JP3433975B2 - High temperature solid electrolyte fuel cell - Google Patents

High temperature solid electrolyte fuel cell

Info

Publication number
JP3433975B2
JP3433975B2 JP16991993A JP16991993A JP3433975B2 JP 3433975 B2 JP3433975 B2 JP 3433975B2 JP 16991993 A JP16991993 A JP 16991993A JP 16991993 A JP16991993 A JP 16991993A JP 3433975 B2 JP3433975 B2 JP 3433975B2
Authority
JP
Japan
Prior art keywords
fuel
chamber
solid electrolyte
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16991993A
Other languages
Japanese (ja)
Other versions
JPH0729590A (en
Inventor
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16991993A priority Critical patent/JP3433975B2/en
Publication of JPH0729590A publication Critical patent/JPH0729590A/en
Application granted granted Critical
Publication of JP3433975B2 publication Critical patent/JP3433975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、硫黄(S)分を含む石
炭ガス化ガス燃料等の炭化水素燃料を用いた発電用の高
温固体電解質燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high temperature solid electrolyte fuel cell for power generation using hydrocarbon fuel such as coal gasification gas fuel containing sulfur (S) content.

【0002】[0002]

【従来の技術】従来、例えば硫化水素(H 2 S)等の硫
黄(S)分を含む水素、一酸化炭素を主成分とする炭化
水素燃料を燃料とした高温固体電解質燃料電池が知られ
ている。この従来の燃料電池の一例を図2に示す。同図
に示すように、高温固体電解質燃料電池は内部に燃料極
を配すると共に、外部に空気極を配しており、燃料供給
室11内に導入された燃料12は、燃料供給管13を介
して固体電解質燃料電池スタック14に供給されてい
る。
2. Description of the Related Art Conventionally, a high temperature solid electrolyte fuel cell has been known in which hydrogen containing a sulfur (S) component such as hydrogen sulfide (H 2 S) or a hydrocarbon fuel containing carbon monoxide as a main component is used as a fuel. There is. An example of this conventional fuel cell is shown in FIG. As shown in the figure, the high-temperature solid oxide fuel cell has a fuel electrode inside and an air electrode outside, and the fuel 12 introduced into the fuel supply chamber 11 flows through the fuel supply pipe 13. It is supplied to the solid electrolyte fuel cell stack 14 via the above.

【0003】この固体電解質燃料電池スタック14は複
数の燃料電池を直列に接続してなる円筒型のものであ
り、この固体電解質燃料電池スタック14を発電室15
内に複数本接続して発電装置としている。
The solid electrolyte fuel cell stack 14 is of a cylindrical type in which a plurality of fuel cells are connected in series. The solid electrolyte fuel cell stack 14 has a power generation chamber 15
A plurality of power generators are connected inside.

【0004】そして、この燃料固体電解質燃料電池スタ
ック14の先端に供給された燃料12は、固体電解質燃
料電池で反応した後、燃料排出室16を経た後燃料排出
管17を介して発電装置外部に排出される。一方、固体
電解質燃料電池スタック14には空気18が供給される
が、この空気18は、排空気との熱交換を行う熱交換器
19で700℃まで加熱された後、発電室15内に供給
されている。そして、空気中の酸素が固体電解質燃料電
池の反応で消費され、反応に伴う発熱で発電室の温度は
約900から1000℃へ上昇する。尚、排空気は空気
排出管20を介して熱交換器(再生熱交換器)19を通
って発電装置外へ排出される。また、発電装置全体は断
熱材21で覆われている。
The fuel 12 supplied to the tip of the fuel solid electrolyte fuel cell stack 14 reacts in the solid electrolyte fuel cell, passes through the fuel discharge chamber 16, and then passes through the fuel discharge pipe 17 to the outside of the power generator. Is discharged. On the other hand, air 18 is supplied to the solid electrolyte fuel cell stack 14, and this air 18 is heated to 700 ° C. by a heat exchanger 19 that performs heat exchange with exhaust air and then supplied into the power generation chamber 15. Has been done. Oxygen in the air is consumed by the reaction of the solid oxide fuel cell, and the temperature of the power generation chamber rises from about 900 to 1000 ° C due to the heat generated by the reaction. Exhaust air is discharged to the outside of the power generator through the heat exchanger (regeneration heat exchanger) 19 via the air discharge pipe 20. Further, the entire power generation device is covered with the heat insulating material 21.

【0005】[0005]

【発明が解決しようとする課題】ところで、図2に示す
従来の高温固体電解質燃料電池では、内部に供給する炭
化水素燃料の石炭ガス化ガス中に硫黄成分が含まれてい
ると、燃料電池の燃料極であるニッケルが被毒して過電
圧が増加し、図3に示すように電池出力が低下するとい
う問題がある。また、石炭ガス化ガス中には、一般に5
0ppm 程度の硫黄成分が含まれており、直接固体電解質
燃料電池に燃料として供給できないという問題がある。
By the way, in the conventional high temperature solid electrolyte fuel cell shown in FIG. 2, when the sulfur gas is contained in the coal gasification gas of the hydrocarbon fuel supplied inside, the fuel cell of the fuel cell There is a problem in that nickel, which is the fuel electrode, is poisoned to increase the overvoltage, and the cell output decreases as shown in FIG. In addition, the coal gasification gas generally contains 5
Since it contains about 0 ppm of sulfur component, there is a problem that it cannot be directly supplied to the solid electrolyte fuel cell as a fuel.

【0006】本発明は上記問題に鑑み、硫黄分を含んだ
炭化水素燃料を用いても発電特性が低下することのない
高温固体電解質燃料電池を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a high temperature solid electrolyte fuel cell that does not deteriorate in power generation characteristics even when a hydrocarbon fuel containing sulfur is used.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る高温固体電解質燃料電池の構成は、断熱材で被
包された容器内部に画成された発電室と、前記発電室に
垂設され、固体電解質燃料電池を複数個直列に接続し、
下端を閉鎖した円筒状にされた固体電解質燃料電池スタ
ックと、前記容器内の前記発電室上方に画成された燃料
供給室と、前記発電室と前記燃料供給室の間に区画さ
れ、前記固体電解質燃料電池スタックの上端を開口させ
た燃料排出室と、一端を前記燃料供給室に開口させ、他
端を前記スタックの下端内部に開口させつつ前記スタッ
クの内部に挿通された燃料供給管と、前記容器内の前記
発電室下方に設置され、前記発電室に供給する空気を予
熱する空気熱交換器とを備えてなり、硫黄(S)分を含
む炭化水素燃料を燃料とする高温固体電解質燃料電池に
おいて、前記燃料供給室の上方に設置され、脱硫触媒を
充填し複数の細孔を有した触媒支持多孔板で構成される
燃料供給ヘッダと、前記発電室と前記燃料排出室との間
及び前記燃料排出室と前記燃料供給室との間に設けられ
て前記発電室からの熱を遮断し、前記燃料供給ヘッダ内
温度を前記脱硫触媒の触媒反応に必要な温度維持す
る断熱手段を備えてなることを特徴とする。また、上
記発明において、前記断熱手段が、前記発電室と前記燃
料排出室との間に設けられた断熱材の厚さを調整するこ
とで、前記燃料供給ヘッダ内の温度を320〜400℃
の温度維持することを特徴とする高温固体電解質燃料
電池。
The structure of a high temperature solid oxide fuel cell according to the present invention which achieves the above object, comprises a power generation chamber defined inside a container surrounded by a heat insulating material, and a fuel cell connected to the power generation chamber. Installed, connecting a plurality of solid oxide fuel cells in series,
A cylindrical solid electrolyte fuel cell stack having a closed lower end, a fuel supply chamber defined above the power generation chamber in the container, and partitioned between the power generation chamber and the fuel supply chamber, the solid A fuel discharge chamber having an upper end of the electrolyte fuel cell stack opened, a fuel supply pipe inserted into the stack while having one end opened to the fuel supply chamber and the other end opened inside the lower end of the stack, A high-temperature solid electrolyte fuel, which is installed in the container below the power generation chamber and includes an air heat exchanger that preheats air supplied to the power generation chamber, and uses a hydrocarbon fuel containing sulfur (S) as a fuel. In the battery, between the fuel supply header, which is installed above the fuel supply chamber and is composed of a catalyst-supporting porous plate filled with a desulfurization catalyst and having a plurality of pores, and between the power generation chamber and the fuel discharge chamber.
And provided between the fuel discharge chamber and the fuel supply chamber
The heat from the power generation chamber cut off, characterized by comprising a heat insulating means for maintaining a temperature necessary the temperature in the fuel supply header to the catalytic reaction of the desulfurization catalyst Te. In the above invention, the insulating means is the said power generating chamber retardant
The temperature inside the fuel supply header is adjusted to 320 to 400 ° C. by adjusting the thickness of the heat insulating material provided between the fuel discharge chamber and the fuel discharge chamber.
High temperature solid electrolyte fuel cell characterized by being maintained at the temperature of .

【0008】[0008]

【作用】上記構成において、高温固体電解質燃料電池へ
燃料が供給される前に燃料中の硫黄分は燃料ヘッダ内に
充填された脱硫触媒により脱硫されるので固体電解質燃
料電池の燃料極の被毒が無く電池出力が低下しない。ま
た、燃料ヘッダ内の温度を制御することにより充填され
た脱硫触媒の反応に十分な温度に保つことができる。
In the above structure, the sulfur content in the fuel is desulfurized by the desulfurization catalyst filled in the fuel header before the fuel is supplied to the high temperature solid oxide fuel cell, so that the fuel electrode of the solid electrolyte fuel cell is poisoned. Battery output does not decrease. Further, by controlling the temperature in the fuel header, it is possible to maintain the temperature sufficient for the reaction of the desulfurization catalyst filled.

【0009】[0009]

【実施例】以下、本発明に係る高温固体電解質燃料電池
の好適な一実施例を説明する。
EXAMPLE A preferred example of the high temperature solid oxide fuel cell according to the present invention will be described below.

【0010】図1は本実施例に係る高温固体電解質燃料
電池の概略図であり、同図中、符号11は燃料供給室,
12は燃料,13は燃料供給管,14は固体電解質燃料
電池スタック,15は発電室,16は燃料排出室,17
は燃料排出管,18は空気,19は熱交換器,20は空
気排出管,21は断熱材を各々図示する。
FIG. 1 is a schematic view of a high temperature solid oxide fuel cell according to this embodiment, in which reference numeral 11 is a fuel supply chamber,
12 is fuel, 13 is fuel supply pipe, 14 is solid electrolyte fuel cell stack, 15 is power generation chamber, 16 is fuel discharge chamber, 17
Is a fuel exhaust pipe, 18 is air, 19 is a heat exchanger, 20 is an air exhaust pipe, and 21 is a heat insulating material.

【0011】本実施例においては、燃料12を供給する
燃料供給室11内には、例えば酸化亜鉛を主成分とする
粒状の脱硫触媒101が複数の細孔102を有した触媒
支持多孔板103上に充填されている。
In this embodiment, in the fuel supply chamber 11 for supplying the fuel 12, for example, a granular desulfurization catalyst 101 containing zinc oxide as a main component is placed on a catalyst supporting porous plate 103 having a plurality of pores 102. Is filled in.

【0012】よって、固体電解質燃料電池スタック14
の先端に供給された燃料12はこの脱硫触媒101によ
って脱硫され、固体電解質燃料電池で反応した後、燃料
排出室16を経て発電装置外部に排出される。
Accordingly, the solid electrolyte fuel cell stack 14
The fuel 12 supplied to the tip of the is desulfurized by the desulfurization catalyst 101, reacted in the solid electrolyte fuel cell, and then discharged to the outside of the power generator through the fuel discharge chamber 16.

【0013】充填する脱硫触媒101は硫化水素と反応
するとZnSとなり、脱硫能力を失うので、充填する触
媒量は発電時間4万時間に供給される石炭ガス化ガスに
含まれる硫黄分を吸着できる量を充填する必要がある。
ここで、石炭ガス化ガス中に例えば50ppm の硫化水素
が含まれているとすれば、4万時間の間に吸着するSの
量は、電流密度200mA/cm2で運転される出力25Wの
固体電解質燃料電池スタック14は一本当たり81gで
ある。これを吸着するのに必要な吸着能力0.18g−S
/g−ZnOの脱硫触媒は450gである。また、この
固体電解質燃料電池スタック14が48本直径40cmの
燃料供給ヘッダに装着(出力1200W)されている場
合に、触媒比重は約1g/cm3 なので17cmの厚さに触媒
を充填すればよいこととなる。
The desulfurization catalyst 101 to be charged becomes ZnS when it reacts with hydrogen sulfide and loses its desulfurization ability. Therefore, the amount of the catalyst to be charged is an amount capable of adsorbing the sulfur content contained in the coal gasification gas supplied for 40,000 hours of power generation time. Need to be filled.
Here, assuming that the coal gasification gas contains, for example, 50 ppm of hydrogen sulfide, the amount of S adsorbed during 40,000 hours is a solid with an output of 25 W operated at a current density of 200 mA / cm 2. The weight of each electrolyte fuel cell stack 14 is 81 g. Adsorption capacity required to adsorb this 0.18g-S
/ G-ZnO desulfurization catalyst is 450 g. Further, when the solid electrolyte fuel cell stack 14 is mounted on the fuel supply header of 48 pieces with a diameter of 40 cm (output 1200 W), the catalyst specific gravity is about 1 g / cm 3, so the catalyst may be filled to a thickness of 17 cm. It will be.

【0014】また、固体電解質燃料電池は燃料の化学的
エネルギを直接電気に変換する発電装置である。電気に
変換されないエネルギは熱に変換される。この固体電解
質燃料電池の発熱を熱源として発電装置内部温度は90
0から1000℃に保たれる。燃料供給室に供給された
石炭ガス化ガスが石炭ガス化ガス等の燃料に含まれる硫
化水素などの硫黄成分が下記の「化1」に示す反応式の
反応により脱硫触媒に化学的に固定される。
The solid electrolyte fuel cell is a power generation device that directly converts the chemical energy of the fuel into electricity. Energy that is not converted to electricity is converted to heat. Using the heat generated by this solid oxide fuel cell as a heat source, the internal temperature of the power generator is 90
It is kept at 0 to 1000 ° C. In the coal gasification gas supplied to the fuel supply chamber, sulfur components such as hydrogen sulfide contained in the fuel such as coal gasification gas are chemically fixed to the desulfurization catalyst by the reaction of the reaction formula shown in "Chemical formula 1" below. It

【0015】[0015]

【化1】ZnO+H2S→ZnS+H2Embedded image ZnO + H 2 S → ZnS + H 2 O

【0016】また、脱硫触媒101は、900℃から1
000℃の発電室14からの熱伝導と、固体電解質燃料
電池スタック14で消費された後の燃料12によって加
熱される。本実施例では、発電室15及び燃料排出室1
6内の燃料12の入口側には各々断熱材104,105
が配設されており、燃料ヘッダとしての燃料供給室11
内に充填されている脱硫触媒101の触媒反応に必要な
温度320〜400℃を維持するようにしている。
The desulfurization catalyst 101 has a temperature of 900.degree.
It is heated by the heat conduction from the power generation chamber 14 at 000 ° C. and the fuel 12 after being consumed in the solid electrolyte fuel cell stack 14. In this embodiment, the power generation chamber 15 and the fuel discharge chamber 1
At the inlet side of the fuel 12 in 6, the heat insulating materials 104 and 105 are respectively provided.
Is provided, and the fuel supply chamber 11 as a fuel header
The temperature of 320 to 400 ° C. necessary for the catalytic reaction of the desulfurization catalyst 101 filled inside is maintained.

【0017】すなわち、脱硫触媒101は燃料排出管1
7を流れる排燃料と燃料排出室16内の排燃料で加熱さ
れると共に、燃料排出室16の排燃料は発電室14から
も加熱されるので、燃料排出室16と発電室14の間に
配された断熱材104の厚さを調整することにより、発
電室16からの加熱量が変化して脱硫触媒101の温度
を制御することができる。
That is, the desulfurization catalyst 101 is the fuel exhaust pipe 1.
7 is heated by the exhaust fuel flowing through 7 and the exhaust fuel in the fuel exhaust chamber 16, and the exhaust fuel in the fuel exhaust chamber 16 is also heated by the power generation chamber 14, so that the fuel is discharged between the fuel exhaust chamber 16 and the power generation chamber 14. By adjusting the thickness of the heat insulating material 104, the amount of heat from the power generation chamber 16 changes, and the temperature of the desulfurization catalyst 101 can be controlled.

【0018】脱硫された燃料は燃料注入管13を通って
固体電解質燃料電池スタック14に供給される。脱硫さ
れた燃料中の硫黄成分は0.1ppm 以下となるので燃料電
池の発電特性は損なわれることが無い。
The desulfurized fuel is supplied to the solid electrolyte fuel cell stack 14 through the fuel injection pipe 13. Since the sulfur content in the desulfurized fuel is 0.1 ppm or less, the power generation characteristics of the fuel cell will not be impaired.

【0019】[0019]

【発明の効果】以上、実施例と共に説明したように本発
明に係る固体電解質燃料電池は脱硫触媒を供給手段内に
配してなるので、燃料として硫黄成分を含んだ炭化水素
燃料を用いても、燃料極の被毒がなく、電池出力が低下
しない。また、熱制御構造とすることにより、脱硫触媒
の触媒能の低下を防止することができ、安定した発電を
行うことができる。
As described above with reference to the embodiments, the solid electrolyte fuel cell according to the present invention has the desulfurization catalyst arranged in the supply means. Therefore, even if a hydrocarbon fuel containing a sulfur component is used as the fuel. , The fuel electrode is not poisoned and the cell output does not decrease. Further, by adopting the heat control structure, it is possible to prevent deterioration of the catalytic ability of the desulfurization catalyst, and it is possible to perform stable power generation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に係る高温固体電解質燃料電池の概略
図である。
FIG. 1 is a schematic view of a high temperature solid oxide fuel cell according to this embodiment.

【図2】従来の実施例に係る高温固体電解質燃料電池の
概略図である。
FIG. 2 is a schematic view of a high temperature solid oxide fuel cell according to a conventional example.

【図3】従来技術の発電特性を示すグラフである。FIG. 3 is a graph showing a power generation characteristic of a conventional technique.

【符号の説明】[Explanation of symbols]

11 燃料供給室 12 燃料 13 燃料供給管 14 固体電解質燃料電池スタック 15 発電室 16 燃料排出室 17 燃料排出管 18 空気 19 熱交換器 20 空気排出管 21 断熱材 101 脱硫触媒 102 細孔 103 触媒支持多孔板 104,105 断熱材 11 Fuel supply room 12 Fuel 13 Fuel supply pipe 14 Solid electrolyte fuel cell stack 15 power generation room 16 Fuel discharge chamber 17 Fuel discharge pipe 18 air 19 heat exchanger 20 Air exhaust pipe 21 thermal insulation 101 desulfurization catalyst 102 pores 103 catalyst supporting porous plate 104,105 thermal insulation

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 8/04 H01M 8/12 H01M 8/24 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01M 8/04 H01M 8/12 H01M 8/24

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 断熱材で被包された容器内部に画成され
た発電室と、 前記発電室に垂設され、固体電解質燃料電池を複数個直
列に接続し、下端を閉鎖した円筒状にされた固体電解質
燃料電池スタックと、 前記容器内の前記発電室上方に画成された燃料供給室
と、 前記発電室と前記燃料供給室の間に区画され、前記固体
電解質燃料電池スタックの上端を開口させた燃料排出室
と、 一端を前記燃料供給室に開口させ、他端を前記スタック
の下端内部に開口させつつ前記スタックの内部に挿通さ
れた燃料供給管と、 前記容器内の前記発電室下方に設置され、前記発電室に
供給する空気を予熱する空気熱交換器とを備えてなり、 硫黄(S)分を含む炭化水素燃料を燃料とする高温固体
電解質燃料電池において、 前記燃料供給室の上方に設置され、脱硫触媒を充填し複
数の細孔を有した触媒支持多孔板で構成される燃料供給
ヘッダと、前記発電室と前記燃料排出室との間及び前記
燃料排出室と前記燃料供給室との間に設けられて前記発
電室からの熱を遮断し、前記燃料供給ヘッダ内の温度を
前記脱硫触媒の触媒反応に必要な温度維持する断熱手
を備えてなることを特徴とする高温固体電解質燃料
電池。
1. A power generation chamber defined inside a container covered with a heat insulating material, and a plurality of solid electrolyte fuel cells vertically connected to the power generation chamber and connected in series to form a cylindrical shape with a closed lower end. A solid electrolyte fuel cell stack, a fuel supply chamber defined above the power generation chamber in the container, a partition between the power generation chamber and the fuel supply chamber, and an upper end of the solid electrolyte fuel cell stack. An opened fuel discharge chamber, a fuel supply pipe having one end opened to the fuel supply chamber and the other end opened to the inside of the lower end of the stack, and a fuel supply pipe inserted into the stack, and the power generation chamber in the container A high temperature solid electrolyte fuel cell, which is installed below and comprises an air heat exchanger that preheats air to be supplied to the power generation chamber, and uses a hydrocarbon fuel containing sulfur (S) as a fuel. Installed above the And between said fuel supply header composed of a catalyst supporting porous plate filled with cured catalyst having a plurality of pores, and the fuel discharge chamber and the power chamber
The fuel cell is provided between the fuel discharge chamber and the fuel supply chamber
Cuts off the heat from the power room and reduces the temperature in the fuel supply header.
High temperature, solid electrolyte fuel cell characterized by comprising a heat insulating means for maintaining the temperatures required for catalytic reaction of the desulfurization catalyst.
【請求項2】 請求項1に記載する高温固体電解質燃料
電池において、前記 断熱手段が、前記発電室と前記燃料排出室との間に
設けられた断熱材の厚さを調整することで、前記燃料供
給ヘッダ内の温度を320〜400℃の温度維持する
ことを特徴とする高温固体電解質燃料電池。
2. A high temperature solid electrolyte fuel according to claim 1.
In the battery, the insulating means is, between the fuel discharge chamber and the power chamber
By adjusting the thickness of the provided heat insulating material , the fuel supply
A high temperature solid electrolyte fuel cell, characterized in that the temperature inside the supply header is maintained at a temperature of 320 to 400 ° C.
JP16991993A 1993-07-09 1993-07-09 High temperature solid electrolyte fuel cell Expired - Fee Related JP3433975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16991993A JP3433975B2 (en) 1993-07-09 1993-07-09 High temperature solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16991993A JP3433975B2 (en) 1993-07-09 1993-07-09 High temperature solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0729590A JPH0729590A (en) 1995-01-31
JP3433975B2 true JP3433975B2 (en) 2003-08-04

Family

ID=15895389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16991993A Expired - Fee Related JP3433975B2 (en) 1993-07-09 1993-07-09 High temperature solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3433975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5507119B2 (en) * 2009-05-21 2014-05-28 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP5408429B2 (en) * 2009-11-25 2014-02-05 株式会社ノーリツ Fuel cell system
JP5486989B2 (en) * 2010-03-31 2014-05-07 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2015115091A (en) * 2013-12-09 2015-06-22 パナソニックIpマネジメント株式会社 Solid oxide fuel cell system and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0729590A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US7067210B2 (en) Fuel cell system for producing electrical energy
TW299345B (en)
JP5210450B1 (en) Fuel cell and fuel cell system
US7678484B2 (en) Electrochemical device and methods for energy conversion
US7229710B2 (en) Electrochemical system and methods for control thereof
US8021793B2 (en) Hydrogen producing apparatus and fuel cell system using the same
US7108933B2 (en) Thermally efficient hydrogen storage system
JP2001524739A (en) Cover gas and starting gas supply system for solid oxide fuel cell power plant
JPS62252077A (en) Fule cell generator
US20110136026A1 (en) Hybrid power plant system for vehicles
JP3433975B2 (en) High temperature solid electrolyte fuel cell
Lee et al. Mechanical balance of plant design of lithium-air batteries for electric vehicles
WO2004036667A2 (en) Fuel cell system and method for producing electrical energy
JP4013692B2 (en) Reformer steam generator for fuel cell generator
US11876269B2 (en) Passive flow battery
JPS6249703B2 (en)
JP2005327513A (en) Hot standby method for solid oxide fuel cell and system for the same
JP4475861B2 (en) Solid oxide fuel cell unit
JPH07192746A (en) Fuel cell power generating system
JP2003234116A (en) Control method and control device of fuel cell
JPH0654674B2 (en) Fuel cell power generator
JP3331569B2 (en) Fuel cell generator
JPH0582028B2 (en)
JP3509948B2 (en) Fuel cell power generator
Sebastian et al. Studies on electrochemical hydrogen storage in MmNi5-xMx multicomponent alloys: a review

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees