
含有する保持体を両面より、空気極と燃料極ではさみ、
空気極側のガス室に炭酸ガスと空気の混合ガスを、燃料
極側のガス室に水素を各々供給される構成となっている
。また両電極間より電気を取りやすくするために集電体
が各々のガス室に設けられている。一方供給された空気
と炭酸ガスの混合物は電気化学反応をした後系外に排出
され、同じように水素は炭酸ガスと水となって排出され
る流路が設けられている。しかも常圧に近い圧力で発電
する場合は特別な高圧容器は不要である。
This type of fuel cell uses molten salt as an electrolyte, and a holder containing this electrolyte is sandwiched between an air electrode and a fuel electrode from both sides.
A mixed gas of carbon dioxide and air is supplied to the gas chamber on the air electrode side, and hydrogen is supplied to the gas chamber on the fuel electrode side. Further, a current collector is provided in each gas chamber to facilitate the collection of electricity between the two electrodes. On the other hand, a flow path is provided in which the supplied mixture of air and carbon dioxide undergoes an electrochemical reaction and is discharged outside the system, and in the same way, hydrogen is discharged as carbon dioxide and water. Moreover, when generating electricity at a pressure close to normal pressure, a special high-pressure vessel is not required.

性能向上を図る試みの一つとして、燃料電池本体を高圧
容器内に配置し、や\高い圧力の雰囲気で発電すること
もある。
One attempt to improve performance is to place the fuel cell body inside a high-pressure container and generate electricity in a somewhat high-pressure atmosphere.

この様な構成で、しかも高い温度で発電する場合は外部
から供給する燃料や空気中に水分などが含有しても発電
時は高温状態になるため、水蒸気となって排出されるの
で電解質と反応することとなり、しかしながら、燃料電
池の発電をメンテナンスなどの理由で停止する場合があ
り、この操作は実用上管理面で必要な事である。この時
、燃料電池の温度が常温近くまで下がる以前に再発電し
て温度を上昇させる場合には大きな影響はないが、比較
的長い開停止する場合には当然、常温1で温度が下がる
。燃料電池の温度が下がると燃料電池本体のある周辺部
の空気、まだは置換用ガス(不活性ガス)中に含1れて
いる水分が電解質と反応して電解質(とくに炭酸塩)が
潮解現象をひきおこし、変質してし捷う。潮解した電解
質は溶解状態となって一部電解質の保持体からクリープ
して電池外部に漏出し、短絡現象の原因にもなり、さら
には電解質が減少して、電解質保持体の電気抵抗が大き
くなり電池性能の低下にまで至る問題点があった。
With this configuration, when power is generated at a high temperature, even if there is moisture in the fuel supplied from outside or in the air, the temperature will be high during power generation, so it will be discharged as water vapor and will react with the electrolyte. However, the power generation of the fuel cell may be stopped for reasons such as maintenance, and this operation is necessary from a practical management perspective. At this time, if the temperature of the fuel cell is regenerated and raised before the temperature of the fuel cell drops to near room temperature, there will be no major effect, but if the fuel cell is opened and stopped for a relatively long time, the temperature will naturally drop from room temperature 1. When the temperature of the fuel cell drops, the air around the fuel cell itself, and the water still contained in the replacement gas (inert gas), reacts with the electrolyte, causing the electrolyte (especially carbonate) to deliquesce. It arouses, transforms, and destroys. The deliquescent electrolyte becomes dissolved and partially creeps from the electrolyte holder and leaks to the outside of the battery, causing a short circuit phenomenon.Furthermore, the electrolyte decreases and the electrical resistance of the electrolyte holder increases. There were problems that led to a decline in battery performance.

発明の目的 5ページ 本発明は上記問題点に鑑み、炭酸塩を電解質とする高温
作動形の溶融塩燃料電池装置の発電を停止させるときに
水分吸着剤を用いて乾燥したガス雰囲気中に保持すると
ともに、前記燃料電池の発熱を利用して前記水分吸着剤
を再生することを目的とする。
Purpose of the Invention Page 5 In view of the above-mentioned problems, the present invention uses a moisture adsorbent to maintain a dry gas atmosphere when stopping power generation in a high-temperature operation type molten salt fuel cell device that uses carbonate as an electrolyte. Another object of the present invention is to regenerate the moisture adsorbent using heat generated by the fuel cell.

発明の構成 本発明は、還元性ガス(H2,Co々と)を燃料とし、
酸化性ガス(o2.Co2.空気など)を酸化剤として
発電させる溶融塩燃料電池と水分吸着剤を内蔵した乾燥
器とを密封可能な共通の容器内に配置させ、前記溶融塩
燃料電池の発電を停止する時に前記水分吸収剤で前記燃
料電池のガス室内部と前記容器内部の水分を吸収除去し
、発電を再開した時の前記燃料電池の発熱や補助熱源な
どによる熱量で水分吸着剤を再生することを特徴とする
溶融塩燃料電池装置である。さらに本発明は水分吸着剤
として無機質多孔体材料、たとえば、ゼオライト、アル
ミナ、モレキュラシープ、CaやMqなどの塩化物、酸
化物などの中を通して置換用の6ベーげ の不活性ガスなどを燃料電池のガス室、マニホールド(
積層電池の共通ガス室)部に供給するように乾燥器を容
器内に設けたことを特徴とする溶融塩燃料電池装置であ
る。
Structure of the Invention The present invention uses reducing gas (H2, Co, etc.) as fuel,
A molten salt fuel cell that generates electricity using oxidizing gas (O2, Co2, air, etc.) as an oxidant and a dryer containing a moisture adsorbent are placed in a common sealable container, and the molten salt fuel cell generates electricity. When power generation is stopped, the water absorbent absorbs and removes water inside the gas chamber of the fuel cell and the container, and when power generation is restarted, the water adsorbent is regenerated using the heat generated by the fuel cell or from an auxiliary heat source. This is a molten salt fuel cell device characterized by: Furthermore, the present invention uses an inert gas for displacement through inorganic porous materials such as zeolite, alumina, molecular sheep, chlorides and oxides such as Ca and Mq as a moisture adsorbent. Battery gas chamber, manifold (
This is a molten salt fuel cell device characterized in that a dryer is provided in a container so as to supply a common gas chamber (gas chamber) of a stacked battery.

実施例の説明 以下、本発明の詳細を図示の実施例によって説明する。Description of examples Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

本発明の溶融塩燃料電池装置を第1図及び第2図に示す
。従来型と異なる点は発電停止時に乾燥したガスが供給
出来るように、水分吸着剤を内蔵した乾燥器と燃料電池
本体を密封可能な容器内に配置し、燃料電池の発熱量、
補助熱源で水分吸着剤を再生する構成とした装置になっ
ていることである。すなわち、燃料電池の発電と吸着剤
の再生を同時に出来る。
The molten salt fuel cell device of the present invention is shown in FIGS. 1 and 2. The difference from the conventional type is that the dryer with a built-in moisture adsorbent and the fuel cell body are placed in a sealable container so that dry gas can be supplied when power generation is stopped.
The device is configured to regenerate the moisture adsorbent using an auxiliary heat source. In other words, the fuel cell can generate electricity and the adsorbent can be regenerated at the same time.

すなわち、発電を停止した時の一実施例を第1図に示す
ように、密封可能な耐圧容器1内に燃料電池本体2と水
分吸着剤3を内蔵した乾燥器4からなることが基本構成
であり、燃料電池本体2には、電解質保持体5をはさん
で両側に空気極6を持つ空気室7と燃料極8を持つ燃料
室9がある。
That is, as shown in FIG. 1, which shows an embodiment when power generation is stopped, the basic structure consists of a fuel cell main body 2 and a dryer 4 containing a moisture adsorbent 3 in a sealable pressure-resistant container 1. The fuel cell main body 2 has an air chamber 7 having an air electrode 6 on both sides with an electrolyte holder 5 in between, and a fuel chamber 9 having a fuel electrode 8.

了、・−22 空気室7側には酸化剤を供給する入口側パイプ10と排
出側パイプ11が継手12を通して連結されている。1
3と14は入口側と出口側のバルブであり、酸化剤ガス
の供給と停止操作をおこなうものである。燃料室側9に
は燃料を供給する入口側パイプ15と排出側パイプ16
が継手17を通して連結されている。18と19は入口
側と出口側のバルブであり、燃料ガスの供給と停止E操
作をおこなうものである。装置全体を底板20でボルト
21で締めて容器内を密封状態に出来る。
-22 On the air chamber 7 side, an inlet pipe 10 for supplying an oxidizing agent and a discharge pipe 11 are connected through a joint 12. 1
Numerals 3 and 14 are valves on the inlet side and the outlet side, which are used to supply and stop the oxidizing gas. The fuel chamber side 9 has an inlet pipe 15 for supplying fuel and an exhaust pipe 16.
are connected through a joint 17. Numerals 18 and 19 are valves on the inlet side and the outlet side, which perform the fuel gas supply and stop E operation. The entire device can be tightened to the bottom plate 20 with bolts 21 to seal the inside of the container.

丑ず補助電源用ヒータ22などを用いて燃料電池の温度
を上昇させ、燃料電池自体の発熱量を合わせて温度50
0〜660℃で発電させた。発熱状態では、酸化剤供給
・排出パルプ13・14および継手12は開いている。
The temperature of the fuel cell is raised using the Ushizu auxiliary power supply heater 22, etc., and the temperature reaches 50%, including the amount of heat generated by the fuel cell itself.
Power was generated at 0 to 660°C. In exothermic conditions, the oxidant supply/discharge pulps 13, 14 and the joint 12 are open.

同様に燃料供給・排出バルブ18・19および継手17
も開いている。
Similarly, fuel supply/discharge valves 18 and 19 and joint 17
is also open.

容器内部の排気ガス出口23のバルブ24は内部の水分
を含むガスを排出させるだめに開の状態である。
The valve 24 of the exhaust gas outlet 23 inside the container is kept open in order to discharge the gas containing moisture inside.

発電を停止した場合は、直接釜バルブ13,14゜18
.19.24)を閉じるか、又は不活性ガスを通して水
素ガスと置換して各バルブ(13,14゜1B、19.
24)を閉じる。容器内部の温度が常温近くまで低下し
て来ると容器内の空気中に含有する水分が、乾燥器内の
水分吸着剤3に吸収除去される。時間の経過と共に、容
器内の水分が殆んど存在しなく々す、乾燥状態の雰囲気
となる。
When power generation is stopped, directly close the pot valve 13, 14゜18.
.. 19.24) or replace each valve (13, 14° 1B, 19.
24) Close. When the temperature inside the container drops to near room temperature, the moisture contained in the air inside the container is absorbed and removed by the moisture adsorbent 3 in the dryer. As time passes, there is almost no moisture in the container, resulting in a dry atmosphere.

この水分吸着剤3に吸収された水分は燃料電池の発電時
の温度(500〜66o℃)の熱量でもって水分を排出
出口23より排出させて再生する。
The moisture absorbed by the moisture adsorbent 3 is regenerated by discharging the moisture from the discharge outlet 23 with the heat of the temperature (500 to 66° C.) during power generation of the fuel cell.

水分の吸収と放出の通気性を容易にするために、燃料電
池の架台25と乾燥器の一部に複数の孔を有する多孔板
4′ を設けた。
A perforated plate 4' having a plurality of holes was provided on the fuel cell frame 25 and a part of the dryer in order to facilitate ventilation for absorption and release of moisture.

さらにつぎの実施例を第2図に示す。密封可能な耐圧容
器26内に燃料電池本体27と無機多孔体からなる水分
吸着剤28.29を含む乾燥器30.31が配置され、
燃料電池の空気室に酸化剤を供給するバルブ32からガ
スの流れは2方に分かれ、一方は燃料電池発電時のガス
供給用バルブ33と他方は燃料電池発電を停止した時に
乾燥9べ、−5ノ ガスを燃料電池に供給するバルブ34で乾燥器3゜を通
して乾燥ガス(空気、不活性ガス)配管が設けられてい
る。36は排出ガス用のバルブである。
Further, the next embodiment is shown in FIG. A dryer 30.31 containing a fuel cell main body 27 and a moisture adsorbent 28.29 made of an inorganic porous material is arranged in a sealable pressure-resistant container 26,
The flow of gas from the valve 32 that supplies the oxidizing agent to the air chamber of the fuel cell is divided into two directions: one is the valve 33 for gas supply during fuel cell power generation, and the other is for drying when the fuel cell power generation is stopped. Drying gas (air, inert gas) piping is provided through the dryer 3° with a valve 34 for supplying 5 NO gas to the fuel cell. 36 is a valve for exhaust gas.

同様に、燃料ガス室に水素を供給するバルブ36からガ
スの流れは2方に分かれ、一方は燃料電池発電時のガス
供給用バルブ37と他方は燃料電池発電を停止した時に
乾燥ガス(置換用ガス)を燃料電池に供給するバルブ3
8で、乾燥器31を通して乾燥ガス配管が設けられてい
る。39は排出ガス用のバルブである。燃料電池発電時
、熱量が不足の場合や、起動熱源用に補助電源ヒータ4
゜を用いる。水分吸着剤の再生時には、燃料電池の発電
熱量を用いるが、吸着剤から放出して来る水分は排出パ
ルプ41.42を開放にして排出する。
Similarly, the gas flow from the valve 36 that supplies hydrogen to the fuel gas chamber is divided into two directions: one is the gas supply valve 37 during fuel cell power generation, and the other is the dry gas (displacement) valve 37 when fuel cell power generation is stopped. Valve 3 that supplies gas) to the fuel cell
At 8, dry gas piping is provided through the dryer 31. 39 is a valve for exhaust gas. During fuel cell power generation, if the amount of heat is insufficient, or as a starting heat source, use the auxiliary power heater 4.
Use ゜. When regenerating the water adsorbent, the amount of heat generated by the fuel cell is used, and the water released from the adsorbent is discharged by opening the discharge pulps 41 and 42.

この様にして、燃料電池内部の水分を除き、殆んど完全
近くまで乾燥状態になると、各々のバルブを閉じて、保
持しておく。
In this way, when the moisture inside the fuel cell is removed and the fuel cell becomes almost completely dry, each valve is closed and maintained.

溶融塩燃料電池自体は公知の方法で試作した。The molten salt fuel cell itself was prototyped using a known method.

空気極はリチウムを含むニッケルの複合酸化物の焼結体
を、燃料極はニッケルの焼結多孔体を、電1oベージ 解質は、炭酸カリウムの混合物60 w t%に対しア
ルミン酸リチウム粉末40wt% の割合に混合し、温
度1500℃でホットプレスして製作した。
The air electrode is a sintered body of a nickel composite oxide containing lithium, the fuel electrode is a sintered porous body of nickel, and the electrolyte is a mixture of 60 wt% potassium carbonate and 40 wt% lithium aluminate powder. % and hot pressed at a temperature of 1500°C.

無機質多孔体としてゼオライトを燃料電池100W当り
300〜500g程用いた。まず、燃料として水素ガス
、酸化剤として炭酸ガスを含む空気を理論量の数倍を供
給し、作動温度650℃、電流密度100mA/7で3
00時間発電した後、発電を停止し、常温壕で温度を低
下させ、約5日間と10日間放置した後、再び所定の温
度と電流密度で発電した時の性能を調べた。乾燥器を用
いない従来例A、容器内の水分を除いた本発明の第一の
実施例B、電池ガス室の水分を除いた本発明の第2の実
施例Cの性能を次表に示す。
Approximately 300 to 500 g of zeolite was used as the inorganic porous material per 100 W of the fuel cell. First, hydrogen gas as a fuel and air containing carbon dioxide gas as an oxidizing agent were supplied in an amount several times the theoretical amount, and the operating temperature was 650°C and the current density was 100mA/7.
After generating power for 00 hours, power generation was stopped, the temperature was lowered in a room-temperature trench, and after being left for about 5 and 10 days, the performance was examined when power was generated again at the predetermined temperature and current density. The following table shows the performance of conventional example A which does not use a dryer, first embodiment B of the present invention in which moisture is removed from the container, and second embodiment C of the present invention in which moisture is removed from the battery gas chamber. .

表 初期性能と比べて低下度合を百分率で表わした。table The degree of decrease compared to the initial performance is expressed as a percentage.

111・−ご 表より明らか々ように、従来型は6日間放置で30〜4
0%、10日間放置で6091+以上の性能低下である
のに対して、本発明型の実施例ではAとBに多小差異は
あるが、性能低下は数多程度であり、従来型と比べて1
0倍以上の性能向上となっている。実施例AとBをイ枡
用するとさらに性能の向上が期待できる。
111・-As is clear from the table, the conventional type has a temperature of 30 to 4 after being left for 6 days.
0%, the performance decreases by 6091+ or more when left for 10 days, whereas in the embodiment of the present invention, although there are some differences between A and B, the performance decrease is only a few, and compared to the conventional type. te1
This is a performance improvement of more than 0 times. If Examples A and B are used extensively, further improvement in performance can be expected.

従来例では、電解質保持体中の電解質がガス中の水分を
吸収して潮解現象をおこし、外部に一部漏出しており、
電解質の変質による抵抗の増大と考えられる。この現象
は実験によって確認している。
In conventional examples, the electrolyte in the electrolyte holder absorbs moisture in the gas, causing deliquescence and some leaking to the outside.
This is thought to be due to an increase in resistance due to alteration of the electrolyte. This phenomenon has been confirmed through experiments.

発明の効果 以上の様に本発明によれば、溶融塩燃料電池装置はメン
テナンスによる発電停止時でも性能の低下が殆んどなく
、安定した性能を持続した上で、長寿命化がはかること
ができる。その上、燃料電池の発電と吸着剤の再生が同
時に出来る。
Effects of the Invention As described above, according to the present invention, the molten salt fuel cell device has almost no deterioration in performance even when power generation is stopped due to maintenance, maintains stable performance, and has a long service life. can. Moreover, the fuel cell can generate electricity and regenerate the adsorbent at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の溶融塩燃料電池製特開昭5
9−209279(4) 置の構成図、第2図は本発明の第2の実施例の溶融塩燃
料電池装置の構成図である。 1・・・・・・耐圧容器、2・・・・・・電池本体、3
・・・・・・水分吸着剤、4・・・・・・乾燥器、6・
・・・・・電解質保持体、7・・・・・・空気室、9・
・・・・・燃料室、10・・・・・・酸化剤供給用入口
側パイプ、15・・・・・・燃料供給用入口側パイプ、
22・・・・・・補助電源用ヒータ、2S・・・・・・
架台、4′・・・・・・多孔板。
Figure 1 shows a molten salt fuel cell manufactured by Japanese Patent Application Laid-Open No. 5-1-2010, which is an embodiment of the present invention.
9-209279 (4) Fig. 2 is a block diagram of a molten salt fuel cell device according to a second embodiment of the present invention. 1...Pressure container, 2...Battery body, 3
...Moisture adsorbent, 4...Dryer, 6.
... Electrolyte holding body, 7 ... Air chamber, 9.
... Fuel chamber, 10 ... Inlet side pipe for oxidizing agent supply, 15 ... Inlet side pipe for fuel supply,
22...Heater for auxiliary power supply, 2S...
Frame, 4'...Perforated plate.

Claims (1)

【特許請求の範囲】 還元性ガスを燃料とし、酸化性ガスを酸化剤として発電
させる溶融塩燃料電池本体と水分吸着剤を内蔵した乾燥
器とを密封可能な共通の容器内に配置させ、前記溶融塩
燃料電池の発電を停止する時に前記水分吸着剤で前記燃
料電池のガス室内部と前記容器内部の水分を吸収除去し
、発電を再開した時の前記燃料電池の発熱や補助熱源に
よる熱堪 量で水分吸着剤を再生することを特徴とする溶融燃料電
池装置。
[Scope of Claims] A molten salt fuel cell main body that generates electricity using a reducing gas as a fuel and an oxidizing gas as an oxidizing agent and a dryer containing a moisture adsorbent are arranged in a common sealable container, When power generation of the molten salt fuel cell is stopped, the moisture adsorbent absorbs and removes moisture inside the gas chamber and the container of the fuel cell, and when power generation is restarted, the fuel cell generates heat and heat resistance due to the auxiliary heat source is eliminated. A molten fuel cell device characterized in that it regenerates a moisture adsorbent in quantity.
JP58084404A 1983-05-13 1983-05-13 Molten salt fuel cell Granted JPS59209279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58084404A JPS59209279A (en) 1983-05-13 1983-05-13 Molten salt fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58084404A JPS59209279A (en) 1983-05-13 1983-05-13 Molten salt fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5114403A Division JPH0689733A (en) 1993-05-17 1993-05-17 Molten salt fuel cell device

Publications (2)

Publication Number Publication Date
JPS59209279A true JPS59209279A (en) 1984-11-27
JPH0582028B2 JPH0582028B2 (en) 1993-11-17

Family

ID=13829645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58084404A Granted JPS59209279A (en) 1983-05-13 1983-05-13 Molten salt fuel cell

Country Status (1)

Country Link
JP (1) JPS59209279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689733A (en) * 1993-05-17 1994-03-29 Matsushita Electric Ind Co Ltd Molten salt fuel cell device
WO2002023657A2 (en) * 2000-09-15 2002-03-21 Siemens Aktiengesellschaft Fuel cell arrangement and method for operating a fuel cell arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689733A (en) * 1993-05-17 1994-03-29 Matsushita Electric Ind Co Ltd Molten salt fuel cell device
WO2002023657A2 (en) * 2000-09-15 2002-03-21 Siemens Aktiengesellschaft Fuel cell arrangement and method for operating a fuel cell arrangement
WO2002023657A3 (en) * 2000-09-15 2003-05-08 Siemens Ag Fuel cell arrangement and method for operating a fuel cell arrangement

Also Published As

Publication number Publication date
JPH0582028B2 (en) 1993-11-17

Similar Documents

Publication Publication Date Title
JP2924009B2 (en) How to stop fuel cell power generation
CA2616548A1 (en) Fuel cell stacks and systems with fluid-responsive temperature regulation
JPH1126003A (en) Power generation stopping method for fuel cell power generating system
WO1999060654A1 (en) Metal/oxygen battery or fuel cell with oxygen cathode containing oxygen concentrator and regulating means of controlling its supply
JPS5832903B2 (en) How to stop a fuel cell
JP2004186074A (en) Method for recovering carbon dioxide using molten carbonate type fuel cell
US20100261094A1 (en) Apparatus for containing metal-organic frameworks
JPS59209279A (en) Molten salt fuel cell
JP2005353303A (en) Fuel cell and fuel cell system
JPS6249703B2 (en)
JPH0244654A (en) Gas replacement method for fuel cell
JP2003132928A (en) Fuel cell system
JP3575650B2 (en) Molten carbonate fuel cell
JPS63298974A (en) Operating method for molten carbonate fuel cell
JPH0218869A (en) Fuel cell and its operation
JPS62274561A (en) Molten carbonate fuel cell
JPH0689733A (en) Molten salt fuel cell device
JP3433975B2 (en) High temperature solid electrolyte fuel cell
JPS59209280A (en) Molten salt fuel cell
JPS6112347B2 (en)
JP2007012319A (en) Fuel cell system
JP2000021431A (en) Method of stopping reforming equipment for fuel cell
KR102526672B1 (en) Method for operating water electrolysis system capable of stably maintaining quality of hydrogen
JPS6097555A (en) Operation of fuel cell
JPH11191427A (en) Electric power recovering method from exhaust gas