JPH0875746A - Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction - Google Patents

Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction

Info

Publication number
JPH0875746A
JPH0875746A JP20959494A JP20959494A JPH0875746A JP H0875746 A JPH0875746 A JP H0875746A JP 20959494 A JP20959494 A JP 20959494A JP 20959494 A JP20959494 A JP 20959494A JP H0875746 A JPH0875746 A JP H0875746A
Authority
JP
Japan
Prior art keywords
carrier particles
agglomeration
agglutination
particles
electric conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20959494A
Other languages
Japanese (ja)
Inventor
Takashi Maehara
喬 前原
Masanori Nakagawa
正則 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP20959494A priority Critical patent/JPH0875746A/en
Publication of JPH0875746A publication Critical patent/JPH0875746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To evaluate the agglomeration characteristics of carrier particles having a high sedimentation speed by premixing standard carrier particles and an agglomerating agent with water in various ratios to disperse them and together using the electric conductivities of respective mixed solns. and agglomeration decision by a microtiter method to calculate the lowest electric conductivity generating agglomeration. CONSTITUTION: As a standard carrier, org. and inorg. composite particles for microtitration are used to be well washed with pure water. Next, an agglomerating agent aq. soln. is prepared as an agglomerating agent by dissolving sodium chloride in pure water, for example, in an amt. of 20wt.% and mixed with the standard carrier particle dispersion in various ratios under stirring and the electric conductivities of the respective mixed dispersions are measured. The respective mixed dispersions after the completion of measurement are transferred to microwells to be allowed to stand and the presence of the agglomeration images of the bottoms of the microwells is observed and the lowest electric conductivity (agglomeration electric conductivity) generating agglomeration is calculated to be compared with the electric conductivity of a carrier to be evaluated to evaluate whether agglomeration is good.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、免疫学的凝集反応試薬
の担体として利用する担体粒子の凝集特性の評価方法に
関する。特にマイクロタイター法の担体として利用する
沈降速度の大きい担体粒子、即ち粒子径が大きいあるい
は比重の高い担体粒子の凝集特性を評価する方法に有用
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for evaluating the agglutination characteristics of carrier particles used as a carrier for immunological agglutination reagents. In particular, it is useful for a method of evaluating the agglomeration characteristics of carrier particles having a large sedimentation rate, that is, carrier particles having a large particle size or a high specific gravity, which are used as a carrier for the microtiter method.

【0002】[0002]

【従来の技術】疾病の診断及び予後の判定のために、血
液あるいは尿中に分泌された生体成分を測定すること
が、近年広く行われている。例えば、肝炎ウイルス、エ
イズ、成人性T細胞白血病、風疹等のウイルス感染症、
慢性関節リウマチ、全身性エリテマトーデス、橋本病等
の自己免疫病、カンジダ、マイコプラズマ、溶連菌、梅
毒等の細菌感染症、インスリン、ヒト絨毛性ゴナドトロ
ピン、エストロジェン等のホルモン検査、その他腫瘍マ
ーカの検査などが挙げられる。
2. Description of the Related Art In recent years, it has been widely practiced to measure biological components secreted in blood or urine for diagnosing diseases and determining prognosis. For example, viral infections such as hepatitis virus, AIDS, adult T-cell leukemia, rubella,
Examples include autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Hashimoto's disease, candida, mycoplasma, streptococcus, bacterial infections such as syphilis, hormone tests for insulin, human chorionic gonadotropin, estrogen, and other tumor marker tests. To be

【0003】これら疾病の診断には、検査対象の生体成
分が微量であるために従来の化学分析による検査では困
難を極め、一般には抗原抗体反応を利用した免疫学的検
査が行われている。この検査法の最大の特徴は、きわめ
て高い感度と特異性をもって血液中あるいは尿中に分泌
された生体成分を測定できる点である。
[0003] Diagnosis of these diseases is extremely difficult due to a small amount of biological components to be tested by conventional chemical analysis, and immunological tests using antigen-antibody reaction are generally performed. The most important feature of this test method is that biological components secreted in blood or urine can be measured with extremely high sensitivity and specificity.

【0004】この免疫学的検査の一つに免疫学的凝集反
応法がある。動物の赤血球、細菌の菌体、ポリスチレン
ラテックス粒子、ゼラチン粒子、無機物質粒子、有機無
機複合化粒子などの種々の粒子が担体として利用されて
いる。免疫学的凝集反応法とは、これら担体として利用
された担体粒子に抗原あるいは抗体を固定化してなる試
薬と対象となる検体とを混合し、その結果生じる抗原抗
体反応に基づいた担体粒子の凝集物の大きさあるいは強
さの程度を測定することによって、対象となる検体中の
生体成分を分析する方法である。
An immunological agglutination reaction method is one of the immunological tests. Various particles such as animal red blood cells, bacterial cells, polystyrene latex particles, gelatin particles, inorganic substance particles, and organic-inorganic composite particles are used as carriers. The immunological agglutination reaction method is a method of mixing a reagent prepared by immobilizing an antigen or an antibody on carrier particles used as a carrier with a target sample, and aggregating carrier particles based on the resulting antigen-antibody reaction. It is a method of analyzing biological components in a target sample by measuring the size or strength of an object.

【0005】この免疫学的凝集反応法の試薬を使用する
に際し、良好な凝集特性を有する粒子を担体として用い
ることは極めて重要である。つまり性能が不良な粒子を
用いれば最終的に得られた試薬の性能、例えば感度、特
異性、保存安定性あるいは凝集像の審美性にも不良な結
果を招くことになる。特に非特異的な凝集反応を起こし
て誤まった診断を招く結果となったり、目的の感度に到
達しないため正確な検査ができなくなり極めて重大な欠
陥を起こす原因となる。
In using the reagent of this immunological agglutination method, it is extremely important to use particles having good agglutination characteristics as a carrier. That is, if particles with poor performance are used, the performance of the finally obtained reagent, for example, sensitivity, specificity, storage stability, or aesthetics of agglutination images will also be poor. In particular, a non-specific agglutination reaction may occur, resulting in an erroneous diagnosis, or the target sensitivity may not be reached, making it impossible to perform an accurate test and causing a very serious defect.

【0006】従って性能の良い免疫学的凝集反応法の試
薬を得るには、優れた凝集特性を有するロット差のない
均質な担体を確保することが極めて重要で、そのために
担体として利用する担体粒子の性能、特に凝集特性を正
確に評価する分析手段の構築が望まれている。
Therefore, in order to obtain a reagent for the immunological agglutination reaction method with good performance, it is extremely important to secure a homogeneous carrier having excellent agglutination properties and not different among lots. For that reason, carrier particles used as a carrier It is desired to construct an analytical means for accurately evaluating the performance of the above, especially the aggregation characteristics.

【0007】従来、担体粒子を評価する方法には電気的
特性を調べるゼータ電位、あるいは水との親和性を評価
する接触角といった測定法が公知である。しかし、これ
ら従来の評価方法では免疫学的凝集反応法の担体粒子を
再現性良く測定する点で満足のいくものではないし、ま
た、測定結果から得られる担体粒子特性が直接試薬性能
に反映されているとはいえず、改善すべき課題が残され
ていた。
Conventionally, as a method for evaluating carrier particles, a measuring method such as a zeta potential for examining electrical characteristics or a contact angle for evaluating affinity with water is known. However, these conventional evaluation methods are not satisfactory in measuring carrier particles of the immunological agglutination reaction method with good reproducibility, and the carrier particle characteristics obtained from the measurement results are directly reflected in the reagent performance. However, there were still some issues to be improved.

【0008】[0008]

【発明が解決しようとする課題】免疫凝集反応法の中で
も、マイクロウエルあるいは試験管で生じる管底凝集像
を測定する沈降凝集反応法(マイクロタイイー法に代表
される)の場合において、使用する担体粒子の凝集特性
を正しく評価することは特に困難を極めていた。それは
使用する担体粒子の粒子径が大きくあるいは比重が高く
て沈降し易い性質によるもので、正確な測定が非常に難
しい理由からである。
Of the immunoaggregation reaction methods, it is used in the case of the sedimentation agglutination reaction method (represented by the microtitre method) for measuring the image of tube bottom agglutination generated in microwells or test tubes. It has been extremely difficult to correctly evaluate the aggregation characteristics of carrier particles. This is because the carrier particles used have a large particle size or a high specific gravity and are prone to sedimentation, and it is because accurate measurement is extremely difficult.

【0009】一般的に、粒子が分散している溶液中に多
量の塩を加えると粒子が凝集する現象は塩析として公知
である。塩の添加によって粒子表面電荷の相殺によっ
て粒子間の反発力を低下する、粒子表面の溶媒和水の
脱水によって粒子の溶液中での分散性が低下し、その結
果粒子の凝集が起こるとされている。この粒子凝集が生
じるときの最低の塩濃度のことを一般に塩凝集濃度とい
う。
Generally, a phenomenon in which particles agglomerate when a large amount of salt is added to a solution in which particles are dispersed is known as salting out. It is said that the addition of salt reduces the repulsive force between particles by canceling the surface charge of particles, and the dehydration of solvated water on the surface of particles reduces the dispersibility of particles in a solution, resulting in agglomeration of particles. There is. The lowest salt concentration at which this particle aggregation occurs is generally referred to as salt aggregation concentration.

【0010】従来この塩凝集濃度は、分光光度計を用い
た粒子の凝集速度あるいは濁度変化の測定、さらには粒
子の沈降速度あるいは沈降容積の変化を追跡することに
よって測定されてきた。しかし分光光度計を用いる方法
の場合は、粒子径の大きいあるいは高比重の粒子では粒
子間の凝集がおこりにくく、しかも粒子の沈降という現
象をともない正確に吸光度変化を捉えることは困難で、
再現性よく結果を得ることは容易といえない。また沈降
速度あるいは沈降容積の変化の測定の場合も操作が煩雑
で測定に時間を要し、その上解析が難しく、しかも特殊
で高価な測定装置が必要という問題点を有している。
Conventionally, the salt aggregation concentration has been measured by measuring the change in particle aggregation rate or turbidity using a spectrophotometer, and by tracking the change in particle sedimentation rate or sediment volume. However, in the case of a method using a spectrophotometer, it is difficult to agglomerate particles between particles having a large particle diameter or high specific gravity, and it is difficult to accurately capture the change in absorbance with the phenomenon of particle sedimentation.
It is not easy to obtain results with good reproducibility. Further, also in the case of measuring the change of the sedimentation velocity or the sedimentation volume, there is a problem that the operation is complicated, the measurement takes time, the analysis is difficult, and a special and expensive measuring device is required.

【0011】[0011]

【課題を解決するための手段】本発明者等は、前記した
課題を解決するために鋭意研究を重ねた結果、凝集特性
に優れた担体粒子を検証する中で、担体粒子の凝集特性
にその担体粒子が分散している懸濁液の電気伝導度が関
与していることを見い出し、本発明を完成するに至っ
た。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result of verifying carrier particles having excellent agglomeration characteristics, The inventors have found that the electrical conductivity of the suspension in which the carrier particles are dispersed is involved, and completed the present invention.

【0012】すなわち本発明は、免疫学的凝集反応用担
体粒子の凝集特性を評価する方法において、予め標準担
体粒子と凝集剤とを種々の割合で水に分散混合し、得ら
れた各混合液の電気伝導度を測定すると共に各混合液の
凝集状態をマイクロタイター法で判定することにより、
凝集が起こる最低電気伝導度(凝集電気伝導度)を求
め、次いで新たな担体粒子を用いて同じくその凝集電気
伝導度を調べ、両凝集電気伝導度を比較することにより
新たな担体粒子の凝集特性を判定することを特徴とする
前記免疫学的凝集反応用担体粒子の凝集特性評価方法で
ある。
That is, the present invention relates to a method for evaluating the agglutination characteristics of carrier particles for immunological agglutination reaction, in which standard carrier particles and aggregating agent are dispersed and mixed in water in various proportions in advance, and each mixture solution obtained. By measuring the electrical conductivity of and by determining the aggregation state of each mixed solution by the microtiter method,
The minimum electrical conductivity at which agglomeration occurs (aggregative electrical conductivity) is determined, and then the aggregative electrical conductivity is similarly examined using new carrier particles, and the aggregative properties of the new carrier particles are compared by comparing both agglomerative electrical conductivities. Is a method for evaluating aggregation characteristics of the carrier particles for immunological agglutination reaction.

【0013】以下本発明を説明するが、本発明の特徴
は、電気伝導度の測定とマイクロタイター法とを組み合
わせた免疫学的凝集反応用担体粒子の凝集特性の評価に
ある。さらに、免疫学的凝集反応用担体粒子の凝集特性
を正確に測定でき、しかも簡便、迅速で大きな装置も必
要としない安価な評価方法という特徴がある。
The present invention will be described below, but the feature of the present invention lies in the evaluation of the agglutination property of carrier particles for immunological agglutination reaction, which is a combination of the measurement of electric conductivity and the microtiter method. Furthermore, it is characterized by an inexpensive evaluation method that can accurately measure the agglutination characteristics of carrier particles for immunological agglutination reaction, and that is simple, rapid, and does not require a large apparatus.

【0014】本発明でいう電気伝導度とは、電気化学便
覧(第4版、電気化学協会編、丸善)に記載されてる様
に、電気抵抗の逆数で定義されその単位は、S/cm
(=1/ohm)である。一般に溶液の電気抵抗は溶存
する化学種によって電気抵抗の変化割合が違うため、一
概に言えないが、溶存するイオンの量によって変化す
る。また電気伝導度は、溶液中のイオン濃度、溶液組成
あるいは溶液温度にも依存して変化する。
The electrical conductivity referred to in the present invention is defined by the reciprocal of the electrical resistance and its unit is S / cm, as described in the Electrochemical Handbook (4th edition, edited by The Electrochemical Society, Maruzen).
(= 1 / ohm). In general, the electrical resistance of a solution varies depending on the dissolved chemical species, and the rate of change of the electrical resistance varies, so it cannot be generally stated, but it varies depending on the amount of dissolved ions. The electric conductivity also changes depending on the ion concentration in the solution, the solution composition, or the solution temperature.

【0015】この電気伝導度の測定は広く公知の方法が
採用され、例えば白金電極、ホ−イストンブリッジ等よ
り構成される市販の電気伝導度計によって測定される。
好ましくは、金電極法を原理とする自動温度補償付きの
電気伝導度計が簡便で精度よく電気伝導度を測定できる
ことから利用される。
A widely known method is adopted for measuring the electric conductivity, and for example, a commercially available electric conductivity meter composed of a platinum electrode, a Wheatstone bridge and the like is used.
Preferably, an electric conductivity meter with automatic temperature compensation based on the gold electrode method is used because it can measure electric conductivity easily and accurately.

【0016】ところで、電気伝導度に代えて単に凝集剤
濃度を指標とすると、一定の凝集剤濃度としたつもりで
も管底凝集像に甚だしい変動を生じることがわかった。
その変動差は一般的に許容されるマイクロタイタイー法
上の誤差(例えば2倍数希釈ならばマイクロウエル間の
管差で1管以内)を大きく越えるのであって、正確な測
定は困難を極めた。それに対して、管底凝集像の結果と
電気伝導度はよく相関し、従って本発明のように、再現
性に優れた担体粒子の凝集特性の評価には電気伝導度を
指標とすればよいことがわかった。
By the way, it has been found that when the coagulant concentration is simply used as an index instead of the electric conductivity, the tube bottom agglomeration image causes a great variation even if the coagulant concentration is intended to be constant.
Since the variation difference greatly exceeds the generally accepted error in the microtiter method (for example, if diluting by a factor of 2, the difference between the microwells is within 1 tube), and accurate measurement is extremely difficult. . On the other hand, the results of the tube bottom agglomeration image and the electrical conductivity correlate well, and therefore, as in the present invention, the electrical conductivity may be used as an index to evaluate the agglomeration characteristics of the carrier particles having excellent reproducibility. I understood.

【0017】本発明でいうマイクロタイター法とは、抗
原抗体反応を原理とする担体粒子の沈降凝集反応に基づ
く免疫血清学的測定法の一種であり、医学検査のなかで
広く知られた測定技術である。操作が簡単で特別な機器
を必要としない高感度な測定法という特徴から、特に細
菌・ウイルス感染症のマススクリーニングに利用されて
いる。マイクロタイター法の通常の操作は、反応容器の
中で試薬と検体を混合し沈降凝集反応を起こさせ、その
結果生じる管底凝集像を目視あるいは機械(よく用いら
れる手法に画像処理がある)で評価・測定し、検体中の
被検物質を半定量的に求める。この管底凝集像は、傾斜
のついた反応容器の底部と担体粒子との間の静電的な表
面相互作用による微妙な転がり現象で形成されるもので
ある。
The microtiter method referred to in the present invention is a type of immunoserologic measurement method based on the precipitation-aggregation reaction of carrier particles based on the principle of antigen-antibody reaction, which is a widely known measurement technique in medical tests. Is. It is especially used for mass screening of bacterial and viral infectious diseases because it is a highly sensitive measurement method that is easy to operate and does not require special equipment. The normal operation of the microtiter method is to mix a reagent and a sample in a reaction vessel to cause a sedimentation agglutination reaction, and visually observe the resulting tube bottom agglutination image or by a machine (a commonly used method is image processing). Semi-quantitatively determine the test substance in the sample by evaluating and measuring. This tube bottom agglomeration image is formed by a subtle rolling phenomenon due to electrostatic surface interaction between the bottom of the inclined reaction vessel and the carrier particles.

【0018】本発明においては、標準担体粒子または評
価対象担体粒子と凝集剤とを水に種々の割合で分散混合
し、その混合液の反応容器中での管底凝集状態を判定す
る。
In the present invention, standard carrier particles or carrier particles to be evaluated and an aggregating agent are dispersed and mixed in water at various ratios, and the tube bottom agglomeration state of the mixed solution in the reaction vessel is determined.

【0019】この反応容器は、沈降凝集反応を効率よく
起こさせるために、底面形状がV型またはU型を呈する
のが一般的である。通常はポリスチレン樹脂製マイクロ
ウエル(例えば96穴マイクロタイタイープレート)、
あるいはガラス製試験管が広く使用されてる。
This reaction vessel generally has a V-shaped or U-shaped bottom surface in order to efficiently cause the sedimentation and aggregation reaction. Usually a polystyrene resin microwell (for example, a 96-well microtiter plate),
Alternatively, glass test tubes are widely used.

【0020】本発明の免疫学的凝集反応用担体粒子とは
水に対して不溶性であって、一般的に免疫学的凝集反応
法に用いられる粒子であればよい。好ましくは水中で自
然沈降を起こす粒子径あるいは比重を有する粒子が挙げ
られる。その平均粒子径は特に限定的ではないが0.0
5μm〜200μm、好ましくは0.1μm〜10μm
の範囲から選択される。平均粒子径が0.1μmより小
さいときは、沈降速度が小さいために測定時間にきわめ
て長い時間を必要とし、本発明の迅速な測定という特徴
が損なわれる。逆に平均粒子径が10μmより大きくな
ると、沈降速度が速すぎて沈降凝集反応の結果生ずる管
底凝集像が不良になり、正確な測定ができない場合があ
る。
The carrier particles for immunological agglutination reaction of the present invention may be particles which are insoluble in water and generally used in immunological agglutination reaction method. Preferred are particles having a particle size or specific gravity that causes spontaneous precipitation in water. The average particle diameter is not particularly limited, but is 0.0
5 μm to 200 μm, preferably 0.1 μm to 10 μm
Selected from the range of. When the average particle size is smaller than 0.1 μm, the sedimentation speed is low, and therefore a very long measurement time is required, which impairs the feature of the present invention of rapid measurement. On the other hand, when the average particle diameter is larger than 10 μm, the sedimentation speed is too fast, and the tube bottom agglomeration image resulting from the sedimentation agglutination reaction becomes poor, and accurate measurement may not be possible.

【0021】また免疫学的凝集反応用担体粒子の比重は
水中でその比重を測定した場合、1.001g/cm〜
50g/cm、好ましくは1.01g/cm〜10g/
cmの範囲から選択される。比重が1.01g/cmよ
り小さいときは、沈降速度が小さいために測定時間に長
時間かかる欠点がある。比重が10g/cmを越える
と、沈降速度が速すぎて沈降凝集反応の結果生ずる管底
凝集像が不良になる傾向にある。
The specific gravity of the carrier particles for immunological agglutination reaction is from 1.001 g / cm 2 when the specific gravity is measured in water.
50 g / cm, preferably 1.01 g / cm to 10 g /
It is selected from the range of cm. When the specific gravity is less than 1.01 g / cm, there is a drawback that the measuring time is long because the sedimentation speed is low. If the specific gravity exceeds 10 g / cm, the sedimentation speed is too fast, and the tube bottom agglomeration image resulting from the sedimentation agglutination reaction tends to be poor.

【0022】これらの要件を満たす免疫学的凝集反応用
担体粒子としては、例えば動物の赤血球、細菌の菌体、
ポリスチレンラテックス粒子、ゼラチン粒子、無機物質
粒子、有機無機複合粒子(商品名「イムノティクルス
HDP」、株式会社トクヤマ製)などが挙げられる。一
般にこれらの担体粒子は合成後は、防腐剤や界面活性剤
といった安定剤を含む水、緩衝液、あるいは有機溶媒の
中で保存されていることが多い。その場合は測定前に、
後述の本発明に用いられる水で十分に洗浄し、その水と
担体粒子とからなる担体粒子懸濁液の電気伝導度(25
℃)が0.06μS/cm以下であることを確認してお
けば何等問題はない。
Carrier particles for immunological agglutination reaction which satisfy these requirements are, for example, erythrocytes of animals, bacterial cells of bacteria,
Polystyrene latex particles, gelatin particles, inorganic substance particles, organic-inorganic composite particles (trade name "Immunoicles
"HDP", manufactured by Tokuyama Co., Ltd., and the like. In general, these carrier particles are often stored in water, a buffer solution, or an organic solvent containing a stabilizer such as a preservative or a surfactant after synthesis. In that case, before measurement,
The electrical conductivity of a suspension of carrier particles composed of the water and carrier particles (25
There is no problem as long as it is confirmed that (C) is 0.06 μS / cm or less.

【0023】本発明の標準担体粒子としては上記の免疫
学的凝集反応用担体粒子が何等限定されずに用いられ
る。好ましくは、マイクロタイター法の免疫学的凝集反
応試薬の担体粒子として好適に用いられる免疫学的凝集
反応用担体粒子であり、しかも安定な性能を保ち継続的
に入手できるものであればよい。具体的には安定的に入
手可能な担体粒子、例えば有機無機複合粒子(株式会社
トクヤマ製、イムノテイクルス HDP)あるいはポリ
スチレンラテックス粒子等の市販の人工担体粒子を好適
に用いることができる。
As the standard carrier particles of the present invention, the above carrier particles for immunological agglutination reaction are used without any limitation. The carrier particles for immunological agglutination reaction, which are preferably used as the carrier particles for the reagent for immunological agglutination reaction of the microtiter method, are preferable as long as they have stable performance and can be continuously obtained. Specifically, carrier particles that can be stably obtained, for example, commercially available artificial carrier particles such as organic-inorganic composite particles (manufactured by Tokuyama Corporation, Immunotex HDP) or polystyrene latex particles can be preferably used.

【0024】本発明の混合液とは、水に担体粒子と凝集
剤とを種々の割合で分散混合して得られたものである。
ここでいう水とは、化学便覧(基礎編I、日本化学会
編、丸善)に記載されている化学式H2O、分子量1
8.02の無味無臭、無色透明の液体のことである。好
ましくは、A.S.T.M.(The America
nSociety for Testing and
Materials)に定められた水質基準を満たすも
のを用いればよい。すなわち電気伝導度(25℃)が
0.06μS/cm以下、比抵抗(25℃)が16.6
MΩ/cm以上の純水、蒸留水あるいはイオン交換水が
望ましい。
The mixed solution of the present invention is obtained by dispersing and mixing carrier particles and an aggregating agent in water at various ratios.
Water as used herein means a chemical formula H 2 O having a chemical weight of 1 and a molecular weight of 1 described in the Chemical Handbook (Basic Edition I, The Chemical Society of Japan, Maruzen).
It is a colorless and transparent liquid which is 8.02, tasteless, odorless and colorless. Preferably A. S. T. M. (The America
nSociety for Testing and
Materials that meet the water quality standards set forth in Materials) may be used. That is, the electric conductivity (25 ° C.) is 0.06 μS / cm or less, and the specific resistance (25 ° C.) is 16.6.
Pure water, distilled water or ion-exchanged water of MΩ / cm or more is desirable.

【0025】混合液中の担体粒子の濃度は、通常水に対
して10重量%〜0.01重量%、好ましくは2.5重
量%〜0.05重量%とする。2.5重量%より大きい
と担体粒子の数が多くて沈降凝集で得られる管底凝集像
が安定的に得られにくくなる。また管底凝集像を変化さ
せるには凝集剤の量がかなり多く必要とする。一方、
0.05重量%より担体粒子の濃度が低いと電気伝導度
の微弱な変化で担体粒子の凝集が急激に起こり、沈降凝
集のコントロールが難しく再現性が悪くなる傾向にあ
る。また、担体粒子数が少ないので管底凝集像が明瞭で
はなくその判定が難しくなる傾向もある。
The concentration of carrier particles in the mixed solution is usually 10% by weight to 0.01% by weight, preferably 2.5% by weight to 0.05% by weight with respect to water. When it is more than 2.5% by weight, the number of carrier particles is large and it becomes difficult to stably obtain the tube bottom aggregation image obtained by sedimentation aggregation. In addition, a considerably large amount of coagulant is required to change the tube bottom agglomeration image. on the other hand,
If the concentration of the carrier particles is lower than 0.05% by weight, the carrier particles agglomerate rapidly due to a slight change in the electrical conductivity, and it is difficult to control the sedimentation and agglomeration and the reproducibility tends to deteriorate. In addition, since the number of carrier particles is small, the tube bottom agglomeration image is not clear, and its determination tends to be difficult.

【0026】本発明で用いる凝集剤とは、水に可溶で水
とは相互に反応せずしかもイオン解離し電気伝導度の変
化をもたらす物質で、担体粒子の凝集を引き起こす物質
ならば限定されない。凝集剤を例示すると、水に溶解し
たときイオンに分解する電解質の物質で、水酸化ナトリ
ウム、素酸化カルシウム、塩化ナトリウム、塩化アンモ
ニウム、硝酸ナトリウム、硫酸アルミニウム、アルミン
酸ナトリウム、塩化アルミニウム、硫酸第一鉄、硫酸第
二鉄、塩化第二鉄等の無機塩類、グルタミン酸ナトリウ
ム、アスパラギン酸ナトリウム等の有機塩類等、あるい
はポリアクリル酸ナトリウム、ポリアクリルアミド等の
高分子電解質を挙げることができる。また、これら電解
質の物質は2種以上混合して使用しても何ら差し支えな
い。
The aggregating agent used in the present invention is a substance which is soluble in water and does not react with water, and which dissociates into ions to cause a change in electrical conductivity, and is not limited as long as it causes agglomeration of carrier particles. . Examples of flocculants are electrolyte substances that decompose into ions when dissolved in water, and include sodium hydroxide, calcium oxide, sodium chloride, ammonium chloride, sodium nitrate, aluminum sulfate, sodium aluminate, aluminum chloride, and primary sulfate. Examples thereof include inorganic salts such as iron, ferric sulfate and ferric chloride, organic salts such as sodium glutamate and sodium aspartate, and polymer electrolytes such as sodium polyacrylate and polyacrylamide. Further, these electrolyte substances may be used in a mixture of two or more kinds.

【0027】凝集剤として、好ましくは担体粒子の凝集
をコントロールしやすい塩化ナトリウムに代表される1
価のカチオンを持つ電解質が望ましい。その理由は、2
価以上のイオンを持つ電解質を使用すると、担体粒子を
凝集させる力が非常に強く凝集のコントロールが難しい
場合がある。また、高分子量の高分子電解質の中には、
担体粒子分散液の溶液粘性を増加させ管底凝集像を乱し
正確な測定ができない場合がある。
As the coagulant, sodium chloride is preferred, which is easy to control the coagulation of carrier particles.
Electrolytes with valent cations are desirable. The reason is 2
When an electrolyte having ions with a valence or more is used, the force for aggregating the carrier particles is very strong and it may be difficult to control the agglomeration. Also, among high molecular weight polyelectrolytes,
In some cases, the solution viscosity of the carrier particle dispersion liquid is increased and the tube bottom agglomeration image is disturbed to make accurate measurement impossible.

【0028】本発明で混合液を調製する方法は特に限定
的ではなく、水と凝集剤と担体粒子を混合すればよい。
好ましくは、予め担体粒子を水に分散させた担体粒子分
散液と、凝集剤を水に溶解した凝集剤水溶液を別途調製
しておいて、両者を必要量混合する方法が操作的に簡便
でよい。また、混合効率を向上させ混合液の電気伝導度
が速やかに一定とするために、攪拌子等で混合液を攪拌
することが望ましい。
The method for preparing the mixed solution in the present invention is not particularly limited, and water, a flocculant and carrier particles may be mixed.
Preferably, a method of preparing carrier particle dispersion liquid in which carrier particles are previously dispersed in water and a coagulant aqueous solution in which a coagulant is dissolved in water separately, and mixing the necessary amounts of both are operationally convenient. . Further, in order to improve the mixing efficiency and make the electric conductivity of the mixed solution quickly constant, it is desirable to stir the mixed solution with a stirrer or the like.

【0029】本発明の混合液中の凝集剤濃度は、水に対
して通常50重量%〜0.0002重量%、好ましくは
10重量%〜0.001重量%とする。10重量%より
大きいと担体粒子の凝集が急激に起こり沈降凝集のコン
トロールが容易でなく再現性が悪くなってくる。一方、
0.001重量%より低いと担体粒子の凝集がきわめて
弱くなり、沈降凝集の結果得られる管底凝集像が不良と
なり判別が困難となる傾向にある。
The concentration of the coagulant in the mixed liquid of the present invention is usually 50% by weight to 0.0002% by weight, preferably 10% by weight to 0.001% by weight, based on water. If it is more than 10% by weight, the carrier particles agglomerate rapidly and the sedimentation and agglomeration cannot be easily controlled, resulting in poor reproducibility. on the other hand,
If it is less than 0.001% by weight, the agglomeration of carrier particles becomes extremely weak, and the tube bottom agglomeration image obtained as a result of sedimentation agglomeration tends to be poor, and discrimination tends to be difficult.

【0030】混合液中の担体粒子と凝集剤の混合割合
(重量比)は、通常100〜0.01好ましくは20〜
0.05とする。その混合比が20を超えると、凝集が
弱く管底凝集像が不良となり判別がむつかしいなる傾向
にある。一方、0.05未満であれば担体粒子の凝集が
急激に起こりコントロールが困難になり正確な測定がむ
つかしくなる場合がある。
The mixing ratio (weight ratio) of the carrier particles and the aggregating agent in the mixed liquid is usually 100 to 0.01, preferably 20 to.
It is set to 0.05. If the mixing ratio exceeds 20, aggregation tends to be weak and the tube bottom agglomeration image tends to be poor, making discrimination difficult. On the other hand, if it is less than 0.05, agglomeration of carrier particles may occur rapidly, making control difficult and making accurate measurement difficult.

【0031】本発明の評価方法を、代表的な方法で以下
具体的に説明する。先ず、標準担体粒子の凝集が起こる
最低電気伝導度、即ち凝集電気伝導度を決定する操作を
おこなう。この操作の目的は、凝集特性の評価に際して
指標となる凝集電気伝導度を知るものである。また、常
に操作が正しくおこなわれることを標準担体粒子の凝集
電気伝導度を測定することによって確認することでもあ
る。
The evaluation method of the present invention will be specifically described below as a typical method. First, an operation of determining the lowest electric conductivity at which the agglomeration of standard carrier particles occurs, that is, the agglomerated electric conductivity is performed. The purpose of this operation is to know the aggregation electric conductivity which is an index in evaluating the aggregation characteristics. It is also to confirm that the operation is always performed correctly by measuring the agglomerated electric conductivity of the standard carrier particles.

【0032】標準担体粒子は任意に選択するが、詳しく
検討するために2種以上を選択してもなんら制限はな
い。標準担体粒子を水でよく洗浄した後、水に再分散さ
せた所定濃度の標準担体粒子分散液を調製する。一方、
特定の電解質物質から選ばれた凝集剤を水に溶解し、そ
れを凝集剤水溶液とする。
The standard carrier particles are arbitrarily selected, but there is no limitation even if two or more kinds are selected for detailed examination. The standard carrier particles are thoroughly washed with water and then redispersed in water to prepare a standard carrier particle dispersion having a predetermined concentration. on the other hand,
A flocculant selected from a specific electrolyte substance is dissolved in water to prepare an aqueous flocculant solution.

【0033】次いで、両液を混合して標準担体粒子と凝
集剤を含む混合液を調製成する。例えば攪拌子が入った
ビーカーにあらかじめ任意の量の水を入れ、これに標準
担体粒子分散液を所定量加え攪拌混合する。このときの
標準担体粒子の濃度は前述の範囲内にあればよい。次い
で、このビーカー中に所定重量の凝集剤水溶液をピペッ
トで添加し、よく攪拌混合して標準担体粒子と凝集剤と
からなる混合液を最終的に得る。そして電気伝導度測定
機器(東亜電波工業株式会社製CM−11P)を使って
この混合液の電気伝導度を測定する。このときの凝集剤
の濃度および、標準担体粒子と凝集剤との混合割合は前
述の範囲内であればよい。
Next, the two solutions are mixed to prepare a mixed solution containing standard carrier particles and an aggregating agent. For example, a beaker containing a stirrer is charged with an arbitrary amount of water in advance, and a predetermined amount of the standard carrier particle dispersion is added to the beaker and mixed with stirring. The concentration of the standard carrier particles at this time may be within the above range. Then, a predetermined weight of an aqueous coagulant solution is added to this beaker with a pipette and mixed well by stirring to finally obtain a mixed solution of standard carrier particles and a coagulant. Then, the electric conductivity of this mixed liquid is measured using an electric conductivity measuring device (CM-11P manufactured by Toa Denpa Kogyo Co., Ltd.). At this time, the concentration of the aggregating agent and the mixing ratio of the standard carrier particles and the aggregating agent may be within the above range.

【0034】混合液の調製法はなんら限定的ではない。
例えば一つの容器を使用し標準担体粒子の量を固定し、
凝集剤を順次加えていく操作でもって、標準担体粒子と
凝集剤との両混合割合を変えていく方法をおこなっても
よい。あるいは、別々の容器を用いて、標準担体粒子と
凝集剤との混合割合を変えた一連の混合液系を作成して
もよい。また、逆に凝集剤の量を固定し標準担体粒子の
量を変えていく方法も採用できる。
The method for preparing the mixed solution is not limited at all.
For example, using one container to fix the amount of standard carrier particles,
A method of changing both mixing ratios of the standard carrier particles and the aggregating agent may be performed by sequentially adding the aggregating agent. Alternatively, a separate container may be used to prepare a series of mixed liquid systems in which the mixing ratio of the standard carrier particles and the aggregating agent is changed. On the contrary, a method of fixing the amount of the aggregating agent and changing the amount of the standard carrier particles can be adopted.

【0035】次ぎにマイクロタイタイー法を使用して混
合液の管底凝集像を得る。あらかじめ用意した反応容器
(たとえば96穴V型マイクロタイタープレートのマイ
クロウエル)の中に、所定容積の混合液をマイクロピペ
ット等の分注器で採取し添加する。反応容器を静置して
一定の反応時間が経過した後に、反応容器に形成した管
底凝集像を判定する。この管底凝集像の判定の方法には
制限はなく、一般にはマイクロタイター法で広く行われ
ている方法を採用すればよい。即ち、マイクロウエル毎
の管底凝集像があらかじめ設定しておいた管底凝集像の
判定基準に基づいて、凝集像(全体に広がった感じの像
でスポットが形成されない)であるか、あるいは非凝集
像(スポットが形成されている)であるかを評価する。
そして管底凝集像が凝集像を示したマイクロウエルに対
応する混合液の最低の電気伝導度を、標準担体粒子の凝
集電気伝導度と決定する。
Next, the microtiter method is used to obtain a tube bottom aggregation image of the mixed solution. A predetermined volume of the mixed solution is sampled with a dispenser such as a micropipette and added into a reaction container (for example, a microwell of a 96-well V-type microtiter plate) prepared in advance. After the reaction container is left standing and a certain reaction time has elapsed, the tube bottom aggregation image formed in the reaction container is determined. There is no limitation on the method of determining the tube bottom agglutination image, and a method widely used by the microtiter method may be generally adopted. In other words, whether the tube bottom agglutination image for each microwell is an agglutination image (a spot does not form with an image that spreads over the entire area) based on the preset criteria for the tube bottom agglutination image, or It is evaluated whether the image is an aggregated image (a spot is formed).
Then, the lowest electric conductivity of the mixed solution corresponding to the microwell in which the tube bottom agglutination image shows an agglutination image is determined as the agglomeration electric conductivity of the standard carrier particles.

【0036】この管底凝集像の評価には、肉眼によって
測定してもよいし、あるいは機械的な画像処理等によっ
てもよくなんら制限はない。また結果を早く得たい場合
は沈降凝集反応を短時間でおこなわせるために、例えば
遠心分離等をおこない標準担体粒子の沈降速度を速める
操作を行えばよい。
The tube bottom agglomeration image may be evaluated by the naked eye, mechanical image processing, or the like without any limitation. In order to obtain a faster result, in order to carry out the sedimentation-aggregation reaction in a short time, for example, centrifugation or the like may be performed to increase the sedimentation speed of the standard carrier particles.

【0037】以上の標準担体粒子の凝集電気伝導度を決
定する一連の操作に続いて、評価対象の担体粒子の凝集
電気伝導度を決定する操作をおこなうが、これは標準担
体粒子と全く同じ測定操作をおこなえばよい。そして最
終的に測定担体粒子と標準担体粒子の両凝集電気伝導度
を比較することにより、測定対象とする担体粒子の凝集
特性が評価できる。但し、標準担体粒子と評価対象担体
粒子とは同種の粒子を使用して比較する必要がある。従
って、評価対象担体粒子が変われば、予め同種の標準担
体粒子を用いて凝集電気伝導度を測定し直しておかねば
ならない。
Following the above-described series of operations for determining the cohesive electrical conductivity of the standard carrier particles, an operation for determining the cohesive electrical conductivity of the carrier particles to be evaluated is carried out. All you have to do is perform the operation. Finally, by comparing the agglomeration electric conductivities of the measurement carrier particles and the standard carrier particles, the agglomeration characteristics of the carrier particles to be measured can be evaluated. However, it is necessary to compare the standard carrier particles and the carrier particles to be evaluated using the same kind of particles. Therefore, if the carrier particles to be evaluated are changed, it is necessary to re-measure the agglomerated electric conductivity using standard carrier particles of the same type.

【0038】比較、評価は、例えば、以下の様に評価対
象の担体粒子と標準担体粒子の凝集電気伝導度を比較し
てその凝集特性を決定する。標準担体粒子に対してその
凝集電気伝導度の差が、通常0.5μS/cm以内にあ
れば、標準担体粒子と同等の凝集特性を有すると評価す
る。そして、標準担体粒子の凝集電気伝導度より高い値
であれば、その対象の担体粒子の凝集特性は標準担体粒
子より分散安定性に優れることが分かり、逆に低い値で
あれば分散安定性は劣ると判断できる。
In the comparison and evaluation, for example, the agglomeration characteristics of the carrier particles to be evaluated and the standard carrier particles are compared to determine their agglomeration characteristics as follows. If the difference in the coagulation electric conductivity of the standard carrier particles is usually within 0.5 μS / cm, it is evaluated that the standard carrier particles have the same coagulation characteristics. Then, if the value is higher than the coagulation electrical conductivity of the standard carrier particles, it can be seen that the coagulation characteristics of the target carrier particles are superior to the standard carrier particles in dispersion stability, and conversely if the value is low, the dispersion stability is Can be judged to be inferior.

【0039】また、マイクロタイター法試薬用の担体粒
子として優れた凝集特性を有するには凝集電気伝導度が
1μS/cm〜30μS/cmの範囲にあるのが好まし
く、この基準に基づいてマイクロタイター法用の担体に
好適に使用できるか否かを評価できる。凝集電気伝導度
が1μS/cmより低いと担体粒子が非常に分散安定性
に富み、管底凝集像は殆ど非凝集の現象を示す結果とな
ってマイクロタイター法試薬の感度がきわめて低くな
る。一方、30μS/cmを越える担体粒子の場合は、
非常に分散安定性が悪くて疎水性が強く担体粒子の取扱
いが困難となり、そのマイクロタイター法試薬の管底凝
集像も非常に不良で非特異凝集が甚だしく誘引される原
因ともなる。この好適な凝集電気伝導度の範囲の値は、
混合液における担体粒子と凝集剤の混合割合(重量比)
が先に記載した要件を満たせば、担体粒子や凝集剤の種
類といった条件に影響を受けず一定である。
Further, in order to have excellent agglutination properties as carrier particles for a reagent for the microtiter method, it is preferable that the agglomeration electric conductivity is in the range of 1 μS / cm to 30 μS / cm, and the microtiter method is based on this criterion. It can be evaluated whether or not the carrier can be suitably used as a carrier. When the agglutination electric conductivity is lower than 1 μS / cm, the carrier particles are very rich in dispersion stability, and the tube bottom agglutination image shows a phenomenon of almost no agglutination, resulting in extremely low sensitivity of the microtiter reagent. On the other hand, in the case of carrier particles exceeding 30 μS / cm,
The dispersion stability is very poor, the hydrophobicity is strong, and it becomes difficult to handle the carrier particles, and the tube bottom agglutination image of the microtiter reagent is also very poor, which causes a considerable amount of nonspecific agglutination. Values for this preferred cohesive electrical conductivity range are:
Mixing ratio of carrier particles and aggregating agent in mixture (weight ratio)
If the above condition is satisfied, the condition is constant without being affected by the conditions such as the type of carrier particles and the type of aggregating agent.

【0040】本発明は沈降凝集を原理とするマイクロタ
イター法の担体に利用される担体粒子の凝集特性の評価
において、特に著しい効果を発揮できるが、その他の公
知の免疫学的凝集反応、例えば定性的検査法の平板法あ
るいは、定量検査法の比濁法・散乱法および粒子計測法
等に使用される免疫学的凝集反応用担体粒子の評価にも
何等制限なく使用されうる。
The present invention can exert a particularly remarkable effect in the evaluation of the agglomeration characteristics of carrier particles used as a carrier in the microtitre method based on the principle of sedimentation agglomeration, but other known immunological agglutination reactions such as qualitative It can be used without any limitation for the evaluation of carrier particles for immunological agglutination reaction used in the flat plate method as a quantitative test method or the turbidimetric method / scattering method as a quantitative test method and a particle measurement method.

【0041】本発明の評価法により選別された担体粒子
を用いて、免疫学的凝集反応において該担体粒子に固定
化させる生体物質としては、特に限定的ではなく公知の
ものが使用される。好ましくは抗原、ハプテン及びこれ
らを免疫して得られる抗体などの免疫活性物質が用いら
れる。例えば免疫グロブリン、アルブミン、フィブリノ
−ゲン、α−フェトプロテイン、C反応性蛋白、β2−
ミクログロブリン、ミオグロビン、癌胎児性抗原、肝炎
ウィルス抗原、ヒト絨毛性ゴナドトロピン、ヒト胎盤性
ラクトーゲン、インスリン、ジゴキシン、プロテイン
A、プロテインG、DNA、RNA等の蛋白、ホルモ
ン、薬剤等、またそれらの免疫で得られた抗体などがあ
げられる。
As the biological substance to be immobilized on the carrier particles in the immunological agglutination reaction using the carrier particles selected by the evaluation method of the present invention, known substances are used without particular limitation. Preferably, immunologically active substances such as antigens, haptens and antibodies obtained by immunizing these are used. For example, immunoglobulin, albumin, fibrinogen, α-fetoprotein, C-reactive protein, β2-
Microglobulin, myoglobin, carcinoembryonic antigen, hepatitis virus antigen, human chorionic gonadotropin, human placental lactogen, insulin, digoxin, protein A, protein G, DNA, RNA and other proteins, hormones, drugs, etc., and their immunity The antibody etc. obtained in.

【0042】上記生体物質を担体粒子に固定化する方法
は公知の固定化方法を採用すればよい。例えば、上記蛋
白と担体粒子とを水性媒体中で接触させるのがよく、一
般に混合後静置することが行われるが、接触効率を高め
るために攪拌もしくは振とうしてもよい。接触後は遠心
分離及び必要に応じて水性媒体で洗浄して上清中の蛋白
を取り除けばよい。
As a method for immobilizing the biological substance on the carrier particles, a known immobilization method may be adopted. For example, it is preferable to bring the above-mentioned protein into contact with the carrier particles in an aqueous medium, and generally the mixture is allowed to stand after mixing, but it may be stirred or shaken to enhance the contact efficiency. After the contact, the protein in the supernatant may be removed by centrifugation and washing with an aqueous medium if necessary.

【0043】[0043]

【発明の効果】かくして得られる本発明の評価方法によ
り、正確かつ再現性よく免疫学的凝集反応用担体粒子の
凝集特性を評価でき、さらにはその凝集特性が免疫学的
凝集反応試薬の性能にきわめてよく反映する特徴を有す
る。特に沈降凝集を原理とするマイクロタイター法に用
いる沈降速度の大きい免疫学的凝集反応用担体粒子の凝
集特性を評価する方法として有用である。
According to the evaluation method of the present invention thus obtained, the agglutination characteristics of carrier particles for immunological agglutination reaction can be evaluated accurately and reproducibly, and further the agglutination characteristics affect the performance of immunological agglutination reagent. It has characteristics that reflect it very well. In particular, it is useful as a method for evaluating the agglutination characteristics of carrier particles for immunological agglutination reaction, which have a high sedimentation rate and are used in a microtiter method based on sedimentation agglomeration.

【0044】この理由は必ずしも明確ではないが、塩
凝集濃度に替えて担体粒子と凝集剤からなる混合液の凝
集電気伝導度を測定することに着目したこと、マイク
ロタイター法に実際に使用する反応容器つまりマイクロ
ウエル中で担体粒子の凝集特性を調べる方法を採用した
ことが、免疫学的凝集反応用担体粒子の凝集特性を従来
測定法に比べて、正確かつ再現性よく評価できることが
可能となった理由と考えられる。
Although the reason for this is not always clear, attention was paid to the measurement of the cohesive electrical conductivity of the mixed solution of the carrier particles and the coagulant in place of the salt coagulation concentration, and the reaction actually used in the microtiter method. Adopting a method that examines the agglutination characteristics of carrier particles in a container, i.e., a microwell, makes it possible to evaluate the agglutination characteristics of carrier particles for immunological agglutination reactions more accurately and with better reproducibility than conventional methods. It is considered that the reason is.

【0045】さらに本発明は、同時に多種の免疫学的凝
集反応用担体粒子の測定ができ、測定に供する量も極め
て微量でよいという簡便・安価の点でも優れた特徴があ
る。
Further, the present invention has an excellent feature in that it can measure various carrier particles for immunological agglutination reaction at the same time, and the amount to be used for the measurement can be extremely small, which is simple and inexpensive.

【0046】[0046]

【実施例】以下、実施例及び比較例を挙げて本発明を詳
細に説明するが、本発明はこれらの実施例に限定される
ものではない。
The present invention will be described in detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0047】実施例1 1)標準担体粒子を用いた凝集電気伝導度の測定 A.標準担体粒子分散液およびの凝集剤水溶液の調製 標準担体粒子として、マイクロタイター法用の担体粒子
として製造された有機無機複合粒子(以下、標準A:イ
ムノテイクルス HDP、株式会社トクヤマ製、平均粒
子径1.8μm、比重2.0)を用いた。この標準担体
粒子は市販のリウマチ因子測定試薬(商品名:イムノテ
イクルス RF)に使用されている担体粒子である。
Example 1 1) Measurement of Aggregate Electrical Conductivity Using Standard Carrier Particles A. Preparation of Standard Carrier Particle Dispersion and Flocculant Aqueous Solution As the standard carrier particles, organic-inorganic composite particles manufactured as carrier particles for the microtiter method (hereinafter, standard A: Immunotakes HDP, manufactured by Tokuyama Corporation, average particle The diameter was 1.8 μm and the specific gravity was 2.0). This standard carrier particle is a carrier particle used in a commercially available rheumatoid factor assay reagent (trade name: Immunotakes RF).

【0048】まず、標準担体粒子をミリポア社製超純水
装置ミリーQラボで得られた電気伝導度(25℃)が
0.03μS/cmの純水でよく洗浄する。上清の電気
伝導度が0.03μS/cm以下となるま遠心分離によ
る洗浄を繰り返し、最終的に標準担体粒子の濃度が5重
量%になるように、純水中に分散した標準担体粒子分散
液を調製した。
First, the standard carrier particles are thoroughly washed with pure water having an electric conductivity (25 ° C.) of 0.03 μS / cm obtained by Millipore's ultrapure water device Milly Q Lab. Washing by centrifugation was repeated until the electric conductivity of the supernatant became 0.03 μS / cm or less, and the standard carrier particles were dispersed in pure water so that the final concentration of the standard carrier particles was 5% by weight. A liquid was prepared.

【0049】一方、凝集剤には電解質物質である塩化ナ
トリウム(和光純薬株式会社、特級試薬)を使用した。
10gの塩化ナトリウムを40gの純水(電気伝導度は
0.03μS/cm)に溶解した20重量%の凝集剤水
溶液を調製した。
On the other hand, sodium chloride (Wako Pure Chemical Industries, Ltd. special grade reagent) which is an electrolyte substance was used as the coagulant.
A 20% by weight coagulant aqueous solution was prepared by dissolving 10 g of sodium chloride in 40 g of pure water (electrical conductivity: 0.03 μS / cm).

【0050】B.標準担体粒子と凝集剤との混合液の調
製、および電気伝導度の測定 攪拌子が入ったポリプロピレン樹脂製の100MLのビ
−カ−に、0.03μS/cmの純水を28.5g加え
た。このビーカーに上記の5重量%の標準担体粒子分散
液を1.5g添加し、1,000RPMで攪拌する。次
いで、180μgの凝集剤水溶液をピペットでビーカー
の中に添加し、素早く1,000RPMで攪拌して標準
担体粒子と凝集剤との混合液を調製したのち、電気伝導
度測定機器(東亜電波工業株式会社製CM−11P)を
使用して、得られた混合液の電気伝導度を測定した。こ
のときの電気伝導度は、2μS/cmであった。また、
標準担体粒子と凝集剤の濃度はそれぞれ0.25重量%
と0.12重量%となり、標準担体粒子と凝集剤の混合
割合は2.1倍である。
B. Preparation of mixed solution of standard carrier particles and aggregating agent, and measurement of electric conductivity 28.5 g of 0.03 µS / cm pure water was added to a polypropylene resin 100 mL beaker containing a stirrer. . To this beaker, 1.5 g of the above 5 wt% standard carrier particle dispersion is added and stirred at 1,000 RPM. Next, 180 μg of the flocculant aqueous solution was added to the beaker with a pipette and rapidly stirred at 1,000 RPM to prepare a mixed liquid of standard carrier particles and the flocculant, and then an electric conductivity measuring device (Toa Denpa Kogyo Co., Ltd. The electric conductivity of the obtained mixed liquid was measured using a company CM-11P). The electric conductivity at this time was 2 μS / cm. Also,
The concentration of standard carrier particles and coagulant is 0.25 wt% each
And 0.12% by weight, and the mixing ratio of the standard carrier particles and the aggregating agent is 2.1 times.

【0051】C.混合液の沈降凝集反応 あらかじめ96穴V型マイクロタイタープレート(株式
会社トクヤマ製イムノテイクルスプレートV)を準備し
た。このマイクロウエルの中に、B.で得られた混合液
をマイクロピペットで50μL滴下した。再現性を検討
するために3穴のマイクロウエルで同時に試行した。水
の蒸発を防ぐために96穴V型マイクロプレートに蓋を
し、沈降凝集が正しく行われる様に水平な場所に静置し
た。さらに凝集剤水溶液を所定の電気伝導度になるまで
継ぎ足していくこれら一連のB.とC.の操作を12回
繰り返した。この時の累積重量の凝集剤水溶液に対応し
た凝集剤の重量濃度と電気伝導度の値を表1に示した。
C. Sedimentation and aggregation reaction of the mixed solution A 96-well V-type microtiter plate (Immunotails plate V manufactured by Tokuyama Corporation) was prepared in advance. In this microwell, B. 50 μL of the mixed solution obtained in step 1 was dropped with a micropipette. Simultaneous trials were performed in 3 wells to study reproducibility. The 96-well V-type microplate was covered with a lid to prevent water evaporation, and allowed to stand in a horizontal place so that sedimentation and aggregation were correctly performed. Furthermore, a series of these B. And C. This operation was repeated 12 times. Table 1 shows the weight concentration and electric conductivity of the coagulant corresponding to the cumulative weight of the coagulant aqueous solution.

【0052】D.凝集電気伝導度の決定 C.の操作で得た96穴V型マイクロタイタープレート
の管底凝集像を40分間経過してから肉眼で観察し、凝
集像(全体に広がった像で、スポットが形成されない)
と非凝集像(スポットが形成されている)を判定した。
管底凝集像が凝集像を示したマイクロウエルに対応する
混合液の最低の電気伝導度を、標準担体粒子の凝集電気
伝導度とした。ただし、再現性を調べる目的の3穴のマ
イクロウエル間で差が生じた場合は、2穴が凝集像であ
れば凝集、また2穴が非凝集像であれば非凝集と結論し
た。
D. Determination of cohesive electrical conductivity C. The tube bottom agglutination image of the 96-well V-type microtiter plate obtained by the above operation was observed with the naked eye after 40 minutes, and the agglutination image (a spread image without spots)
And a non-aggregation image (a spot is formed) was determined.
The lowest electric conductivity of the mixed solution corresponding to the microwell in which the tube bottom agglutination image showed an agglutination image was taken as the agglomeration electric conductivity of the standard carrier particles. However, when there was a difference between the three wells for the purpose of examining reproducibility, it was concluded that agglutination was imaged in two wells and non-aggregation was observed in two wells.

【0053】すなわち、表1に示した電気伝導度と管底
凝集像結果の関係から、標準担体粒子の凝集電気伝導度
を8μS/cmと決定した。
That is, from the relationship between the electric conductivity shown in Table 1 and the tube bottom agglomeration image result, the agglomeration electric conductivity of the standard carrier particles was determined to be 8 μS / cm.

【0054】[0054]

【表1】 [Table 1]

【0055】2)各種担体粒子の凝集電気伝導度の測定
および凝集特性の評価 各種の測定対象とする6種類の担体粒子(HDP1、
2、3、4、5、および6:株式会社トクヤマ製有機無
機複合粒子、平均粒子径は1.8μm、比重は2g/c
m、それぞれ表面処理が異なる)の凝集電気伝導度を、
上記のA.、B.、C.、およびD.の操作に準拠して
決定した。その結果を表2に示した。これらの担体粒子
を用いて免疫学的凝集反応試薬を作製し性能試験をおこ
なった。
2) Measurement of Aggregation Electric Conductivity of Various Carrier Particles and Evaluation of Aggregation Properties Six kinds of carrier particles (HDP1,
2, 3, 4, 5, and 6: organic-inorganic composite particles manufactured by Tokuyama Corporation, average particle diameter is 1.8 μm, specific gravity is 2 g / c
m, each surface treatment is different)
The above A. , B. , C.I. , And D. It was decided according to the operation of. The results are shown in Table 2. An immunological agglutination reagent was prepared using these carrier particles and a performance test was conducted.

【0056】E.免疫学的凝集反応試薬の作製と性能試
験 ヒトCohn FII画分(シグマ社製)を1/150M
の燐酸生理食塩水緩衝液(pH=7.2、以下PBSと
略す)に10mg/mlとなるよう溶解し、60℃で1
0分間加熱することにより熱変性γ−グロブリンを得
た。この熱変性γ−グロブリンをPBSで50倍希釈し
た抗原溶液1mlと、担体粒子をPBSで1重量%に希
釈した担体溶液1mlとを室温で攪拌しながら2時間感
作した。次いで遠心分離して上清の未結合の熱変性γ−
グロブリンを除き、0.5重量%の家兎血清を含む2m
lのPBSに再分散してリウマチ因子検出の免疫学的凝
集反応試薬を作製した。
E. Preparation and performance test of immunological agglutination reagent Human Cohn FII fraction (manufactured by Sigma) is 1/150 M
Dissolve in 10mg / ml of phosphate buffered saline (pH = 7.2, hereinafter abbreviated as PBS) to give 1 mg at 60 ° C.
Heat-denatured γ-globulin was obtained by heating for 0 minutes. This heat-denatured γ-globulin was diluted 50 times with PBS, 1 ml of an antigen solution, and 1 ml of a carrier solution, in which carrier particles were diluted with PBS to 1% by weight, were sensitized for 2 hours while stirring at room temperature. The supernatant is then centrifuged and the unbound heat-denatured γ-of the supernatant is
2m containing 0.5% by weight rabbit serum, excluding globulin
An immunological agglutination reagent for rheumatoid factor detection was prepared by redispersion in 1 PBS.

【0057】かくして得られた免疫学的凝集反応試薬の
性能を調べるために以下の操作を行った。リウマチ患者
のプール血清をPBSで20倍希釈したものを原液とし
てリウマチ患者血清希釈液を調製する。抗原抗体反応を
行わせるために96穴V型マイクロタイタープレート
(株式会社トクヤマ製イムノテイクルスプレートV)を
用意し、リウマチ患者血清希釈液を各マイクロウエルに
25μl滴下した。それに作製した免疫学的凝集反応試
薬を25μl添加し、5分間振とうした後室温に静置し
た。抗原抗体反応に基づく管底凝集像を肉眼で観察し免
疫学的凝集反応試薬の性能を調べた。その結果を表2に
示した。
The following operations were carried out to examine the performance of the immunological agglutination reagent thus obtained. A rheumatoid patient serum diluted solution is prepared using a stock solution obtained by diluting a pooled serum of a rheumatic patient 20 times with PBS. A 96-well V-type microtiter plate (Immunotails plate V manufactured by Tokuyama Corp.) was prepared for carrying out the antigen-antibody reaction, and 25 μl of the rheumatism patient serum diluted solution was added dropwise to each microwell. 25 μl of the immunological agglutination reagent thus prepared was added thereto, and the mixture was shaken for 5 minutes and allowed to stand at room temperature. The tube bottom agglutination image based on the antigen-antibody reaction was visually observed to examine the performance of the immunological agglutination reagent. The results are shown in Table 2.

【0058】[0058]

【表2】 [Table 2]

【0059】比較例1 実施例1の標準A、HDP1およびHDP6の3種の担
体粒子について、凝集電気伝導度ではなく、管底凝集像
が凝集となる最低の混合液中の凝集剤濃度を調べた。操
作は電気伝導度を測定しない以外は実施例1と同様の操
作である。
Comparative Example 1 With respect to the three types of carrier particles of the standard A, HDP1 and HDP6 of Example 1, the concentration of the aggregating agent in the lowest mixed liquid at which the tube bottom agglomeration image gives an agglutination is examined, not the agglomeration electric conductivity. It was The operation is the same as in Example 1 except that the electric conductivity is not measured.

【0060】結果を表3に示した。これより凝集剤濃度
では再現性がなく担体粒子の凝集特性を評価できないこ
とがわかった。
The results are shown in Table 3. From this, it was found that the concentration of the aggregating agent was not reproducible and the aggregating property of the carrier particles could not be evaluated.

【0061】[0061]

【表3】 [Table 3]

【0062】[0062]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 免疫学的凝集反応用担体粒子の凝集特性
を評価する方法において、予め標準担体粒子と凝集剤と
を種々の割合で水に分散混合し、得られた各混合液の電
気伝導度を測定すると共に各混合液の凝集状態をマイク
ロタイター法で判定することにより、凝集が起こる最低
電気伝導度(凝集電気伝導度)を求め、次いで新たな担
体粒子を用いて同じくその凝集電気伝導度を調べ、両凝
集電気伝導度を比較することにより新たな担体粒子の凝
集特性を判定することを特徴とする前記免疫学的凝集反
応用担体粒子の凝集特性評価方法。
1. A method for evaluating the aggregating property of carrier particles for immunological agglutination reaction, wherein standard carrier particles and aggregating agent are previously dispersed and mixed in water at various ratios, and the electrical conductivity of each resulting mixed liquid is obtained. The minimum electrical conductivity at which aggregation occurs (aggregation electrical conductivity) is determined by measuring the degree of aggregation and determining the aggregation state of each mixed solution by the microtiter method, and then using the new carrier particles, the aggregation electrical conductivity is similarly measured. The method for evaluating the agglutination property of carrier particles for immunological agglutination reaction, characterized in that the agglutination property of new carrier particles is judged by comparing the two agglutination electric conductivities.
JP20959494A 1994-09-02 1994-09-02 Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction Pending JPH0875746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20959494A JPH0875746A (en) 1994-09-02 1994-09-02 Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20959494A JPH0875746A (en) 1994-09-02 1994-09-02 Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction

Publications (1)

Publication Number Publication Date
JPH0875746A true JPH0875746A (en) 1996-03-22

Family

ID=16575415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20959494A Pending JPH0875746A (en) 1994-09-02 1994-09-02 Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction

Country Status (1)

Country Link
JP (1) JPH0875746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503699A (en) * 1999-06-25 2003-01-28 ナノスフェアー インコーポレイテッド Oligonucleotide-Attached Nanoparticles and Methods of Use
WO2010101213A1 (en) * 2009-03-05 2010-09-10 デンカ生研株式会社 Test reagent, and method for measuring analyte in test sample using same
JP2013113627A (en) * 2011-11-25 2013-06-10 Ulvac Seimaku Kk Solution component sensor, method for manufacturing the same, solution component analysis system, solution component analysis kit, and method for analyzing analyte solution

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003503699A (en) * 1999-06-25 2003-01-28 ナノスフェアー インコーポレイテッド Oligonucleotide-Attached Nanoparticles and Methods of Use
WO2010101213A1 (en) * 2009-03-05 2010-09-10 デンカ生研株式会社 Test reagent, and method for measuring analyte in test sample using same
CN102341707A (en) * 2009-03-05 2012-02-01 电化生研株式会社 Test reagent, and method for measuring analyte in test sample using same
JP5706315B2 (en) * 2009-03-05 2015-04-22 デンカ生研株式会社 TEST REAGENT AND METHOD OF MEASURING TEST OBJECT IN TEST SAMPLE USING SAME
US9250235B2 (en) 2009-03-05 2016-02-02 Denka Seiken Co., Ltd. Test reagent, and method for measuring analyte in test sample using same
JP2013113627A (en) * 2011-11-25 2013-06-10 Ulvac Seimaku Kk Solution component sensor, method for manufacturing the same, solution component analysis system, solution component analysis kit, and method for analyzing analyte solution

Similar Documents

Publication Publication Date Title
AU724443B2 (en) Assays using reference microparticles
EP2146207A1 (en) Measurement reagent, immune nephelometry using the same, and analyte analysis tool
JPH03502246A (en) Coagulation methods for the analysis of substances
US7338813B2 (en) Carrier particle latex for assay reagent and assay reagent
Gella et al. Latex agglutination procedures in immunodiagnosis
JPS6365369A (en) Method for measuring antigen-antibody reaction
JPH0875746A (en) Evaluation of agglomeration characteristics of carrier particles for immunological agglomeration reaction
US20070000311A1 (en) Method for measuring substance having affinity
JP3220546B2 (en) Method for measuring antigen or antibody in the presence of immune complex
US20070298519A1 (en) Method of Measuring Affinity Substances
JP3618797B2 (en) Immunoassay
JP3328058B2 (en) Method for producing immunodiagnostic drug
JP3954900B2 (en) Immunoassay reagent and immunoassay
JP2006329958A (en) Carrier particle for measuring reagent and measuring reagent
JP2006329959A (en) Carrier particle for measuring reagent and measuring reagent
JP2005241363A (en) Carrier particles for measuring reagent and measuring reagent
JP3692055B2 (en) Determination method of antigen-antibody reaction
JPH08105897A (en) Immunity measurement method
JP2005300355A (en) Carrier particles for measuring reagent and measuring reagent
JPH10282101A (en) Method and kit for measurement
JP2004212383A (en) Carrier particles for measurement reagent and the measurement reagent
JPH08278308A (en) Immunoassay method
JPS63292062A (en) Quantitative measurement method of serum protein in body fluid and reagent used for said method
JPH09304389A (en) Immunoassay reagent and immunoassay
JPH09101308A (en) Treponema pallidum antibody measuring method