JPS5920838A - Turbidity measuring device - Google Patents

Turbidity measuring device

Info

Publication number
JPS5920838A
JPS5920838A JP13078082A JP13078082A JPS5920838A JP S5920838 A JPS5920838 A JP S5920838A JP 13078082 A JP13078082 A JP 13078082A JP 13078082 A JP13078082 A JP 13078082A JP S5920838 A JPS5920838 A JP S5920838A
Authority
JP
Japan
Prior art keywords
reagent
measurement
particles
gum
dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13078082A
Other languages
Japanese (ja)
Other versions
JPH0244013B2 (en
Inventor
Akira Kosaka
高阪 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shoji Co Ltd
Original Assignee
Nippon Shoji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shoji Co Ltd filed Critical Nippon Shoji Co Ltd
Priority to JP13078082A priority Critical patent/JPH0244013B2/en
Publication of JPS5920838A publication Critical patent/JPS5920838A/en
Publication of JPH0244013B2 publication Critical patent/JPH0244013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/493Physical analysis of biological material of liquid biological material urine

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To make it possible to perform accurate automatic analysis when the components of a living body are determined by turbidity measurement, by making a specific dispersing agent to coexist in a reactive system, preventing sedimentation and cohesion of turbid particles, dispersing the particles, and avoiding the blocking of tubes and coils. CONSTITUTION:A dispersing agent is selected from the groups comprising carrageenin, xanthane gum, locust been gum, and tragacanth gum and mixture of these materials. The dispersing agent is added in a reacting system when the components in serum, urine, and the like are determined by turbidity measurement. In this way, formed turbid particles are evenly dispersed, and cohesion and sedimentation do not occur. Therefore, the tubes and coils of an automatic measuring device are not blocked. Since the dispersing agent does not give adverse effects on the components of a living body and a reagent, highly accurate analysis can be performed.

Description

【発明の詳細な説明】 本発明は濁度測定法、さらに詳しくは、ことに臨床検査
の分野において有用な、濁度測定による生体成分の定量
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a turbidity measurement method, and more particularly to a method for quantifying biological components by turbidity measurement, which is particularly useful in the field of clinical testing.

生体成分の定量に際しては、しばしば、検体と定量試薬
を反応させ、反応系内に懸濁する微細粒子を定量するこ
とが必要となる。かかる微細粒子の定量法は〜反応懸濁
液の透過光を測定する濁度法と、散乱光を測定する比濁
法に大別でき、共に臨床検査の分野で広く採用されてい
る。
When quantifying biological components, it is often necessary to react a sample with a quantitative reagent and quantify fine particles suspended in the reaction system. Such methods for quantifying fine particles can be roughly divided into turbidimetry, which measures transmitted light of a reaction suspension, and turbidimetry, which measures scattered light, both of which are widely employed in the field of clinical testing.

比濁法は測定に螢光やレーザー光を用いるため、検出感
度が濁度法より高く、肉眼的に認められない程度の不溶
性微粒子を検知できるので、主と[2て抗原抗体反応に
よって生成される微量沈澱物の定量に応用され、その自
動分析も一般化されている。
Because turbidimetry uses fluorescent light or laser light for measurement, its detection sensitivity is higher than that of turbidimetry, and it can detect insoluble particles that are invisible to the naked eye. It has been applied to the quantification of minute amounts of precipitates, and its automatic analysis has also become commonplace.

一方、濁度法も、検出感度か比濁法より低いというもの
の、通常の比色計−C測定が行なえるという便利さから
、尿蛋白、膠質反応、β−リポ蛋白などの定量に広く利
用されている。
On the other hand, although the detection sensitivity of the turbidimetric method is lower than that of the nephelometric method, it is widely used for quantifying urine protein, colloid reaction, β-lipoprotein, etc. due to the convenience of being able to carry out ordinary colorimeter-C measurements. has been done.

しかし、濁度法においては、肉眼的に認識できる程度の
混濁が必要であり、そのため、不溶性粒子のサイズおよ
び密度も比較的高くなるの一〇、反応後に静置すれは、
反応系内の混濁粒子は沈降する傾向にある。したがって
、適正な定量値を得る“ には、これらの粒子を反応系
内に均質に分散させることか必要で、測定に際して反応
系の振とう、混和を行なわなければならず、これが濁度
法における自動分析の応用に制約を加えている。特に、
近年、米国テクニコン社製のオートアナライザSMAや
SMACに代表される、いわゆる連続フローシステムに
よる自動分析機が開発されているか、このような自動分
析機に濁度法を適用する場合には、混濁粒子は沈降する
傾向に加え−C1分析機のチューブやコイル内を流動す
る間に粒子間の相互作用、チューブやコイル内壁との接
触などによりa集して巨大化する傾向にあり、粒子の分
散が不均一となり、ついには、チューブやコイルを閉塞
させることにもなり、実質的に連続フローシステムによ
る自動化は不可能とされている。
However, the turbidity method requires a level of turbidity that is visible to the naked eye, and therefore the size and density of the insoluble particles are relatively high.
Turbid particles within the reaction system tend to settle. Therefore, in order to obtain an appropriate quantitative value, it is necessary to homogeneously disperse these particles in the reaction system, and the reaction system must be shaken and mixed during measurement, which is a problem in the turbidity method. It imposes constraints on the application of automated analysis.In particular,
In recent years, automatic analyzers using a so-called continuous flow system, such as the autoanalyzers SMA and SMAC manufactured by Technicon Corporation in the United States, have been developed. In addition to their tendency to settle, particles also tend to aggregate and become large due to interactions between particles and contact with the inner walls of the tubes and coils while flowing through the tubes and coils of the C1 analyzer, and the dispersion of particles is reduced. This results in non-uniformity and eventually occlusion of the tube or coil, making it virtually impossible to automate with a continuous flow system.

このような事情にかんがみ、本発明者は自動分析、こと
に、連続°70−システムに濁度法を適用させるために
鋭意研究を重ねた結果、意外にも、分散剤としてカラギ
ーナン、キサンタンガム、ローカストビーンガム、トラ
ガカントガムまたはこれらの混合物を反応系に共存させ
ると、測定の妨げになることなく、混濁粒子の均質な分
散がはがれ、粒子の沈降やa集か防止でき、その目的が
達成できることを見出した。
In view of these circumstances, the present inventor conducted extensive research to apply the turbidity method to automatic analysis, particularly to a continuous °70-system, and unexpectedly found that carrageenan, xanthan gum, and locust were used as dispersants. We have discovered that when bean gum, tragacanth gum, or a mixture of these coexists in the reaction system, the homogeneous dispersion of turbid particles can be removed without interfering with measurements, and particle sedimentation and agglomeration can be prevented, thereby achieving the purpose. Ta.

すなわち、本発明者は濁度法における混濁粒子の均質な
分散をはかり、粒子の沈降や凝集を防止てき、かつ、測
定の妨げになることのない物質を分散剤として反応系内
に共存させることを考え、その効果の期待−〇きる種々
の物質の検索をつぎのとおり行な一つだ。
That is, the present inventor aims to homogeneously disperse turbid particles in the turbidity method, prevent sedimentation and aggregation of particles, and coexist in the reaction system as a dispersant with a substance that does not interfere with measurement. One way to do this is to consider the following and search for various substances that have the expected effect.

後記のβ−リポ蛋白の定量法(検体:900■/dl、
検体の反応終濃度:26mグ/l)に従い、各種の分散
剤を反応終濃度0.7g/lで反応系内に添加し、混濁
粒子の外観、静置した場合の沈降状態、連続゛70−シ
ステムにおけるミキシングコイル通過後の巨大粒子形成
状態を観察した。
β-lipoprotein quantitative method described below (sample: 900 μ/dl,
According to the reaction final concentration of the specimen: 26 mg/l), various dispersants were added to the reaction system at a final reaction concentration of 0.7 g/l, and the appearance of turbid particles, sedimentation state when left still, continuous ゛70 - We observed the state of giant particle formation after passing through the mixing coil in the system.

結果を第1表に示す。第1表中の静置による沈降および
巨大粒子形成の評価はつきの基準により行な一つだ。
The results are shown in Table 1. The evaluation of sedimentation and giant particle formation due to standing in Table 1 is carried out according to the following criteria.

静置による沈降ニ ー・・・数時間静置しても沈降せず、均質である。Sedimentation due to standing still - It does not settle even after being left for several hours and remains homogeneous.

±・・・抗原抗体反応開始後、1〜2時間で沈降する。±... Precipitation occurs in 1 to 2 hours after the start of antigen-antibody reaction.

+・・・抗原抗体反応開始後、30分前後−C沈降する
+...-C precipitates around 30 minutes after the start of the antigen-antibody reaction.

廿・・・抗原抗体反応開始後、10〜15分−C沈降す
る。
廿...After the start of antigen-antibody reaction, C-precipitate for 10 to 15 minutes.

n、、、抗原抗体反応開始と同時に沈降する。n, Precipitates simultaneously with the start of the antigen-antibody reaction.

巨大粒子形成(゛70−システムにてミキシングコイル
(20ターン)を通過させた場合)ニー・・・全く均質
のまま。
Formation of giant particles (when passed through a mixing coil (20 turns) in a 70-system) - remains completely homogeneous.

±・・・肉眼的にわずかに微粒子が認められる。±...Fine particles are slightly observed with the naked eye.

+・・・巨大粒子が多少認められる。+... Some large particles are observed.

廿・・・巨大粒子の形成が多い。廿・・・Many giant particles are formed.

卦・・・著しい巨大粒子の形成。Hexagram: Formation of significant giant particles.

第  J  表 系 また、1時間静置した反応の66Qnmにおける△ 光学的密度をそのま才、および振とう後に測定した結果
を第2表に示す。
Table J Table 2 also shows the results of measuring the Δ optical density at 66 Qnm of the reaction left standing for 1 hour as it was and after shaking.

第2表 第1表および第2表に示すごとく、検索した種々の物質
のうち、カラギーナン、キサンタンガム、ローカストビ
ーンガム、トラガカントガムおよびこれらの混合物が特
異的に混濁粒子の均質な分散をはかり、粒子の沈降、凝
集を防止することが判明した。また、第2表の振とう後
の光学的密度から明らかなことく、これらの物質を添加
し一〇も、その光学的密度は無添加の場合とほとんど変
らず、これらの物質が測定の妨げとならないことも判明
した。
Table 2 As shown in Tables 1 and 2, among the various substances searched, carrageenan, xanthan gum, locust bean gum, tragacanth gum, and mixtures thereof specifically disperse turbid particles homogeneously and It was found to prevent sedimentation and aggregation. Furthermore, as is clear from the optical density after shaking in Table 2, even when these substances are added, the optical density is almost the same as when no additives are added, indicating that these substances interfere with measurement. It was also found that this is not the case.

なお、各種の陰イオン性および非イオン性界面活性剤に
ついても同様な検索を行な一つだが、これらは抗原抗体
反応を阻害し、分散剤として適当ではなかった。
Similar searches were also conducted for various anionic and nonionic surfactants, but these inhibited antigen-antibody reactions and were not suitable as dispersants.

本発明はかかる知見に基いて完成されたもので、濁度測
定により生体成分を定量するに際し、反応系内にカラギ
ーナン、キサンタンガム、ローカストビーンガム、トラ
ガカントガムおよびこれらの混合物からなる群から選は
れる分散剤を共存させることを特徴とする濁度測定法を
提供するものである。従来、例えば、尿蛋白測定時に試
薬中にアラビアガムを含有させておくこと(ExLon
、 J。
The present invention was completed based on this knowledge, and when quantifying biological components by turbidity measurement, a dispersion selected from the group consisting of carrageenan, xanthan gum, locust bean gum, tragacanth gum, and mixtures thereof is added to the reaction system. The present invention provides a turbidity measurement method characterized by the coexistence of an agent. Conventionally, for example, gum arabic was included in the reagent when measuring urine protein (ExLon
, J.

Lab、 &CIiCl1n0..10: 722 、
1925 )および濁度標準液に比重調整剤としてアラ
ビアガムを用いること(特開昭56−16845号)に
一ついての報告はあるか、カラギーナン、キサンタンガ
ム、ローカストビーンガムおよびトラガカントガムを臨
床検査の分野で用いたという報告は見当らず、本発明の
方法によれば、これらの分散剤を用いることにより、用
手法による分析はもちろん、自動分析、ことに連続゛7
0−ンステムによる分析にも濁度法を好適に適用するこ
とかできる。
Lab, &CIiCl1n0. .. 10: 722,
1925) and the use of gum arabic as a specific gravity adjuster in a turbidity standard solution (Japanese Unexamined Patent Publication No. 16845/1983). However, according to the method of the present invention, by using these dispersants, it is possible to perform not only manual analysis but also automatic analysis, especially continuous analysis.
The turbidity method can also be suitably applied to analysis using a zero-meter stem.

かくして、本発明の濁度測定法は、臨床検査における濁
度法による各種の生体成分、例えば、尿蛋白、β−リポ
蛋白、γ−グロブリン、イムノグロブリン等の各種の蛋
白定量に適用−Cき、例えば、肝機能検査法として用い
られるチモール混濁試験(’r’r’r)ヤ硫酸亜鉛混
濁試験(z’r丁)等の血清膠質反応または混濁度イム
ノアッセイ法のごとき通常の方法に従って定量を行なう
に際し、反応系に該分散剤を添加すればよい。
Thus, the turbidity measurement method of the present invention can be applied to the determination of various biological components such as urine protein, β-lipoprotein, γ-globulin, and immunoglobulin by the turbidity method in clinical tests. For example, quantification is carried out according to conventional methods such as serum colloid reaction or turbidity immunoassay, such as thymol turbidity test ('r'r'r), zinc diasulfate turbidity test (z'r ding), which are used as liver function testing methods. When performing this, the dispersant may be added to the reaction system.

分散剤はカラギーナン、キサンタンガム、ローカストビ
ーンガム、トラガカントガム単独でも、これらの2種以
上の混合物でもよく、混合物とし−rは、ことに、キサ
ンタンガムとロー力ストビーンガムの重量比1:0.1
〜1:2混合物が好ましい。
The dispersing agent may be carrageenan, xanthan gum, locust bean gum, tragacanth gum alone or a mixture of two or more of these.
~1:2 mixtures are preferred.

分散剤の添加量は検体の種類や濃度、採用する試験法等
によって適宜選択できるが、通常、反応終濃度として0
.01〜1.0g/3好ましくは、例えば、β−リポ蛋
白定量の場合、0.1〜0.8g/l、尿蛋白定量の場
合、0.3〜1.0g//程度で良好な結果が得られる
。また、添加方法や添加時期も適宜選択することかでき
、例えは、適当な濃度の分散剤水溶液を調整し、検体と
定量試薬との反応前、反応時または反応後に添加すれば
よく、連続゛70−システムを採用する場合も、チュー
ブとミキシングコイルを適宜に組合せて適宜反応系に分
散剤を添加すればよい。
The amount of dispersant added can be selected depending on the type and concentration of the sample, the test method used, etc., but the final reaction concentration is usually 0.
.. 01-1.0g/3 Preferably, for example, in the case of β-lipoprotein determination, 0.1-0.8g/l, and in the case of urine protein determination, about 0.3-1.0g// gives good results. is obtained. In addition, the addition method and addition time can be selected as appropriate. For example, it is sufficient to prepare an aqueous dispersant solution with an appropriate concentration and add it before, during, or after the reaction between the specimen and the quantitative reagent. Even when employing the 70-system, the tube and the mixing coil may be appropriately combined and a dispersant may be added to the reaction system as appropriate.

つぎに実施例を挙げて本発明をさらに詳しく説明するか
、これらに限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1(尿蛋白の定量) 試薬の調製 (1)試薬I:スルホサリチル酸・硫酸ナトリウム液 結晶硫酸ナトリウム70gを水約800m1に加温溶解
し、冷却後、スルホサリチル酸50gを加えて溶解し、
水で全量をIooomlとした。
Example 1 (quantification of urine protein) Preparation of reagent (1) Reagent I: Sulfosalicylic acid/sodium sulfate 70 g of liquid crystalline sodium sulfate was dissolved under heating in approximately 800 ml of water, and after cooling, 50 g of sulfosalicylic acid was added and dissolved.
The total volume was made up to 100ml with water.

(2)試薬■:分散剤液 カラギーナン2gを200〜500−の水に加え、沸騰
させて溶解した。冷却後、水を加えて全量を10001
nlとし、ガラスフィルターで濾過し、そのP液を訣用
した。
(2) Reagent (2): Dispersant liquid 2 g of carrageenan was added to 200-500 ml of water and dissolved by boiling. After cooling, add water to bring the total volume to 10001
nl, filtered through a glass filter, and used the P solution.

(3)アルブミン標準液 ウシ血清アルブミン600■に水を加えて溶解し、全量
を100−とした。これを水で稀釈して、各々、600
.300.150および75〜/dlの標準液を調製し
た。
(3) Albumin standard solution 600 ml of bovine serum albumin was dissolved in water to make the total volume 100-. Dilute this with water and give 600 ml each.
.. Standard solutions of 300.150 and 75~/dl were prepared.

測定操作 尿検体0. I mZに試薬I3.0rnlを加えて混
和後、さらに、試薬I11.5rnlを加えてよく混和
し、5分間放置した。尿検体の代りに水0.1−を用い
て同様の操作を行ない、これを対照として、該検体含有
反応懸濁液の6601mにおける光学的密度を測定した
。尿検体の代りにアルブミン標準液を用い、同様に操作
して検量線を作成した。検体含有反応懸濁液の光学的密
度は0.10であり、該尿検体は150〜/d/の蛋白
を含有することが判゛つた。
Measurement operation Urine sample 0. After adding 3.0 rnl of reagent I to I mZ and mixing, 11.5 rnl of reagent I was further added, mixed well, and left for 5 minutes. A similar operation was carried out using 0.1 mm of water instead of the urine specimen, and using this as a control, the optical density at 6601 m of the reaction suspension containing the specimen was measured. A calibration curve was created in the same manner using an albumin standard solution instead of the urine sample. The optical density of the sample-containing reaction suspension was 0.10, and the urine sample was found to contain 150-/d/d/d of protein.

いずれの反応懸濁液も混濁粒子の均質な分散を示した。Both reaction suspensions showed a homogeneous dispersion of turbid particles.

実施例2(β−リボ蛋白の定量) 試薬の調製 (1)試薬工;β−リボ蛋白定量試薬 BL−A免疫比濁用抗血清をBL−A緩衝液(いずれも
、日本商事(株)発売)で50倍に稀釈した。
Example 2 (quantification of β-riboprotein) Preparation of reagents (1) Reagent engineering: β-riboprotein quantitative reagent BL-A immunoturbidimetric antiserum was mixed with BL-A buffer (both Nippon Shoji Co., Ltd.) (Released) and diluted 50 times.

(2)試薬■:分散剤液 実施例】における試薬■に同じ。(2) Reagent ■: Dispersant liquid Same as reagent ■ in Example].

(3)血清標準液 BL−A標準血清(凍結乾燥品)(日本商事@)発売)
に水3rnlを加えて溶解し、さらに水゛C稀釈し=C
1各々、900.600.400.200および100
”5’/dJ の標準液を調製した。
(3) Serum standard solution BL-A standard serum (lyophilized product) (Nippon Shoji@) released)
Add 3rnl of water to dissolve, further dilute with water =C
1 each, 900.600.400.200 and 100
A standard solution of ``5'/dJ was prepared.

測定操作 血清検体50μlに水0.5−を加えて混和し、さらに
、試薬IO,6m/、ついて、試薬■0.6−を加えて
混和し、5分間放置した。血清検体の代りに水0. I
 1nlを用いて同様の操作を行ない、これを対照とし
て、該検体含有反応懸濁液の660 nmにおける光学
的密度を測定した。血清検体の代りに血清標準液を用い
、同様に操作して検量線を作成した。検体含有反応懸濁
液の光学的密度は0.20であり、該血清検体は600
〜/diのβ−リボ蛋白を含有することか判った。いず
れの反応懸濁液も混濁粒子の均質な分散を示した。
Measurement procedure: 0.5 μl of water was added to 50 μl of the serum specimen and mixed, followed by 0.6 μl of reagent IO and 0.6 μl of reagent 1, mixed, and allowed to stand for 5 minutes. Water 0.0% instead of serum sample. I
A similar operation was performed using 1 nl, and using this as a control, the optical density at 660 nm of the reaction suspension containing the specimen was measured. A calibration curve was created in the same manner using a serum standard solution instead of a serum sample. The optical density of the reaction suspension containing the specimen is 0.20, and the optical density of the serum specimen is 600.
It was found that it contained ~/di β-riboprotein. Both reaction suspensions showed a homogeneous dispersion of turbid particles.

実施例3(硫酸亜鉛混濁試験) 試薬の調製 (1)試薬■:バルビタール緩緩衝 液路ルビタール02■およびパルビタールナトリウム1
90”fを水約900m1に加え、加温しつつ溶解し、
今後、水で1000rnlとした。
Example 3 (Zinc sulfate turbidity test) Preparation of reagent (1) Reagent ■: Barbital mild buffer solution route Rubital 02 ■ and Parbital sodium 1
Add 90"f to about 900ml of water and dissolve while heating.
From now on, it was made up to 1000 rnl with water.

(2)試薬■:硫酸亜鉛水溶液 硫酸亜鉛(Z n504 ・7H20)480”iを水
に溶解して1000−とした。
(2) Reagent (2): Zinc sulfate aqueous solution Zinc sulfate (Z n504 .7H20) 480"i was dissolved in water to give a solution of 1000".

(3)試薬■:分散剤液 実施例1における試薬■に同じ。(3) Reagent ■: Dispersant liquid Same as reagent ① in Example 1.

(4)クンケル(Kunkel )試薬試薬I500m
Zに試薬115m1および試薬■200dを加え、水で
全量を11とした。要すれば、0゜IN水酸化ナトリウ
ムまたは0.IN塩酸でpHを7.60に調整した。
(4) Kunkel reagent I500m
115 ml of reagent and 200 d of reagent (1) were added to Z, and the total volume was made up to 11 with water. If necessary, 0°IN sodium hydroxide or 0. The pH was adjusted to 7.60 with IN hydrochloric acid.

測定操作 血清50μlにクンケル試薬3.0−を加え、穏やかに
混和し、25℃で30分間放置後、660nmで光学的
密度を測定した。
Measurement procedure Kunkel's reagent 3.0- was added to 50 μl of serum, mixed gently, and left at 25° C. for 30 minutes, after which the optical density was measured at 660 nm.

同時に混濁粒子の分散状態を観察したか、均質な分散を
示し、凝集沈澱はみられなか゛つた。一方、高単位血清
(12単位以上)で通常のクンケル試薬(試薬工+試薬
■)を用いるど、放置によりa集沈澱を起した。
At the same time, the state of dispersion of the turbid particles was observed; homogeneous dispersion was observed, and no agglomeration or precipitate was observed. On the other hand, when ordinary Kunkel's reagent (reagent technique + reagent ■) was used with high unit serum (12 units or more), precipitation of a occurred due to standing.

実施例4(チモール混濁試験) 試薬の調製 (1)チモール試薬 100(7容の三角フラスコにチモール結晶6゜Ogを
とり、沸騰蒸留水300rn1.を注いで混和溶解させ
た。これに、バルビツール3.09gおよびパルビター
ルナトリウム1.69gを加え、ついて、水700+、
I/を加えて溶解させた。室温で放置後、100(7容
のメスフラスコに移し、水でメスアップした。これに、
さらにチモール結晶1gを加えて1夜放置した。pHを
7.55±0.03に調整し、その上清を戸別して使用
した。
Example 4 (Thymol turbidity test) Preparation of reagent (1) Thymol reagent 100 (6° Og of thymol crystals was placed in a 7-volume Erlenmeyer flask and mixed and dissolved by pouring 300 rn1. of boiling distilled water. Add 3.09g and 1.69g of parbital sodium, add water 700+,
I/ was added and dissolved. After leaving it at room temperature, it was transferred to a 7-volume volumetric flask and diluted with water.
Furthermore, 1 g of thymol crystals was added and left overnight. The pH was adjusted to 7.55±0.03, and the supernatant was used for individual use.

(2)分散剤液 実施例1の試薬■に同じ。(2) Dispersant liquid Same as reagent ① of Example 1.

測定操作 血清50μlにチモール試薬2.71nlおよび分散剤
液0.3記を加え、穏やかに混和し、25℃で30分間
放置後、6600m −C光学的密度を測定した。
Measurement procedure 2.71 nl of thymol reagent and 0.3 volume of dispersant solution were added to 50 μl of serum, mixed gently, and after standing at 25° C. for 30 minutes, 6600 m −C optical density was measured.

同時に混濁粒子の分散状態を観察したが、均質な分散を
示し、凝集沈澱はみられなか゛つた。一方、高単位血清
(6単位以上)でチモール試薬のみを用いると、放置に
より凝集沈澱を起した。
At the same time, the state of dispersion of the turbid particles was observed, and they were found to be homogeneous and no agglomeration or precipitate was observed. On the other hand, when only the thymol reagent was used with high-unit serum (6 units or more), aggregation and precipitation occurred upon standing.

実施例5 添付の第1図に示すダイヤグラムの連続°70−システ
ムにより、実施例1におけると同様に尿蛋白の定量を行
な一つだ。
Example 5 Urine protein was determined in the same manner as in Example 1 using the continuous 70-degree system shown in the diagram shown in the attached Figure 1.

まず、チューブ】へ試薬■を1.5rn1.7分の流速
で流し、これに、チューブ2から尿検体をO,I m7
!/分の流速で加え、ミキシングコイル3内を通過させ
た。ついで、チューブ4から試薬■を0.5 m17分
の流速で加え、ミキシングコイル5内を通過させ、66
 Q nmにおける光学的密度を測定した。
First, flow the reagent ■ into the tube] at a flow rate of 1.5 rn 1.7 minutes, and then pour the urine sample from tube 2 into the tube at a flow rate of 0,1 m7.
! The mixture was added at a flow rate of /min and passed through the mixing coil 3. Next, reagent ■ was added from tube 4 at a flow rate of 0.5 m17 min, passed through mixing coil 5, and 66
The optical density at Q nm was measured.

ミキシングコイル3および5内の滞留時間は、夫々、1
分つってあ−っだ。
The residence time in the mixing coils 3 and 5 is 1
I understand.

ミキシングコイル5を通過後の懸濁液中の粒子は均質に
分散しており、巨大粒子の形成はみられず、チューブや
コイルの閉塞もみられなかった。
The particles in the suspension after passing through the mixing coil 5 were homogeneously dispersed, no formation of giant particles was observed, and no blockage of the tube or coil was observed.

実施例6 添付の第2図に示すダイヤグラムの連続フローシステム
により、実施例2におけると同様にβ−リボ蛋白の定量
を行なった。
Example 6 β-riboprotein was quantified in the same manner as in Example 2 using the continuous flow system shown in the diagram shown in the attached FIG. 2.

まず、チューブ6から試薬■を0.6 d/分の流速で
流した。一方、チューブ7から水を0.5m//分の流
速で流し、これにチューブ8から血清検体を0.1rn
l/分の流速−C加え、ミキシングコイル9テU fD
 後、チューブ6へ導いた。これらの混合液をミキシン
グコイル10に通し、これに、チューブ】】から流速0
.6ml/分で送られる試薬■を加え、ミキシングコイ
ル12内を通過させ、660nmにおける光学的密度を
測定した。ミキシングコイル10および12内の滞留時
間は、夫々、5分および1分であった。
First, reagent (2) was flowed from tube 6 at a flow rate of 0.6 d/min. On the other hand, water was flowed from tube 7 at a flow rate of 0.5 m/min, and a serum sample was added from tube 8 at a rate of 0.1 rn.
Flow rate of l/min -C plus mixing coil 9teU fD
After that, it was introduced into tube 6. These mixed liquids are passed through the mixing coil 10, and the flow rate is 0 from the tube
.. Reagent (2) fed at 6 ml/min was added and passed through the mixing coil 12, and the optical density at 660 nm was measured. The residence times in mixing coils 10 and 12 were 5 minutes and 1 minute, respectively.

ミキシングコイル】2を通過後の懸濁液中の粒子は均質
に分散しており、巨大粒子の形成はみられず、チューブ
やコイルの閉塞もみられなかった。
Mixing Coil] The particles in the suspension after passing through 2 were homogeneously dispersed, no formation of giant particles was observed, and no clogging of the tube or coil was observed.

実施例7(β−リボ蛋白の定量) 試薬の調製 (1)試薬I:β−リボ蛋白定量試薬 実施例2における試薬工に同じ。Example 7 (quantification of β-riboprotein) Preparation of reagents (1) Reagent I: β-riboprotein quantitative reagent Same as the reagent technique in Example 2.

(2)試薬■:分散剤液 キサンタンガム1gおよびローカストビーンガム0.5
gを約500m1の水に加えて沸騰させ、溶解した。今
後、水で100Oynlとし、ガラス°フィルターで許
過してP液を使用した。
(2) Reagent ■: Dispersant liquid xanthan gum 1g and locust bean gum 0.5
g was added to about 500 ml of water and boiled to dissolve. From now on, the solution was made up to 100 Oynl with water, passed through a glass filter, and used as P solution.

(3)血清標準液 実施例2における標準液に同じ。(3) Serum standard solution Same as the standard solution in Example 2.

測定操作 実施例6と同様に、ただし、試薬■として上記の試薬■
を用いて連続フローシステムによりβ−リポ蛋白の定量
を行な−りた。
Measurement procedure Same as Example 6, except that the above reagent ■ is used as the reagent ■.
β-lipoprotein was quantified using a continuous flow system.

ミキシングフィル12を通過後の懸濁液中の粒子は均質
に分散しており、巨大粒子の形成もみられず、チューブ
やコイルの閉塞もみられなか−っだ。
The particles in the suspension after passing through the mixing filter 12 were homogeneously dispersed, and no formation of giant particles was observed, nor was there any clogging of tubes or coils.

実施例8(硫酸亜鉛混濁試験) 実施例3と同様に、ただし、試薬■の代りに実施例7に
おける試薬■を用いてクンケル試薬を調製し、硫酸亜鉛
混濁試験を行な−った。
Example 8 (Zinc sulfate turbidity test) A Kunkel reagent was prepared in the same manner as in Example 3, except that reagent ① in Example 7 was used instead of reagent ②, and a zinc sulfate turbidity test was conducted.

その結果、クンケル単位としC広い範囲にわたって不溶
性粒子の生成かみられず、静置後の沈降もなく、良好な
測定か可能−〔あった。一方、高単位血清(12単位以
上)で通常のクンケル試薬(分散剤なし)を用いると、
放置に−より凝集沈澱を起した。
As a result, no formation of insoluble particles was observed over a wide range of C in Kunkel units, and there was no sedimentation after standing, allowing for good measurement. On the other hand, when using ordinary Kunkel's reagent (without dispersant) with high-unit serum (12 units or more),
Coagulation and precipitation occurred upon standing.

実施例9(チモール混濁試験) 分散剤液の調製 キザンタンガム2gを約500m1の水に加え、沸騰さ
せて溶解した。今後、水を加えて10100Oとし、ガ
ラスフィルターで濾過してp液を使用した。
Example 9 (Thymol turbidity test) Preparation of dispersant liquid 2 g of xanthan gum was added to about 500 ml of water and dissolved by boiling. From now on, water was added to bring the temperature to 10,100 O, filtered through a glass filter, and the p solution was used.

測定操作 実施例4と同様に、ただし、上記の分散剤液を用いて測
定を行な一〇だ。
Measurement procedure The measurement was carried out in the same manner as in Example 4, except that the above-mentioned dispersant liquid was used.

その結果、マク1/−ガン(Maclagan )単位
として広い範囲にわたって不溶性粒子の生成がみられず
、静置後の沈澱もなく、良好な測定が可能であ−っだ。
As a result, no insoluble particles were observed over a wide range of Maclagan units, and there was no precipitation after standing, allowing for good measurements.

一方、高単位血清(6単位以上)でチモール試薬のみを
用いると、放置により凝集沈澱を起した。
On the other hand, when only the thymol reagent was used with high-unit serum (6 units or more), aggregation and precipitation occurred upon standing.

実施例10(尿蛋白の定量) 実施例5と同様に、ただし、実施例9における分散剤液
を用いて連続フローシステムにより尿蛋白の定量を行な
った。
Example 10 (Quantification of Urine Protein) Urine protein was quantified in the same manner as in Example 5, except that the dispersant solution in Example 9 was used in a continuous flow system.

ミキシングコイル5を通過後の懸濁液中の粒子は均質に
分散しており、巨大粒子の形成はみられず、チューブや
コイルの閉塞もみられなかった。
The particles in the suspension after passing through the mixing coil 5 were homogeneously dispersed, no formation of giant particles was observed, and no blockage of the tube or coil was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、いずれも、本発明の方法を連続
フローシステムで行なう場合の代表的なダイヤグラムで
ある。 1.2.4.6.7.8および1】・・・チューブ、3
.5.9、lOおよびI2・・・ミキシングコイル特許
出願人日本商事株式会社 代理人弁埠士青山 葆ほか2名 第1図
Figures 1 and 2 are both representative diagrams of the method of the present invention performed in a continuous flow system. 1.2.4.6.7.8 and 1]...Tube, 3
.. 5.9, 1O and I2...Mixing coil patent applicant Nippon Shoji Co., Ltd. Agent Aoyama Hajime and 2 others Figure 1

Claims (10)

【特許請求の範囲】[Claims] (1)濁度測定により生体成分を定量するに際し、反応
系内にカラギーナン、キサンタンガム、ローカストビー
ンガム、トラガカントガムおよびこれらの混合物からな
る群から選ばれる分散剤を共存させることを特徴とする
濁度測定法。
(1) Turbidity measurement characterized by coexisting a dispersant selected from the group consisting of carrageenan, xanthan gum, locust bean gum, tragacanth gum, and mixtures thereof in the reaction system when quantifying biological components by turbidity measurement. Law.
(2)用手法により測定を行なう前記第(1)項の測定
法。
(2) The measurement method of item (1) above, in which the measurement is performed using a manual method.
(3)自動分析により測定を行なう前記第(1)項の測
定法。
(3) The measurement method of item (1) above, in which the measurement is performed by automatic analysis.
(4)連続フローシステムにより測定を行なう前記第(
3)項の測定法。
(4) The above-described (
3) Measurement method.
(5)分散剤を反応終濃度とし”rO,01〜i、og
/l共存させる前記第(1)項〜第(4)項いずれか1
つの測定法。
(5) The final reaction concentration of the dispersant is “rO,01~i,og
/l any one of the above clauses (1) to (4) to coexist
Two measurement methods.
(6)分散剤かカラギーナンである前記第(1)項〜第
(5)項いずれか1つの測定法。
(6) The measurement method according to any one of items (1) to (5) above, which uses a dispersant or carrageenan.
(7)分散剤がキサンタンガムである前記第(1)項〜
第(5)項いずれか1つの測定法。
(7) Item (1) above, wherein the dispersant is xanthan gum.
Any one of the measurement methods in Clause (5).
(8)分散剤がローカストビーンガムである前記第(1
)項〜第(5)項いずれか1つの測定法。
(8) The dispersant is locust bean gum.
) to (5).
(9)分散剤がトラガカントガムである前記第(1)項
〜第(5)項いずれか1つの測定法。
(9) The measuring method according to any one of items (1) to (5) above, wherein the dispersant is gum tragacanth.
(10)分散剤がキサンタンガムとローカストビーンガ
ムの重量比1:0.1〜l:2混合物である前記第(1
)項〜第(5)項いずれか1つの測定法。
(10) The dispersant is a mixture of xanthan gum and locust bean gum in a weight ratio of 1:0.1 to 1:2.
) to (5).
JP13078082A 1982-07-27 1982-07-27 DAKUDOSOKUTEIHO Expired - Lifetime JPH0244013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13078082A JPH0244013B2 (en) 1982-07-27 1982-07-27 DAKUDOSOKUTEIHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13078082A JPH0244013B2 (en) 1982-07-27 1982-07-27 DAKUDOSOKUTEIHO

Publications (2)

Publication Number Publication Date
JPS5920838A true JPS5920838A (en) 1984-02-02
JPH0244013B2 JPH0244013B2 (en) 1990-10-02

Family

ID=15042488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13078082A Expired - Lifetime JPH0244013B2 (en) 1982-07-27 1982-07-27 DAKUDOSOKUTEIHO

Country Status (1)

Country Link
JP (1) JPH0244013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233759A (en) * 1986-03-28 1987-10-14 エスエイ・テキサコ・ベルジヤン・エヌヴイ Device for continuously measuring ratio of diluted solution to colloidal fluid generating coagulation by mixed liquid ofsaid fluid and said diluted solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233759A (en) * 1986-03-28 1987-10-14 エスエイ・テキサコ・ベルジヤン・エヌヴイ Device for continuously measuring ratio of diluted solution to colloidal fluid generating coagulation by mixed liquid ofsaid fluid and said diluted solution
JPH0833382B2 (en) * 1986-03-28 1996-03-29 エスエイ・テキサコ・ベルジヤン・エヌヴイ probe

Also Published As

Publication number Publication date
JPH0244013B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
EP1801590B1 (en) Method of assaying antigen and reagent therefor
CA2452766C (en) Carrier particle latex for assay reagent and assay reagent
JPH0370787B2 (en)
CA2557473A1 (en) Measurement value lowering inhibitor for immunoassay method and immunoassay method using the same
EP0269526B1 (en) Method of quantitative determination of antigens and antibodies
WO2021199178A1 (en) Latex agglutination method-mediated target substance measurement method, and reagent therefor
WO2019026569A1 (en) Degradation preventing means for immunoassay reagent containing insoluble carrier particles
EP2309265B1 (en) Method of assaying complex and kit to be used therefor
US20070015141A1 (en) Process for adjusting the diameter of gold particles and colloidal gold solution
US4760030A (en) Quantitative opaque particle agglutination assay
JP3513075B2 (en) Immunoassay and reagent therefor
JP6919499B2 (en) Means for Preventing Deterioration of Immunoassay Reagents Containing Insoluble Carrier Particles
JPS5920838A (en) Turbidity measuring device
JPH03123861A (en) Immunochemical measurement method of haptens
JPH01301165A (en) Immunoassay
JPS61280550A (en) Measurement of optical concentration by nephelometric analysis
Winkles et al. Enhanced-latex-agglutination assay for C-reactive protein in serum, with use of a centrifugal analyzer.
JPS5992353A (en) Measuring method of flocculating reaction using insoluble carrier particle
JPH01158354A (en) Reagent and method for immunological measurement of many components
JPS63187157A (en) Measurement of antigen-antibody reaction
JPH0875746A (en) Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction
JP2571383B2 (en) Method for measuring human hemoglobin in biological components and reagent kit for measurement
JPH08105897A (en) Immunity measurement method
JP2000002704A (en) Manufacture of immunological measuring reagent, and immunological measuring reagent
CN112858687A (en) Serum amyloid protein A detection reagent and preparation method thereof