JPS59208040A - Dispersion strengthened eutectic aluminum alloy - Google Patents

Dispersion strengthened eutectic aluminum alloy

Info

Publication number
JPS59208040A
JPS59208040A JP8467383A JP8467383A JPS59208040A JP S59208040 A JPS59208040 A JP S59208040A JP 8467383 A JP8467383 A JP 8467383A JP 8467383 A JP8467383 A JP 8467383A JP S59208040 A JPS59208040 A JP S59208040A
Authority
JP
Japan
Prior art keywords
fine particles
size
alloy
strengthening
dendrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8467383A
Other languages
Japanese (ja)
Other versions
JPH0471981B2 (en
Inventor
Masaaki Tokui
徳井 雅昭
Toshika Masaoka
正岡 利鹿
Atsushi Oota
厚 太田
Masahiro Taguchi
田口 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8467383A priority Critical patent/JPS59208040A/en
Publication of JPS59208040A publication Critical patent/JPS59208040A/en
Publication of JPH0471981B2 publication Critical patent/JPH0471981B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy having high wear resistance and strength by dispersing fine particles for strengthening to be dispersed in Al matrix into fine dendrite as well and specifying the size of the dendrite as well as the grain size, intergranular distance and volume ratio of said fine particles. CONSTITUTION:The size of dendrite is more preferable as the size is smaller and is made <=20mu. Fine particles for strengthening are the oxide, carbide, nitride, etc. of Si, etc. which exist stably in Al matrix at a high temp. without growing to or forming coarse grains, and the grain size thereof is made <=0.5mu in order to obtain substantial dispersion strengthening. The intergranular distance of the fine grains is more preferable as the size is smaller and is made <=30mu. The larger the amt. of the fine particles, the better but if the amt. exceeds 20% by weight, substantial dispersion strenghtening cannot be obtained and mixed dispersion is difficult and therefore 20% is the upper limit. The fine particles for strengthening are uniformly dispersed in a molten eutectic Al alloy and thereafter pressurized and cooled quickly to satisfy the above-mentioned conditions, by which the intended alloy is obtd.

Description

【発明の詳細な説明】 本発明は分散強化共晶アルミニウム合金に関する。[Detailed description of the invention] The present invention relates to dispersion strengthened eutectic aluminum alloys.

金属マトリックス中に高温でも安定な硬く微細な粒子を
分散、複合させた分散強化型合金は公知である。例えば
、アルミニウムをマトリックスとするものではS A 
P (S 1ntered A IuminumP o
wder )がよく知られている。この分散型強化合金
は分散微粒子の量が多いほど、また粒子間隔が狭いほど
強度が向上する。
Dispersion-strengthened alloys in which hard, fine particles that are stable even at high temperatures are dispersed and composited in a metal matrix are known. For example, if the matrix is aluminum, S A
P
wder) is well known. The strength of this dispersion-strengthened alloy improves as the amount of dispersed fine particles increases and as the particle spacing becomes narrower.

一方、共晶アルミニウム合金(以下、共晶八1合金と略
す)には、デンドライトが晶出し、このデンドライトの
形状、大きさが合金の強度に影響することがよく知られ
ている。
On the other hand, it is well known that dendrites are crystallized in eutectic aluminum alloys (hereinafter abbreviated as eutectic 81 alloys), and the shape and size of these dendrites affect the strength of the alloy.

しかしながら、従来の分散強化型合金は一般に強化用の
微粒子の粒径が大きく、十分な強度、耐摩耗性を得るに
は至っていない。
However, in conventional dispersion-strengthened alloys, the particle size of reinforcing particles is generally large, and sufficient strength and wear resistance have not been achieved.

特に、共晶八1合金を強化用の微粒子を分散させること
により強化する場合には、微粒子はデンドライトとアル
ミニウムマトリックスの界面に集まり、デンドライトの
中には入っていかなかったため十分な強度を得ることは
困難であった。
In particular, when the eutectic 81 alloy is strengthened by dispersing reinforcing fine particles, the fine particles gather at the interface between the dendrite and the aluminum matrix and do not enter the dendrite, making it difficult to obtain sufficient strength. was difficult.

本発明は上記従来技術の不具合を解消するためになされ
たもので、強度および靭性に優れた分散強化共晶AI合
金を提供することを目的とする。
The present invention was made in order to solve the problems of the above-mentioned prior art, and an object of the present invention is to provide a dispersion-strengthened eutectic AI alloy having excellent strength and toughness.

かかる目的は、本発明の共晶^1合金によれば、アルミ
ニウムのマトリックス中に強化用の微粒子を分散させ、
この微粒子を微細なデンドライトの中にも分散させるこ
とによって達成される。ここで、デンドライトの大きさ
は20μ以下とし、強化用の微粒子はその粒径が0.5
μ以下、粒子間距離30μ以下、体積比20%以下とす
る必要がある。このように、デンドライトが微細化され
ると共に、強化用の微粒子が微細であり、かつデンドラ
イトにも分散していることにより強化用微粒子の分散強
化が有効に機能し、転移の移動が妨げられることによっ
て共晶A1合金の強度が大幅に向」二する。
According to the eutectic^1 alloy of the present invention, this purpose is achieved by dispersing reinforcing fine particles in the aluminum matrix,
This is achieved by dispersing these fine particles even into fine dendrites. Here, the size of the dendrite is 20μ or less, and the particle size of the reinforcing fine particles is 0.5μ.
μ or less, interparticle distance 30 μ or less, and volume ratio 20% or less. In this way, the dendrites are made finer, and because the reinforcing fine particles are fine and also dispersed in the dendrites, the dispersion strengthening of the reinforcing fine particles functions effectively, and the movement of dislocations is prevented. This significantly increases the strength of the eutectic A1 alloy.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明において、デンドライトの大きさは小さい程強度
、靭性が向上するため望ましく、少くとも20μ以下で
あることが必要である。また、18μ以下であれば更に
望ましい。
In the present invention, the smaller the size of the dendrite, the better the strength and toughness, so it is preferable that the size of the dendrite is at least 20 μm or less. Further, it is more desirable that the thickness be 18μ or less.

強化用の微粒子としては、高温でアルミニウムマトリッ
クス中に安定に存在し、強度低下の原因となる成長や粗
大化が生じないことが必要である。
The reinforcing fine particles must stably exist in the aluminum matrix at high temperatures and do not grow or coarsen, which would cause a decrease in strength.

この条件を備える微粒子としては酸化物、炭化物、窒化
物等がある。具体的には、5iC1”T’ i C1Z
rC,WC,NbC,、TiNXBN、St、N4、A
l2O,Mg0s Sin、、ZrO2、F e 20
 s、CuO1黒鉛等を使用することができる。
Fine particles meeting this condition include oxides, carbides, nitrides, and the like. Specifically, 5iC1"T' i C1Z
rC, WC, NbC,, TiNXBN, St, N4, A
l2O, Mg0s Sin, ZrO2, Fe 20
s, CuO1 graphite, etc. can be used.

この微粒子の粒径は、十分な分散強化を得るためには0
.5μ以下であることが必要であり、0゜05μ以下で
あればより望ましい。
The particle size of these fine particles must be 0 to obtain sufficient dispersion strengthening.
.. It is necessary that it is 5 μ or less, and more preferably 0°05 μ or less.

微粒子の粒子間距離は小さい程よい。本発明においては
30μ以下であることが必要であり、5μ以下であれば
更に望ましい。
The smaller the distance between the fine particles, the better. In the present invention, it is necessary that the thickness be 30μ or less, and more preferably 5μ or less.

こCi微粒子の量は多い程よい。体積比で20%までは
1−分な分散強化が期待出来るが、20%を越えるJ二
それ以上の効果は期待できず、またアルミ溶湯1jJに
分散させることが困蝋になるため、上限を20>ごとし
た。
The larger the amount of the Ci fine particles, the better. Up to 20% by volume, dispersion strengthening can be expected, but if the volume ratio exceeds 20%, no further effect can be expected, and it is difficult to disperse into 1jJ of molten aluminum, so the upper limit is set. 20>.

不発I!l″の分散強化共晶A1合金を製造するには、
強化用微粒子を共晶A1合金溶湯に攪拌等の適宜手段に
より均一に分散させた後、加圧し、かつ急冷することが
必要である。ここで、冷却速度とじては25〜b 次に、本発明の実施例を図面を参考にして説明する。
Misfire I! To produce a dispersion-strengthened eutectic A1 alloy of
It is necessary to uniformly disperse the reinforcing fine particles into the eutectic A1 alloy molten metal by appropriate means such as stirring, then pressurize and rapidly cool the molten metal. Here, the cooling rate is 25 to b.Next, embodiments of the present invention will be described with reference to the drawings.

実施例 本実施例においては、マトリックス合金としてアルミニ
ウム合金(JIS  AC8A、;重量%でCu:0.
9%、3i:11.5%、Mg : 1゜2%、Fe:
0.2%、Nj:1.3%、Al:残部)を用い分散強
化用の微粒子として平均粒径0.05μのSiCを使用
してコンロッドを製造した。このとき、鋳造法として、
溶湯の急冷が可能で、溶湯への圧力伝達のよい竪型加圧
鋳造法を用いた。
Example In this example, an aluminum alloy (JIS AC8A, Cu: 0.0% by weight) was used as the matrix alloy.
9%, 3i: 11.5%, Mg: 1°2%, Fe:
0.2%, Nj: 1.3%, Al: balance) and using SiC with an average particle size of 0.05 μm as fine particles for dispersion strengthening to manufacture a connecting rod. At this time, as a casting method,
We used a vertical pressure casting method that allows rapid cooling of the molten metal and good pressure transmission to the molten metal.

最初に、アルミニウム合金原料を溶解炉に投入して′/
8解させた後、溶湯を攪拌しつつSiC微粒子を不活性
ガスをキャリヤとして溶湯中に混入した。このようにし
て調整した溶湯を、図面に示す竪型加圧鋳造装置に注ぎ
コンロッドを製造した。
First, the aluminum alloy raw material is put into the melting furnace.
After the molten metal was dissolved, SiC fine particles were mixed into the molten metal using an inert gas as a carrier while stirring the molten metal. The molten metal thus prepared was poured into a vertical pressure casting apparatus shown in the drawing to manufacture a connecting rod.

図は竪型加圧鋳造装置の要部断面図であり、■は」二型
、2は下型である。この上型1と下型2によりロッカー
アーム形状の製品キャビティ3が郭定される。型1.2
の中央にはプランジャスリーブ4が設けられており、こ
のプランジャスリーブ4には加圧プランジャ5とカウン
タプランジャ6が摺動自在に嵌挿されている。この両方
のプランジャ5.6の先端には、それぞれ加圧チップ7
とカウンタチップ8が装着されている。また、製品キャ
ビティ3とプランジャスリーブ4はゲート9を介して連
通されている。なお、10は注湯口であり、11は押出
しピンである。
The figure is a cross-sectional view of the main part of a vertical pressure casting apparatus, where ``■'' is the second mold, and 2 is the lower mold. The upper die 1 and the lower die 2 define a rocker arm-shaped product cavity 3. Type 1.2
A plunger sleeve 4 is provided at the center of the plunger sleeve 4, and a pressure plunger 5 and a counter plunger 6 are slidably fitted into the plunger sleeve 4. Each plunger 5.6 has a pressure tip 7 at its tip.
and a counter chip 8 are attached. Further, the product cavity 3 and the plunger sleeve 4 are communicated via a gate 9. In addition, 10 is a pouring hole, and 11 is an extrusion pin.

次に作動を説明する。Next, the operation will be explained.

型締めを行い、カウンタチップ8によりゲート9を閉じ
、加圧プランジャ5を引き上げて図に示す状態とした。
The mold was clamped, the gate 9 was closed by the counter chip 8, and the pressure plunger 5 was pulled up to the state shown in the figure.

次いで、注湯口からSiC微粒子を混入したアルミニウ
ム合金溶湯12を注いだ。
Next, molten aluminum alloy 12 mixed with SiC fine particles was poured from the pouring spout.

その後、カウンタチップ8を除々に下げ、静かに溶湯1
2を製品キャビティ3に導入した。製品キャビティ内に
1/4〜1/3熔湯が導入されたとき、加圧プランジャ
5により溶湯12を加圧し、急速に溶湯12を製品キャ
ビティ3に充填した。
After that, gradually lower the counter chip 8 and gently lower the molten metal 1.
2 was introduced into the product cavity 3. When 1/4 to 1/3 of the molten metal was introduced into the product cavity, the pressure plunger 5 pressurized the molten metal 12 to rapidly fill the product cavity 3 with the molten metal 12.

凝固後、型を開き、押出しビンにより製品を取り出した
After solidification, the mold was opened and the product was removed using an extrusion bottle.

このロッカーアームの製造をSiCの分散量をかえて行
った。
This rocker arm was manufactured by changing the amount of SiC dispersed.

この結果ロッカーアームの表面部近傍のデンドライトの
大きさは2μ、中心部で12μ程度であった。また、5
iC0)ff6粒子がデンドライト内に混在しているの
が確かめられた。
As a result, the size of the dendrite near the surface of the rocker arm was 2μ, and the size at the center was about 12μ. Also, 5
It was confirmed that iC0) ff6 particles were mixed in the dendrite.

本実施例において、強度を開べるために、引張り試験(
JIS  d号試験片)を行った。この結果を第1表に
示す。
In this example, a tensile test (
JIS No. d test piece) was conducted. The results are shown in Table 1.

第1表 第1表より、本発明の分散強化共晶^1合金は強度が著
しく向上しているのが判る。
From Table 1, it can be seen that the strength of the dispersion-strengthened eutectic^1 alloy of the present invention is significantly improved.

また本発明の分散強化共晶^1合金は靭性も向上してい
ることが確認された。
It was also confirmed that the dispersion-strengthened eutectic^1 alloy of the present invention also has improved toughness.

以上述べた如く、本発明に係る分散強化共晶へ1合金は
、従来の共晶A1合金に比べ強度が格段に向上するため
に、軽量で強度を要求される部品、例えば、ホイール、
ナックルアーム等の自動車部品に適用することができる
As described above, the dispersion-strengthened eutectic A1 alloy according to the present invention has significantly improved strength compared to the conventional eutectic A1 alloy, so it can be used in parts that require light weight and strength, such as wheels.
It can be applied to automobile parts such as knuckle arms.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に使用した竪型加圧鋳造装置の要
部断面図である。 1−−−一上型 2−−一−−下型 3−−−−一部品キャビティ 4−−−−−プランジャスリーブ 5−−−−−加圧プランジャ 6−−−−−−カウンタプランジヤ 7−−−加圧チップ 8−−−一カウンタチノプ L−−−ケート 10−−−一注湯口 11− 押出しピン 12−一−−一熔湯
The drawing is a sectional view of a main part of a vertical pressure casting apparatus used in an embodiment of the present invention. 1 --- Upper mold 2 --- Lower mold 3 --- Part cavity 4 --- Plunger sleeve 5 --- Pressure plunger 6 --- Counter plunger 7 --- Pressure tip 8 --- One counter tip L --- Kate 10 --- One pouring spout 11 -- Ejection pin 12 -- One -- One molten metal

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムのマトリックス中に強化用の微粒子
が分散され、かつデンドライトが晶出している分散強化
共晶アルミニウム合金であって、前記微粒子は粒径0.
5μ以下で粒子間距離30μ以下であり、体積比で20
%以下分散されており、かつデンドライトの大きさは2
0μ以下であり、このデンドライトの中にも前記微粒子
が分散していることを特徴とする分散強化共晶アルミニ
ウム合金。
(1) A dispersion-strengthened eutectic aluminum alloy in which reinforcing fine particles are dispersed in an aluminum matrix and dendrites are crystallized, the fine particles having a particle size of 0.
The distance between particles is 30μ or less, and the volume ratio is 20μ or less.
% or less, and the dendrite size is 2.
A dispersion-strengthened eutectic aluminum alloy having a particle diameter of 0μ or less, wherein the fine particles are dispersed even in the dendrites.
JP8467383A 1983-05-13 1983-05-13 Dispersion strengthened eutectic aluminum alloy Granted JPS59208040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8467383A JPS59208040A (en) 1983-05-13 1983-05-13 Dispersion strengthened eutectic aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8467383A JPS59208040A (en) 1983-05-13 1983-05-13 Dispersion strengthened eutectic aluminum alloy

Publications (2)

Publication Number Publication Date
JPS59208040A true JPS59208040A (en) 1984-11-26
JPH0471981B2 JPH0471981B2 (en) 1992-11-17

Family

ID=13837222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8467383A Granted JPS59208040A (en) 1983-05-13 1983-05-13 Dispersion strengthened eutectic aluminum alloy

Country Status (1)

Country Link
JP (1) JPS59208040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147401A (en) * 1988-11-29 1990-06-06 Asahi Tec Corp Vehicle wheel made of aluminum alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320244A (en) * 1976-08-05 1978-02-24 Mitsubishi Electric Corp Automatic transmission for light vehicle
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320244A (en) * 1976-08-05 1978-02-24 Mitsubishi Electric Corp Automatic transmission for light vehicle
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147401A (en) * 1988-11-29 1990-06-06 Asahi Tec Corp Vehicle wheel made of aluminum alloy

Also Published As

Publication number Publication date
JPH0471981B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
EP0575796B1 (en) Method for production of thixotropic magnesium alloys
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
CA1282222C (en) Method of forming a fine-grained equiaxed casting
EP0567284B1 (en) Aluminium-base metal matrix composite
CN108203780B (en) A kind of liquid forging high-strength abrasion-proof aluminum alloy and preparation method thereof
JPS59219444A (en) Dispersion strengthened aluminum alloy
US5402843A (en) Stepped alloying in the production of cast composite materials
US6086688A (en) Cast metal-matrix composite material and its use
US5925199A (en) Process for producing a thixocast semi-molten material
JPS59208040A (en) Dispersion strengthened eutectic aluminum alloy
JPS59208039A (en) Dispersion strengthened hypereutectic aluminum silicon alloy
JPS59208042A (en) Dispersion strengthened magnesium alloy
US4709461A (en) Method of forming dense ingots having a fine equiaxed grain structure
US5513688A (en) Method for the production of dispersion strengthened metal matrix composites
JPH062057A (en) Al base composite material
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
US3492119A (en) Filament reinforced metals
JP2000073129A (en) Production of metal-ceramic composite material for casting
JP2832660B2 (en) Casting method of Al-based alloy casting
EP0539417B1 (en) Cast composite materials
JPS59208033A (en) Production of dispersion strengthened light alloy
JPS61119351A (en) Production of cast iron material having fine spheroidal graphite
JP2767531B2 (en) Casting method
JPH0826419B2 (en) Method for manufacturing dispersion-reinforced composite material
JPH05195130A (en) Aluminum alloy containing fine crystallized matter