JPH0526355B2 - - Google Patents

Info

Publication number
JPH0526355B2
JPH0526355B2 JP58083726A JP8372683A JPH0526355B2 JP H0526355 B2 JPH0526355 B2 JP H0526355B2 JP 58083726 A JP58083726 A JP 58083726A JP 8372683 A JP8372683 A JP 8372683A JP H0526355 B2 JPH0526355 B2 JP H0526355B2
Authority
JP
Japan
Prior art keywords
amorphous semiconductor
substrate
film
film substrate
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58083726A
Other languages
Japanese (ja)
Other versions
JPS59208793A (en
Inventor
Terutoyo Imai
Nobuo Kadome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58083726A priority Critical patent/JPS59208793A/en
Publication of JPS59208793A publication Critical patent/JPS59208793A/en
Publication of JPH0526355B2 publication Critical patent/JPH0526355B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明はフイルム基板を備えたアモルフアス半
導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an amorphous semiconductor device equipped with a film substrate.

(ロ) 従来技術 シラン(SiH4)等のシリコン化合物雰囲気中
でのグロー放電により形成されるアモルフアスシ
リコン系のアモルフアス半導体が新しい半導体材
料として脚光を浴び、現在光起電力装置、光セン
サ等の光デバイス及び薄膜トランジスタ等の能動
デバイスとして実用化されている。
(b) Prior art Amorphous semiconductors based on amorphous silicon, which are formed by glow discharge in an atmosphere of silicon compounds such as silane (SiH 4 ), are attracting attention as new semiconductor materials, and are currently being used in photovoltaic devices, optical sensors, etc. It has been put into practical use as active devices such as optical devices and thin film transistors.

通常アモルフアス半導体は膜厚数10μm以下例
えば光起電力装置としては約4000Å〜1μmと肉
薄なために何らかの支持基板を必要とする。周知
の如くグロー放電により形成されるアモルフアス
シリコン系の半導体膜は支持基板を約200℃〜350
℃程度に保持しなければならず、更には該半導体
膜は高温で被着するほど良質の膜が得られるため
に、斯る支持基板には耐熱性が要求される。
Normally, amorphous semiconductors require a supporting substrate of some kind because they are thin, with a film thickness of several tens of micrometers or less, for example, about 4000 Å to 1 micrometer for photovoltaic devices. As is well known, an amorphous silicon based semiconductor film formed by glow discharge is heated to a temperature of approximately 200°C to 350°C on a supporting substrate.
It must be maintained at a temperature of about 0.degree. C., and furthermore, since the semiconductor film is deposited at a higher temperature, a film of better quality can be obtained, so such a supporting substrate is required to have heat resistance.

従つて、従来から耐熱性に富むガラス及び金属
が使用に供せられ、就中ガラス基板が絶縁性を備
えているために、複数の半導体を互いに電気的に
独立配置することができると共に、斯る半導体膜
を任意に基板上にて配線することができる等の理
由によりその利用が最も多い。
Therefore, glass and metals with high heat resistance have been used for a long time, and in particular, since glass substrates have insulating properties, it is possible to arrange a plurality of semiconductors electrically independent of each other, and It is most commonly used because it allows a semiconductor film to be arbitrarily wired on a substrate.

然るに、上記絶縁性の基板はガラスから形成さ
れるが故に破損危惧は免れず、そのために新たな
絶縁基板材料としてポリイミド樹脂、弗素系樹脂
等の耐熱性樹脂から成る柔軟な破損危惧のない樹
脂フイルムが出現するに至つて来た。
However, since the above-mentioned insulating substrate is made of glass, there is a risk of breakage. Therefore, as a new insulating substrate material, a flexible resin film made of heat-resistant resin such as polyimide resin or fluorine-based resin, which is free from the risk of breakage, has been developed. has come to appear.

然し乍ら、斯る樹脂フイルムは線膨張率が被着
せしめられようとするアモルフアス半導体膜に比
して大きく、該アモルフアス半導体膜の被着工程
時フイルム基板は加熱により膨張状態にある結
果、常温状態復帰時上記線膨張率の差及びフイル
ム基板が加熱冷却により初期寸法より縮小するこ
と等を原因として薄肉なアモルフアス半導体膜が
剥離する事故を招いていた。また斯る剥離事故を
防止すべくアモルフアス半導体膜の被着温度を低
下せしめると良質な半導体膜が得られない。
However, the coefficient of linear expansion of such a resin film is larger than that of the amorphous semiconductor film to be deposited, and as a result of the film substrate being in an expanded state due to heating during the process of depositing the amorphous semiconductor film, it is difficult to return to normal temperature. At the same time, the above-mentioned difference in coefficient of linear expansion and shrinkage of the film substrate from its initial size due to heating and cooling have caused an accident in which the thin amorphous semiconductor film peels off. Furthermore, if the deposition temperature of the amorphous semiconductor film is lowered in order to prevent such a peeling accident, a semiconductor film of good quality cannot be obtained.

(ハ) 発明の目的 本発明は斯る点に鑑みて為されたものであつ
て、その目的は柔軟な破損危惧のない樹脂フイル
ム基板の使用を、アモルフアス半導体膜の剥離事
故若しくは膜質の劣化を招くことなく可能ならし
めることにある。
(c) Purpose of the Invention The present invention has been made in view of the above, and its purpose is to improve the use of flexible resin film substrates that do not have the risk of breakage, and to prevent peeling accidents of amorphous semiconductor films or deterioration of film quality. The goal is to make it possible without having to invite it.

(ニ) 発明の構成 本発明は、柔軟な樹脂フイルム基板と、該基板
上に加熱状態下で被着されたアモルフアス半導体
膜を備えたアモルフアス半導体装置において、上
記樹脂フイルム基板が該基板の線膨張率を低下せ
しめる形態で、心材としての繊維を含む構成にあ
る。
(D) Structure of the Invention The present invention provides an amorphous semiconductor device comprising a flexible resin film substrate and an amorphous semiconductor film deposited on the substrate under heating conditions, in which the resin film substrate has linear expansion of the substrate. It is in the form of a structure that lowers the ratio and contains fiber as a core material.

(ホ) 実施例 第1図及び第2図は本発明を光起電力装置に適
用した一実施例を示し、1は膜厚80μm〜400μm
程度の柔軟なポリイミド樹脂、弗素樹脂等の耐熱
性高分子樹脂から成る樹脂フイルム基板で、該樹
脂フイルム基板1は第3図に示す如くガラス繊
維、カーボン繊維、金属繊維等の繊維から形成さ
れる縦糸2a及び横糸2bを交互に編んだ織布状
の心材2を含んでいる。3a〜3dは上記フイル
ム基板1上に並置された複数の光電変換領域で、
該光電変換領域3a〜3dは、フイルム基板1側
から各領域毎に分割された膜厚3000Å〜1μm程
度の金属電極層4a〜4dと、各領域に連続的に
跨つた厚み4000Å〜1μm程度のアモルフアス半
導体膜5と、各領域毎に分割された膜厚400Å〜
700Å程度の酸化スズ、酸化インジウムスズ等の
透明電極層6a〜6dと、を順次積層せしめた積
層構造を持つ。上記アモルフアス半導体膜5は例
えばフイルム基板1を約200℃〜350℃程度に加熱
した状態でのSiH4ガス雰囲気中でのグロー放電
により形成される水素化アモルフアスシリコン
(a−SI:H)から成り、適宜不純物ガスを添加
することにより膜面に平行な受光面側から見て
PIN接合を有する。
(E) Example Figures 1 and 2 show an example in which the present invention is applied to a photovoltaic device, and 1 shows a film thickness of 80 μm to 400 μm.
The resin film substrate 1 is made of a heat-resistant polymer resin such as a flexible polyimide resin or a fluororesin, and the resin film substrate 1 is made of fibers such as glass fiber, carbon fiber, metal fiber, etc. as shown in FIG. It includes a woven core material 2 in which warp threads 2a and weft threads 2b are alternately knitted. 3a to 3d are a plurality of photoelectric conversion regions arranged in parallel on the film substrate 1,
The photoelectric conversion regions 3a to 3d include metal electrode layers 4a to 4d with a thickness of about 3000 Å to 1 μm divided into each region from the film substrate 1 side, and metal electrode layers 4a to 4d with a thickness of about 4000 Å to 1 μm continuously extending over each region. Amorphous semiconductor film 5 and a film thickness of 400 Å or more divided into each region
It has a laminated structure in which transparent electrode layers 6a to 6d made of tin oxide, indium tin oxide, etc. of about 700 Å are sequentially laminated. The amorphous semiconductor film 5 is made of, for example, hydrogenated amorphous silicon (a-SI:H) formed by glow discharge in an SiH 4 gas atmosphere while the film substrate 1 is heated to approximately 200°C to 350°C. By adding appropriate impurity gas, it becomes
Has PIN junction.

7b〜7dは各金属電極層4b〜4dから延在
しアモルフアス半導体膜5から露出した第1の接
続端子、8a〜8cは左隣りの光電変換領域3a
〜3cの第1の接続端子7b〜7dに結合すべく
透明電極層6a〜6cから延在せしめれらた鉤状
の第2の接続端子、9,10は右端若しくは左端
の光電変換領域3a,3dの金属電極層4a若し
くは透明電極層6dから延在せしめられた外部端
子である。
7b to 7d are first connection terminals extending from each metal electrode layer 4b to 4d and exposed from the amorphous semiconductor film 5, and 8a to 8c are photoelectric conversion regions 3a adjacent to the left.
Hook-shaped second connection terminals extending from the transparent electrode layers 6a to 6c to be coupled to the first connection terminals 7b to 7d of ~3c, 9 and 10 are photoelectric conversion regions 3a at the right end or left end This is an external terminal extending from the 3d metal electrode layer 4a or the transparent electrode layer 6d.

斯る構成の光起電力装置に於いて、透明電極層
6a〜6dを介してアモルフアス半導体膜5に光
入射があると各光電変換領域3a〜3d毎の透明
電極層6a〜6d及び金属電極層4a〜4d間に
光起電力が発生し、斯る光起電力は第1接続端子
7b〜7dと第2接続端子8a〜8cとの結合に
より電気的に相加され、外部端子9,10から直
列出力が導出される。
In a photovoltaic device having such a configuration, when light is incident on the amorphous semiconductor film 5 through the transparent electrode layers 6a to 6d, the transparent electrode layers 6a to 6d and the metal electrode layer of each photoelectric conversion region 3a to 3d are A photovoltaic force is generated between 4a to 4d, and this photovoltaic force is electrically added by the coupling between the first connection terminals 7b to 7d and the second connection terminals 8a to 8c, and is transmitted from the external terminals 9 and 10. A series output is derived.

而して、本発明の特徴は樹脂フイルム基板1の
構成にある。即ち第2図及び第3図に示す如く、
本発明に供せられる樹脂フイルム基板1は繊維を
含み、繊維を含まない従来のものに比してその線
膨張率が低下せしめられている。例えばポリイミ
ド樹脂の線膨張率は約30×10-5/℃であるのに対
し、本実施例の如く繊維から成る縦糸2aと横糸
2bとを交互に編んだ織布状の心材2にポリイミ
ド樹脂を含浸せしめ熱硬化せしめたフイルム基板
1に於ける線膨張率は心材2の線膨張率と略等し
く、ポリイミド樹脂のそれとは殆ど無関係とな
る。従つて、心材2を形成する繊維としてソーダ
石灰ガラスを用いるとフイルム基板1の線膨張率
は約0.8〜1.1×10-5/℃となり、また炭素繊維の
場合のそれは0.54×10-5/℃となる。更に、加熱
冷却による初期寸法より縮小する点についても心
材2の存在によつて改善される。
The feature of the present invention lies in the structure of the resin film substrate 1. That is, as shown in FIGS. 2 and 3,
The resin film substrate 1 used in the present invention contains fibers and has a lower coefficient of linear expansion than conventional substrates that do not contain fibers. For example, the coefficient of linear expansion of polyimide resin is approximately 30×10 -5 /°C, but as in this example, polyimide resin is used in the woven core material 2, which is made by alternately knitting warp threads 2a and weft threads 2b made of fibers. The coefficient of linear expansion of the film substrate 1 impregnated with and thermally cured is approximately equal to the coefficient of linear expansion of the core material 2, and is almost unrelated to that of the polyimide resin. Therefore, if soda lime glass is used as the fiber forming the core material 2, the coefficient of linear expansion of the film substrate 1 will be approximately 0.8 to 1.1×10 -5 /°C, and in the case of carbon fiber, it will be 0.54×10 -5 /°C. becomes. Furthermore, the presence of the core material 2 also improves the reduction in size from the initial size due to heating and cooling.

斯るガラス繊維の織布状の心材2を含むポリイ
ミド樹脂フイルム基板1として、東レ株式会社か
ら商品名「ポリイミド積層板TIL」として市販さ
れており、本発明に用いて好適である。
A polyimide resin film substrate 1 including such a core material 2 in the form of a woven glass fiber is commercially available from Toray Industries, Inc. under the trade name "Polyimide laminate TIL" and is suitable for use in the present invention.

尚、上記の如く織布状の心材2を備えたフイル
ム基板1にあつてはアモルフアス半導体膜5の長
手方向を横糸2bの方向と一致せしめることによ
つて、アモルフアス半導体膜5に対するフイルム
基板1の膨張を最小に抑えることができる。
In the case of the film substrate 1 having the core material 2 in the form of a woven fabric as described above, by aligning the longitudinal direction of the amorphous semiconductor film 5 with the direction of the weft 2b, the film substrate 1 can be easily attached to the amorphous semiconductor film 5. Expansion can be kept to a minimum.

また、フイルム基板1に含まれる繊維の形態と
しては上記実施例の如く織布状心材2が最適であ
るが縦糸2a若しくは横糸2bの一方であつても
良く、短ピツチ繊維を混在せしめたものであつて
も使用に供せられる。
Further, as for the form of the fibers included in the film substrate 1, the woven fabric core material 2 as in the above embodiment is optimal, but it may be either the warp thread 2a or the weft thread 2b, or it may be one in which short pitch fibers are mixed. It is still available for use.

更に上記ポリイミドから成る樹脂フイルム基板
1は不透明であるために、基板1側に金属電極層
4a〜4dを配置し、アモルフアス半導体膜5上
に透明電極層6a〜6dを設ける積層構造を持つ
ていたが樹脂フイルム基板1としてポリイミド樹
脂より耐熱性では僅かに劣るものの透明である弗
素樹脂を用いると、金属電極層4a〜4dと透明
電極層6a〜6dとの位置を置換せしめ光をフイ
ルム基板1側から導く構成としても良い。この時
用いられる繊維としては透明なガラス繊維である
ことは当然である。
Further, since the resin film substrate 1 made of polyimide is opaque, it has a laminated structure in which metal electrode layers 4a to 4d are arranged on the substrate 1 side and transparent electrode layers 6a to 6d are provided on the amorphous semiconductor film 5. However, when a transparent fluororesin, which is slightly inferior in heat resistance to polyimide resin, is used as the resin film substrate 1, the positions of the metal electrode layers 4a to 4d and the transparent electrode layers 6a to 6d are replaced, and the light is directed to the film substrate 1 side. It may also be a configuration derived from. Naturally, the fibers used at this time are transparent glass fibers.

第4図及び第5図は斯る透明な弗素樹脂とガラ
繊維の心材2とから成るフイルム基板1を用いて
アモルフアス半導体膜11を主体とする周知の薄
膜トランジスタ12を形成した実施例である。同
図に於いて、13は透明電極層、14は薄膜トラ
ンジスタ12のゲート電極、15,16は同じく
ソース及びドレイン電極、17はアモルフアス半
導体層11とゲート電極14とを電気的に遮断す
る窒化シリコン等の透明な絶縁膜で、ゲート電極
14に電気信号が印加されることによつてソース
及びドレイン電極15,16は導通し透明電極層
13に電気信号が付与される。
FIGS. 4 and 5 show an embodiment in which a well-known thin film transistor 12 mainly composed of an amorphous semiconductor film 11 is formed using a film substrate 1 made of such a transparent fluororesin and a core material 2 of glass fiber. In the figure, 13 is a transparent electrode layer, 14 is a gate electrode of the thin film transistor 12, 15 and 16 are source and drain electrodes, and 17 is silicon nitride, etc., which electrically isolates the amorphous semiconductor layer 11 and the gate electrode 14. When an electric signal is applied to the gate electrode 14, the source and drain electrodes 15 and 16 become conductive, and an electric signal is applied to the transparent electrode layer 13.

斯る薄膜トランジスタ12をマトリツクス状に
集積し各々が独立してスイツチング動作すべく一
つの画素を構成したフイルム基板1と、透明な樹
脂フイルム基板の全面に被着された透明電極層を
対向せしめ、この対向間隙に液晶を封入すること
によつて、柔軟な画素表示用液晶パネルが得られ
る。
A film substrate 1 on which such thin film transistors 12 are integrated in a matrix and each constitutes one pixel so as to perform switching operations independently, and a transparent electrode layer coated on the entire surface of the transparent resin film substrate are placed opposite to each other. By filling the opposing gap with liquid crystal, a flexible liquid crystal panel for pixel display can be obtained.

(ヘ) 発明の効果 本発明は以上の説明から明らかな如く、破損危
惧のない柔軟な樹脂フイルム基板を用いたにも拘
らず、該フイルム基板は繊維を含むことによつて
線膨張率が繊維を含まないものに比して低下せし
められているので、該フイルム基板とアモルフア
ス半導体膜との線膨張率差が縮小せしめられ、常
温状態復帰時上記線膨張率の差及び初期寸法より
も縮小すること等を原因とする肉薄なアモルフア
ス半導体膜な剥離事故が防止されると共に、上記
アモルフアス半導体膜の被着温度を上昇せしめる
ことができ良質な半導体膜を得ることができる。
(F) Effects of the Invention As is clear from the above description, although the present invention uses a flexible resin film substrate with no risk of breakage, the linear expansion coefficient of the film substrate is lower than that of the fibers due to the inclusion of fibers. Since the difference in coefficient of linear expansion between the film substrate and the amorphous semiconductor film is reduced compared to the one not containing it, the difference in coefficient of linear expansion between the film substrate and the amorphous semiconductor film is reduced, and the difference in coefficient of linear expansion and the initial size are reduced when the film returns to room temperature. Accidental peeling of a thin amorphous semiconductor film caused by such factors can be prevented, and the deposition temperature of the amorphous semiconductor film can be increased, making it possible to obtain a high-quality semiconductor film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2
図は第1図に於ける−′線断面図、第3図A
は本発明に用いられる樹脂フイルム基板の心材を
示す平面図、同図Bはその拡大平面図、第4図は
本発明の他の実施例を示す平面図、第5図は第4
図に於ける−′線断面図である。 1……樹脂フイルム基板、2……心材、3a〜
3d……光電変換領域、5,11……アモルフア
ス半導体膜、12……薄膜トランジスタ。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIG.
The figure is a sectional view taken along the -' line in Figure 1, and Figure 3A.
4 is a plan view showing the core material of the resin film substrate used in the present invention, FIG. 4 is an enlarged plan view thereof, FIG.
It is a sectional view taken along the line -' in the figure. 1... Resin film substrate, 2... Core material, 3a~
3d...Photoelectric conversion region, 5, 11...Amorphous semiconductor film, 12...Thin film transistor.

Claims (1)

【特許請求の範囲】[Claims] 1 柔軟な樹脂フイルム基板と、該基板上に加熱
状態下で被着されたアモルフアス半導体膜を備え
たアモルフアス半導体装置において、上記樹脂フ
イルム基板が、該基板の線膨張率を低下せしめる
形態で、心材としての繊維を含むことを特徴とす
るアモルフアス半導体装置。
1. In an amorphous semiconductor device comprising a flexible resin film substrate and an amorphous semiconductor film deposited on the substrate under heating, the resin film substrate has a core material in a form that reduces the coefficient of linear expansion of the substrate. An amorphous semiconductor device characterized by containing a fiber as an amorphous semiconductor device.
JP58083726A 1983-05-12 1983-05-12 Amorphous semiconductor device Granted JPS59208793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083726A JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083726A JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Publications (2)

Publication Number Publication Date
JPS59208793A JPS59208793A (en) 1984-11-27
JPH0526355B2 true JPH0526355B2 (en) 1993-04-15

Family

ID=13810518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083726A Granted JPS59208793A (en) 1983-05-12 1983-05-12 Amorphous semiconductor device

Country Status (1)

Country Link
JP (1) JPS59208793A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101080A (en) * 1985-10-28 1987-05-11 Sanyo Electric Co Ltd Photosensor
JPH0537485Y2 (en) * 1986-12-18 1993-09-22
JP5253380B2 (en) * 2006-04-18 2013-07-31 ダウ・コーニング・コーポレイション Cadmium telluride based photovoltaic device and method for its preparation
CN1925172A (en) * 2006-09-18 2007-03-07 邢宪生 Flexible electrode for optical-voltage battery and its manufacturing method
DE102007050288A1 (en) * 2007-10-18 2009-04-23 Otto Hauser Semiconductor device

Also Published As

Publication number Publication date
JPS59208793A (en) 1984-11-27

Similar Documents

Publication Publication Date Title
EP0915503B1 (en) Semiconductor device for use in a light valve device, and process for manufacturing the same
US5061648A (en) Method of fabricating a thin-film transistor
US7586131B2 (en) Transistor array and active-matrix substrate
KR100401654B1 (en) Semiconductor device
JPS62219665A (en) Superlattice thin-film transistor
JP3617800B2 (en) TFT array substrate and its manufacturing method Liquid crystal display device using the same
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
JP4183786B2 (en) Method for manufacturing semiconductor device
KR100961931B1 (en) Liquid crystal display device
JPH0526355B2 (en)
JPH0456468B2 (en)
JP3059514B2 (en) Photoelectric conversion device, image sensor, and manufacturing method thereof
JPH04133035A (en) Single crystal thin film semiconductor device for optical valve substrate
CN1996618A (en) Thin film transistor
JPH0212031B2 (en)
JPH04262576A (en) Semiconductor device and manufacture thereof
GB2133617A (en) Photoelectric conversion device and method of manufacture
JPH0530057B2 (en)
JPH0527277B2 (en)
JPH02192766A (en) Thin film semiconductor element
JPS6052057A (en) Insulated gate field-effect type thin film transistor
JPH0462174B2 (en)
JPH023231A (en) Thin film transistor and manufacture thereof
JPH0685255A (en) Thin film transistor and manufacture thereof
JPH02304938A (en) Manufacture of thin-film transistor