JPS59208793A - Amorphous semiconductor device - Google Patents

Amorphous semiconductor device

Info

Publication number
JPS59208793A
JPS59208793A JP58083726A JP8372683A JPS59208793A JP S59208793 A JPS59208793 A JP S59208793A JP 58083726 A JP58083726 A JP 58083726A JP 8372683 A JP8372683 A JP 8372683A JP S59208793 A JPS59208793 A JP S59208793A
Authority
JP
Japan
Prior art keywords
film
substrate
amorphous semiconductor
semiconductor film
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58083726A
Other languages
Japanese (ja)
Other versions
JPH0526355B2 (en
Inventor
Terutoyo Imai
今井 照豊
Nobuo Kadome
門目 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58083726A priority Critical patent/JPS59208793A/en
Publication of JPS59208793A publication Critical patent/JPS59208793A/en
Publication of JPH0526355B2 publication Critical patent/JPH0526355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable to use the resin film substrate without causing any peeling-off trouble of an amorphous semiconductor film or any deterioration of the film quality in an amorphous semiconductor device by a method wherein the device is formed into a constitution that the amorphous semiconductor film is coated on the resin film substrate involving fibers. CONSTITUTION:A resin film substrate 1 has involved a sheet-shaped core material 2, wherein worp threads 2a and weft threads 2b have been alternately knitted. A plural number of photoelectric conversion region 3a-3d have been juxtaposed on this substrate 1. These regions 3a-3d respectively have a laminated structure, wherein metal electrode layers 4a-4d divided from the substrate 1 side in each region, an amorphous semiconductor film 5 continuously stretching over each region and transparent electrode layers 6a-6d divided in each region have been laminated in order. When the substrate 1 involving fibers in such a way as mentioned above is compared with that no involving fibers, the linear expansion coefficient has become lower. As a result, the linear expansion coefficient difference between the substrate 1 and the film 5 is reduced and the stripping trouble of the film 5 can be prevented, and, at the same time, the covered temperature of the film 5 can be risen, thereby enabling to obtain a semiconductor film of good quality.

Description

【発明の詳細な説明】 くイ)産業上の利用分野 本発明はフィルム基板を備えたアモルファス半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION B) Industrial Application Field The present invention relates to an amorphous semiconductor device equipped with a film substrate.

(ロ)従来技術 シラン(SiH4)等のシリボン化合物雰囲気中でのグ
ロー放電により形成きれるアモルファスシリコン系のア
モルファス半導体が新しい半導体材料として脚光を浴び
、現在光起電力装置、光センナ等の光デバイス及び薄膜
トランジスタ等の能動デバイスとして実用化きれている
(b) Prior art Amorphous semiconductors based on amorphous silicon, which can be formed by glow discharge in an atmosphere of silicone compounds such as silane (SiH4), are attracting attention as new semiconductor materials, and are currently used in optical devices such as photovoltaic devices and optical sensors. It has been put into practical use as active devices such as thin film transistors.

通常アモルファス半導体は膜厚数10μm以下例えは光
起電力装置としては約4000人〜11mと肉薄なため
に何らかの支持基板を必要とする。周知の如くグロー放
電により形成されるアモルファスシリコン系の半導体膜
は支持基板を約り00℃〜350℃程度に保持しなけれ
ばならず、更には該半導体膜は高温で被着するほど良質
の膜が得られるために、斯る支持基板には耐熱性が要求
される。
Normally, amorphous semiconductors are thin, with a film thickness of several tens of micrometers or less, for example, about 4,000 to 11 meters for photovoltaic devices, and therefore require some kind of supporting substrate. As is well known, for an amorphous silicon semiconductor film formed by glow discharge, the supporting substrate must be maintained at a temperature of about 00°C to 350°C, and the higher the temperature the semiconductor film is deposited, the better the quality of the film. In order to obtain this, such a support substrate is required to have heat resistance.

従って、従来から耐熱性に富むガラス及び金属が使用に
供せられ、就中ガラス基板が絶縁性を備えているために
、複数の半導体膜を互いに電気的に独立配置することが
できると共に、斯る半導体膜を任意に基板上にて配線す
ることができる等の理由によりその利用が最も多い。
Therefore, glass and metals with high heat resistance have been used for a long time, and in particular, since glass substrates have insulating properties, it is possible to arrange a plurality of semiconductor films electrically independent of each other, and it is also possible to It is most commonly used because it allows a semiconductor film to be arbitrarily wired on a substrate.

然るに、上記絶縁性の基板はガラスから形成きれるが故
に破損危惧は免れず、そのために新たな絶縁基板材料と
してポリイミド樹脂、弗素系樹脂等の耐熱性樹脂から成
る柔軟な破損危惧のない樹脂フィルムが出現するに至っ
て来た。
However, since the above-mentioned insulating substrate can be formed from glass, there is a risk of breakage, and for this reason, a flexible resin film made of heat-resistant resin such as polyimide resin or fluorine-based resin, which is free from the risk of breakage, has been developed as a new insulating substrate material. It has come to appear.

然し乍ら、斯る樹脂フィルムは線膨張率が被看七しめら
れようとするアモルファス半導体膜に比して大きく、該
アモルファス半導体膜の被着工程時フィルム基板は加熱
により膨張状態にある結果、常温状態復帰時上記線膨張
率の差及びフィルム基板刀1加熱冷却により初期寸法よ
り縮小すること等を原因とじて肉薄なアモルファス半導
体膜かf1j離14事故を招いていた。また斯る剥離事
故を防止り・\くアモルファス半導体膜の被着温度を低
トeしめると良質な・半導体膜が得られない。
However, the coefficient of linear expansion of such a resin film is larger than that of the amorphous semiconductor film to be observed, and as a result of the film substrate being in an expanded state due to heating during the deposition process of the amorphous semiconductor film, the film substrate is in an expanded state due to heating. At the time of recovery, the thin amorphous semiconductor film caused an accident due to the thin amorphous semiconductor film due to the above-mentioned difference in linear expansion coefficient and shrinkage from the initial size due to heating and cooling of the film substrate 1. Furthermore, if the deposition temperature of the amorphous semiconductor film is lowered to prevent such peeling accidents, a semiconductor film of good quality cannot be obtained.

(ハ)発明の目的 本発明は斯る点に鑑みて為されたものであっ−C1その
目的は柔軟な破損危惧のない樹脂フィルト基板の使用を
、アモルファス半導体膜の剥離事故若しくは膜質の劣化
を招くことなく可能ならしめることにある。
(c) Purpose of the Invention The present invention has been made in view of the above-mentioned points.-C1 The purpose is to use a flexible resin filter substrate that does not have the risk of breakage, and to prevent peeling accidents of amorphous semiconductor films or deterioration of film quality. The goal is to make it possible without having to invite it.

(ニ)発明の構成 本発明アモルファス半導体装置は、繊維を含む樹脂フィ
ルム基板上にアモルファス半導体膜を被着する構成にあ
る。
(d) Structure of the Invention The amorphous semiconductor device of the present invention has a structure in which an amorphous semiconductor film is deposited on a resin film substrate containing fibers.

(ホ)実施例 第1図及び第2図は本発明を光起電力装置に適用した一
実施例を示し、(1)は膜厚80μm〜400μm程度
の柔軟なポリイミド樹脂、弗素樹脂等の耐熱性高分子樹
脂から成る樹脂フィルム基板で、該樹脂フィルム基板く
1)は第3図に示す如くカラス繊維、カーボン繊維、金
属繊細等の繊維から形成許ねる縦糸(2a)及び横糸(
2b)を交互に編んた織布状の心材(2)を含んでいる
。(3a)〜(3d)は上記ノイルl、基板(1)上に
並置された複数の光電変換領域で、該光電変換領域(3
a)〜(3d)(寸、フィルム基板(1)側から各領域
毎に分割された膜厚3000人〜lAm程度の金属電極
層(4a)〜(4d)と、各領域に連続的に跨った厚み
4000人〜lam程度のアモルファス半導体膜(5)
と、各領域毎に分割された膜厚400人〜700A程度
の酸化スス、酸化インレウムスス等の透明電極!(6a
)〜(6d)と、を順次積層せしめた積層構造を持つ。
(E) Example Figures 1 and 2 show an example in which the present invention is applied to a photovoltaic device. As shown in FIG. 3, the resin film substrate 1) has warp yarns (2a) and weft yarns (2a) made of fibers such as glass fibers, carbon fibers, metal fine fibers, etc.
It includes a woven fabric-like core material (2) which is made by alternately knitting 2b). (3a) to (3d) are a plurality of photoelectric conversion regions arranged in parallel on the above-mentioned Noil 1 and the substrate (1);
a) to (3d) (dimensions: metal electrode layers (4a) to (4d) with a film thickness of about 3,000 to 1 Am divided into each region from the film substrate (1) side, and continuously spanning each region. Amorphous semiconductor film (5) with a thickness of about 4,000 to 1000 lam
And transparent electrodes of oxidized soot, inreum oxide soot, etc. with a film thickness of about 400 to 700 A divided into each region! (6a
) to (6d) are sequentially laminated.

上記アモルファス半導体膜(5)は例えばフィルト基板
(1)を約200°C〜350°C程度に加熱した状態
でのS i H4ガス雰囲気中でのグロー放電により形
成きれる水素化アモルファスシリコン(a−8I:H)
かも成り、適宜不純物ガスを添加することにより膜面に
平行な受光面側から見てP’IN接合を有する。
The amorphous semiconductor film (5) is made of hydrogenated amorphous silicon (a- 8I:H)
By adding an appropriate impurity gas, a P'IN junction is formed when viewed from the light-receiving surface side parallel to the film surface.

(7b)〜(7d〉は各金属電極層(4b)〜(4d)
から延在しアモ)1.ファス半導体膜(5)から露出し
た第1の接続端子、(8a)〜(8c)は左隣りの光電
変換領域(3a)〜(3cンの第1の接続端子(7b)
〜(7d〉に結合すべく透明電極層(6a)〜(6c)
から延在せしめられた鉤状の第2の接続端−r−1(9
)(10)は右端若しくは左端の光電変換領域(3a>
(3d)の金属電極層(4a)若しくは透明電極層(6
d)から延在せしめられた外部端子である。
(7b) to (7d> are each metal electrode layer (4b) to (4d)
Extended from Ammo) 1. The first connection terminals (8a) to (8c) exposed from the fas semiconductor film (5) are the first connection terminals (7b) of the adjacent photoelectric conversion regions (3a) to (3c) on the left.
Transparent electrode layers (6a) to (6c) to be bonded to ~(7d>)
The hook-shaped second connection end -r-1 (9
) (10) is the photoelectric conversion area (3a>
(3d) metal electrode layer (4a) or transparent electrode layer (6)
d) is an external terminal extending from the external terminal.

断る構成の光起電力装置に於いて、透明電極層(6a)
〜(6d)を介し一〇アモルファス半導体膜(5)に尤
人射があると各光電変換領域(3a)〜(3d)毎の透
明電極層〈6a)〜(6d)及び金属電極11(4a)
〜(4d)間に光起電力が発生し、断る光起電力は第1
接続端子(7b)〜(7d)と第2接続端子(8a)〜
(8c)との結合により電気的に相加され、外部端子(
9)<10>から直列出力が導出される。
In the photovoltaic device configured to refuse, the transparent electrode layer (6a)
- (6d) When there is an incident radiation on the amorphous semiconductor film (5), the transparent electrode layer (6a) - (6d) and the metal electrode 11 (4a) of each photoelectric conversion region (3a) - (3d) are exposed. )
A photovoltaic force is generated between ~(4d), and the photovoltaic force that declines is the first
Connection terminals (7b) to (7d) and second connection terminals (8a) to
(8c) is electrically added to the external terminal (
9) The serial output is derived from <10>.

而して、本発明の特徴は樹脂フィルム基板く1)の構成
にある。即ち第2図及び第3図に示す如く、本発明に供
せられる樹脂フィルム基板く1)は繊if&を自み、繊
維を含まない従来のものに比してその線膨張率が低下せ
しめられでいる。例えばポリイミド樹脂の線膨張率は約
30X 10−5/ ’Cであるのに対し、本実施例の
如<a維から成る縦糸(2a)と横糸(2b)とを交互
に編んた織布状の心材(2)にポリミド樹脂を含浸ゼし
め熱硬化せしめノーフィルム基板(1)に於ける線膨張
率は心材(2)の線膨張率と略等しく、ポリイミド樹脂
のそれとは殆と無関係となる。従って、心材(2)を形
成する繊維としてソータ石灰ガラスを用いるとフィルト
基板(1〉の線膨張率は約0.8〜1. IX 10−
5/’Cとなり、′また炭素mFaの場合のそれは0.
’54X 10−5/°Cとなる。更に、加熱冷却によ
る初期寸法より縮)」\する点についても心材(2)の
存在によって改善される。
The feature of the present invention lies in the structure of the resin film substrate (1). That is, as shown in FIGS. 2 and 3, the resin film substrate 1) provided in the present invention contains fibers, and its linear expansion coefficient is lower than that of conventional substrates that do not contain fibers. I'm here. For example, the coefficient of linear expansion of polyimide resin is about 30×10-5/'C, whereas in this example, a woven fabric made of alternating warp (2a) and weft (2b) consisting of a fibers is used. The core material (2) is impregnated with polyimide resin and thermally cured, and the coefficient of linear expansion of the no-film substrate (1) is approximately equal to that of the core material (2) and is almost unrelated to that of the polyimide resin. . Therefore, when sorter lime glass is used as the fiber forming the core material (2), the coefficient of linear expansion of the filter substrate (1) is approximately 0.8 to 1.IX 10-
5/'C,' and in the case of carbon mFa, it is 0.
'54X 10-5/°C. Furthermore, the presence of the core material (2) also improves the ability to shrink from the initial size due to heating and cooling.

斯るガラス繊維の織布状の心材(2)を含むポリイミド
樹脂フィルム基板(1)として、東し株式会−社から商
品名1ポリイミド積層板T、 I L Jとして市販さ
れて45す、本発明に用いて好適である。
A polyimide resin film substrate (1) containing such a core material (2) in the form of a woven glass fiber is commercially available from Toshi Co., Ltd. under the trade name 1 Polyimide Laminate T, IL J. Suitable for use in inventions.

尚、上記の如く織布状の心材(2)を備えたフィルム基
板(1)にあってはアモルファス半導体膜(5)の長手
方向を横糸(2b)の方向と一致せしめろことによって
、アモルファス半導体膜(5〉に対−?るノイルL、基
板(1)の膨張を最小に抑えることができる。
In addition, in the case of the film substrate (1) having the woven fabric-like core material (2) as described above, by aligning the longitudinal direction of the amorphous semiconductor film (5) with the direction of the weft (2b), the amorphous semiconductor The expansion of the noil L and the substrate (1) relative to the film (5) can be minimized.

また、フィルム基板(1)に含まれる繊維の形態としで
は上記実施例の如く織布状心材(2)か最適であるが縦
糸(2a)若しくは横糸(2b)の一方でI)ってt)
良く、短ピツチ繊維を混在−せしめたものであっても使
用に供せられる。
In addition, as for the form of the fibers contained in the film substrate (1), it is best to use the woven core (2) as in the above embodiment, but either the warp (2a) or the weft (2b).
Even if short pitch fibers are mixed therein, it can be used.

更にl:記ポリイミドから成る樹脂フィルム基板(1〉
は不透明であるために、基板(1)側に金属電極層(4
a)〜(4d)を配置し、アモルファス半導体膜く5)
上に透明電極層(6a)〜(6d〉を設ける積層構造を
持っていたが樹脂フィルム基板(1)としてポリイミド
樹脂より耐熱性では僅かに劣るものの透明である弗素樹
脂を用いると、金属電極層(4a)〜(4d)と透明電
極層(6a)〜(6d)との位置を置換せしめ光をフィ
ルム基板(1)(R11から導く構成としても良い。こ
の時用いられるamとしては透明なガラス繊維であるこ
とは当然である。
Furthermore, l: a resin film substrate (1) made of polyimide;
Since the metal electrode layer (4) is opaque, a metal electrode layer (4) is placed on the substrate (1) side.
Arrange a) to (4d) and form an amorphous semiconductor film 5)
It had a laminated structure with transparent electrode layers (6a) to (6d) on top, but if a fluororesin, which is transparent although slightly inferior in heat resistance to polyimide resin, is used as the resin film substrate (1), the metal electrode layer (4a) to (4d) and the transparent electrode layers (6a) to (6d) may be replaced with each other and the light may be guided from the film substrate (1) (R11).The am used at this time may be made of transparent glass. Naturally, it is a fiber.

第4図及び第5図は斯る透明な弗素樹脂とカラ繊維の心
材(2)とから成るフィルム基板(1〉を用いてアモル
ファス半導体膜(11)を生体とする周知の薄膜トラン
ジスタ(12)を形成した実施例である。同図に於いて
、(13)は透明電極層、(14)は薄膜トランジスタ
(12)のゲート電極、(15)(16)は同しくソー
ス及びドレイン電極、(17)はアモルファス半導体層
(11)とゲート電極(14)とを電気的に遮断する窒
化シリコン等の透明な絶縁膜で、ゲート電極(14)に
電気信号が印加されることによってソース及びドしイン
電極(15)(16)は導通し透明電極層り13)に電
気信号が付与される。
Figures 4 and 5 show a well-known thin film transistor (12) in which an amorphous semiconductor film (11) is a living body using a film substrate (1) made of such a transparent fluororesin and a core material (2) of empty fibers. In the figure, (13) is a transparent electrode layer, (14) is the gate electrode of the thin film transistor (12), (15) and (16) are the source and drain electrodes, and (17) is the gate electrode of the thin film transistor (12). is a transparent insulating film such as silicon nitride that electrically isolates the amorphous semiconductor layer (11) and the gate electrode (14), and when an electric signal is applied to the gate electrode (14), the source and drain electrodes (15) and (16) are conductive and an electric signal is applied to the transparent electrode layer 13).

斯る薄膜トランジスタ(12)をマトリックス状に集積
し各々が独立してスイッチング動作すべく一つの画素を
構成したフィルム基板(1)と、透明な樹脂フィルム基
板の全面に被着きれた透明電極層を対向けしめ、への対
向間隙に液晶を封入することによ−・−(、柔軟な画素
表示用液晶パネルが得られる。
A film substrate (1) in which such thin film transistors (12) are integrated in a matrix and each constitutes one pixel so as to perform switching operations independently, and a transparent electrode layer completely adhered to the entire surface of the transparent resin film substrate. By sealing liquid crystal in the opposing gap between the two faces, a flexible liquid crystal panel for pixel display can be obtained.

くべ)発明の効果 本発明は以十の説明から明らかな如く、破損危惧のない
柔軟な樹脂フィルム基板を用いたにも拘らり゛、該フィ
ルム基板は繊維を含むことによって線1膨張率か繊維を
含まないものに比して低−ドゼしめられているので、該
フィルム基板とアモルファス゛1′−導体膜との線膨張
率差が縮ノ」\ゼしのられ、常温状態復帰時」二記線膨
張率の差及び初期寸法よりも縮少すること等を原因とす
る肉薄なアモルファス半導体膜の剥離事故が防止される
と共に、上記アモルファス半導体膜の被着温度を上昇せ
しめるニーとができ良質な半導体膜を得ることができる
B) Effects of the Invention As is clear from the following ten explanations, the present invention uses a flexible resin film substrate with no risk of breakage. The difference in linear expansion coefficient between the film substrate and the amorphous 1'-conductor film is suppressed and the temperature is returned to room temperature. It is possible to prevent peeling accidents of thin amorphous semiconductor films due to differences in linear expansion coefficients and shrinkage from initial dimensions, etc., and also to increase the deposition temperature of the amorphous semiconductor film, resulting in good quality. A semiconductor film can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2図は第1
区に於けるn−yn’線断面図、第3図(A>は本発明
に用いられる樹脂フィルム基板の心材を示す平面図、同
図(B)はその拡大qi面図、第4図は本発明の他の実
施例を示す平面図、第5図は第4図に於けるv−v’線
断面図である。 (1)・ 樹脂フィルム基板、(2)  −心材、(3
a〉〜(3d〉・ 光電変換領域、(5><11>  
アモルファス半導体膜、(12)・・薄膜トランジスタ
Fig. 1 is a plan view showing one embodiment of the present invention, and Fig. 2 is a plan view showing an embodiment of the present invention.
3 (A> is a plan view showing the core material of the resin film substrate used in the present invention, FIG. 4 (B) is an enlarged qi plane view thereof, and FIG. A plan view showing another embodiment of the present invention, and FIG. 5 is a sectional view taken along the line v-v' in FIG. 4. (1) - Resin film substrate, (2) - Core material, (3
a>~(3d>・Photoelectric conversion region, (5><11>
Amorphous semiconductor film, (12)...thin film transistor.

Claims (1)

【特許請求の範囲】[Claims] (1)繊維を含む樹脂フィルム基板上に、アモルファス
寥導体膜を被着してなるアモルファス半導体装置。
(1) An amorphous semiconductor device formed by depositing an amorphous conductive film on a resin film substrate containing fibers.
JP58083726A 1983-05-12 1983-05-12 Amorphous semiconductor device Granted JPS59208793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083726A JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083726A JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Publications (2)

Publication Number Publication Date
JPS59208793A true JPS59208793A (en) 1984-11-27
JPH0526355B2 JPH0526355B2 (en) 1993-04-15

Family

ID=13810518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083726A Granted JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Country Status (1)

Country Link
JP (1) JPS59208793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101080A (en) * 1985-10-28 1987-05-11 Sanyo Electric Co Ltd Photosensor
JPS6398668U (en) * 1986-12-18 1988-06-25
WO2008040169A1 (en) * 2006-09-18 2008-04-10 Xiansheng Xing A flexible electrode for a photovoltaic cell and a manufacture method thereof
JP2009534840A (en) * 2006-04-18 2009-09-24 ダウ・コーニング・コーポレイション Cadmium telluride based photovoltaic device and method for its preparation
JP2011501421A (en) * 2007-10-18 2011-01-06 ドリッテ・パテントポートフォリオ・ベタイリグンスゲゼルシャフト・エムベーハー・ウント・コンパニー・カーゲー Semiconductor components

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101080A (en) * 1985-10-28 1987-05-11 Sanyo Electric Co Ltd Photosensor
JPS6398668U (en) * 1986-12-18 1988-06-25
JPH0537485Y2 (en) * 1986-12-18 1993-09-22
JP2009534840A (en) * 2006-04-18 2009-09-24 ダウ・コーニング・コーポレイション Cadmium telluride based photovoltaic device and method for its preparation
WO2008040169A1 (en) * 2006-09-18 2008-04-10 Xiansheng Xing A flexible electrode for a photovoltaic cell and a manufacture method thereof
JP2011501421A (en) * 2007-10-18 2011-01-06 ドリッテ・パテントポートフォリオ・ベタイリグンスゲゼルシャフト・エムベーハー・ウント・コンパニー・カーゲー Semiconductor components

Also Published As

Publication number Publication date
JPH0526355B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
EP0915503B1 (en) Semiconductor device for use in a light valve device, and process for manufacturing the same
US7586131B2 (en) Transistor array and active-matrix substrate
US4849797A (en) Thin film transistor
JPS59103383A (en) Manufacture for photovoltaic force generating device
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
JPS59143362A (en) Passivation film
JPS6281057A (en) Transparent conductive film
JPS6384075A (en) Photovoltaic device
JPS59208793A (en) Amorphous semiconductor device
JP3124303B2 (en) Semiconductor device and manufacturing method thereof
JPS5827365A (en) Semiconductor device and manufacture thereof
JP3435304B2 (en) Liquid crystal display
JPH0212031B2 (en)
JPS6024078A (en) Photovoltaic device
EP0560289A2 (en) Photoconductor coupled liquid crystal light valve
JPS57115880A (en) Thin film image pickup device in two dimensions
CN117915731B (en) Display panel and display device
JPS59108373A (en) Photoelectric converter
JPS61287263A (en) Solid-state image pickup device and manufacture thereof
JPH0527277B2 (en)
JPS6127685A (en) Manufacture of amorphous silicon solar cell
JPS6052057A (en) Insulated gate field-effect type thin film transistor
JPS61168224A (en) Formation of metallic wiring layer
JPS63141378A (en) Thin film photo sensor
JPH03276768A (en) Photovoltaic element