JPS59208039A - Dispersion strengthened hypereutectic aluminum silicon alloy - Google Patents

Dispersion strengthened hypereutectic aluminum silicon alloy

Info

Publication number
JPS59208039A
JPS59208039A JP8467283A JP8467283A JPS59208039A JP S59208039 A JPS59208039 A JP S59208039A JP 8467283 A JP8467283 A JP 8467283A JP 8467283 A JP8467283 A JP 8467283A JP S59208039 A JPS59208039 A JP S59208039A
Authority
JP
Japan
Prior art keywords
fine particles
alloy
strengthening
size
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8467283A
Other languages
Japanese (ja)
Other versions
JPH0471980B2 (en
Inventor
Masaaki Tokui
徳井 雅昭
Toshika Masaoka
正岡 利鹿
Atsushi Oota
厚 太田
Masahiro Taguchi
田口 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8467283A priority Critical patent/JPS59208039A/en
Publication of JPS59208039A publication Critical patent/JPS59208039A/en
Publication of JPH0471980B2 publication Critical patent/JPH0471980B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an alloy having high wear resistance and strength by dispersing fine particles for strengthening to be dispersed in Al matrix into primary crystal Si as well and specifying the size of the primary crystal Si as well as the grain size, intergranular distance and volume ratio of said fine particles. CONSTITUTION:The size of primary crystal Si is more preferable as said size is smaller and is made <=20mu. Fine particles for strengthening are the oxide, carbide, nitride, etc. of Si, etc. which exist stably in Al matrix at a high temp. without growing to or forming coarse grains and the grain size thereof is made <=0.5mu in order to obtain substantial dispersion strengthening. The intergranular distance of the fine particles is more preferable as said distance is smaller and is made about <=30mu. The larger the amt. of the fine particles, the better, but if the amt. exceeds 20% by volume, substantial dispersion strengthening cannot be expected and mixed dispersion is difficult and therefore 20% is the upper limit. The fine particles for strengthening are uniformly dispersed in a molten hypereutectic Al-Si alloy in order to satisfy the above-mentioned conditions and thereafter the molten alloy is quickly cooled and is pressurized, by which the intended alloy is obtd.

Description

【発明の詳細な説明】 本発明は分散強化型過共晶アルミ−シリコン系合金に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dispersion-strengthened hypereutectic aluminum-silicon alloy.

金属マトリックス中に高温でも安定な硬く微細な粒子を
分散、複合させた分散強化型合金は公知である。例えば
、アルミニウムをマトリックスとするものではS A 
P (S 1ntered  A IuminumP 
oiyder )がよく知られている。この分散型強化
合金は分散微粒子の量が多いほど、また粒子間隔が狭い
ほど強度が向上する。
Dispersion-strengthened alloys in which hard, fine particles that are stable even at high temperatures are dispersed and composited in a metal matrix are known. For example, if the matrix is aluminum, S A
P (S 1intered A IuminumP
oiyder) is well known. The strength of this dispersion-strengthened alloy improves as the amount of dispersed fine particles increases and as the particle spacing becomes narrower.

一方、過共晶アルミ−シリコン系合金(以下、過共晶A
l−3i系合金と略す)は、初晶シリコン(以下、初晶
St系合金と略す)により強度、耐摩耗性を向上できる
ことがよく知られている。
On the other hand, hypereutectic aluminum-silicon alloy (hereinafter referred to as hypereutectic A
It is well known that primary crystal silicon (hereinafter abbreviated as primary St alloy) can improve strength and wear resistance.

しかしながら、従来の分散強化型合金は一般に強化用の
微粒子の粒径が大きく、十分な強度、耐摩耗性を得るに
は至っていない。また、過共晶Al−3i系合金の初晶
Siも大径のものがほとんどで、十分な耐摩耗性、強度
が得られていない。
However, in conventional dispersion-strengthened alloys, the particle size of reinforcing particles is generally large, and sufficient strength and wear resistance have not been achieved. In addition, most of the primary Si crystals in hypereutectic Al-3i alloys have large diameters, and sufficient wear resistance and strength are not obtained.

特に、過共晶Al −St系合金を強化用の微粒子を分
散させることにより強化する場合には、微粒子は初晶S
iとアルミニウムマトリックスの界面に分散され、初晶
Siの中に□は入っていなかったため十分な強度および
耐久性を得ることは困難であった。
In particular, when a hypereutectic Al-St alloy is strengthened by dispersing reinforcing fine particles, the fine particles are primary S
It was difficult to obtain sufficient strength and durability because □ was dispersed at the interface between i and the aluminum matrix and □ was not included in the primary Si.

本発明は上記従来技術の不具合を解消するためになされ
たもので、耐摩耗性および強度に優れた分散強化型過共
晶Al −Si系合金を提供することを目1均とする。
The present invention has been made to solve the above-mentioned problems of the prior art, and its primary purpose is to provide a dispersion-strengthened hypereutectic Al--Si alloy having excellent wear resistance and strength.

かかる目的は、本発明の過共晶Al −Si系合金によ
れば、アルミニウムのマトリックス中に強化用の微粒子
を分散させ、この微粒子を微細な初晶Siの中にも分散
させることによって達成される。ここで、初晶Stの大
きさは20μ以下とし、強化用の微粒子はその粒径が0
.5μ以下、粒子間距離30μ以下、体積比20%以下
とする必要がある。このよ・うに、初晶Siが微細化さ
れると共に、強化用の微粒子が微細とされ、かつ初晶S
i内にも分散していることにより、初晶Siによる強化
と強化用微粒子の分散強化が有効に機能し、転移の移動
が妨げられることによって過共晶Al−3t系合金の強
度、耐摩耗性が大幅に向上する。
According to the hypereutectic Al-Si alloy of the present invention, this object is achieved by dispersing reinforcing fine particles in the aluminum matrix and also dispersing these fine particles in the fine primary Si crystals. Ru. Here, the size of the primary crystal St is 20μ or less, and the reinforcing fine particles have a particle size of 0.
.. It is necessary to set the particle size to 5μ or less, the interparticle distance to 30μ or less, and the volume ratio to 20% or less. In this way, primary crystal Si is made finer, reinforcing fine particles are made finer, and primary crystal Si is made finer.
By being dispersed within the i, the strengthening by the primary Si and the dispersion strengthening of the reinforcing fine particles function effectively, and the movement of dislocations is hindered, thereby improving the strength and wear resistance of the hypereutectic Al-3t alloy. performance is greatly improved.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明において、初晶Siの大きさは小さい程望ましく
、20μ以下であることが望ましい。また、18μ以下
であれば更に望ましい。
In the present invention, the smaller the size of primary Si is, the more desirable it is, and it is desirable that it is 20 μm or less. Further, it is more desirable that the thickness be 18μ or less.

強化用の微粒子としては、高温でアルミニウムマトリッ
クス中に安定に存在し、強度低下の原因となる成長や粗
大化が生じないことが必要である。
The reinforcing fine particles must stably exist in the aluminum matrix at high temperatures and do not grow or coarsen, which would cause a decrease in strength.

この条件を備える微粒子としては酸化物、炭化物、窒化
物等がある。具体的には、SiC,TiC2ZrC−W
ClNbCl”r+ N−BN−Six Na、A12
01、MgO,,5i02、ZrO2、Fe 20.、
CuO1黒鉛等を使用することができる。
Fine particles meeting this condition include oxides, carbides, nitrides, and the like. Specifically, SiC, TiC2ZrC-W
ClNbCl"r+ N-BN-Six Na, A12
01, MgO, 5i02, ZrO2, Fe 20. ,
CuO1 graphite or the like can be used.

この微粒子の粒径は、十分な分散強化を得るためには0
.5μ以下であることが必要であり、0゜05μ以下で
あればよりに望ましい。
The particle size of these fine particles must be 0 to obtain sufficient dispersion strengthening.
.. It is necessary that it is 5μ or less, and more preferably 0°05μ or less.

微粒子の粒子間距離は小さい程よい。本発明においては
30μ以下であることが必要であり、10μ以下であれ
ば更に望ましい。
The smaller the distance between the fine particles, the better. In the present invention, it is necessary that the thickness be 30μ or less, and more preferably 10μ or less.

この微粒子の量は多い程よい。体積比で20%までは十
分な分散強化が期待できるが、20%を越えるとそれ以
上の効果は期待できず、またアルミ熔湯中に20%以上
混合分散させることは難しいので、上限を20%とした
The larger the amount of these fine particles, the better. Sufficient dispersion strengthening can be expected up to 20% in volume ratio, but no further effect can be expected when the volume ratio exceeds 20%, and it is difficult to mix and disperse more than 20% in molten aluminum, so the upper limit is set at 20%. %.

本発明の分散強化型過共晶Al −Si系合金を製造す
るには、強化用微粒子を過共晶Al −St系合金熔溶
湯撹拌等の適宜手段により均一に分散させた後、急冷か
つ加圧することが必要である。
In order to produce the dispersion-strengthened hypereutectic Al-Si alloy of the present invention, reinforcing fine particles are uniformly dispersed in a molten hypereutectic Al-St alloy by appropriate means such as stirring, and then rapidly cooled and heated. It is necessary to press the

ここで、冷却速度としては25〜b が望ましい。Here, the cooling rate is 25~b is desirable.

次に、本発明の実施例を図面を参考にして説明する。Next, embodiments of the present invention will be described with reference to the drawings.

実施例 本実施例においては、マトリックス合金としてハイパー
シルミン(重量%でCu:1.5%、Si:18.0%
、Mg:1.0%、Cr:0.4%、Ni:]、88%
A1:残部)を用い、分散強化用の微粒子として平均粒
径0.05μのSiCを使用してロッカーアームを製造
した。このとき、鋳造法として、溶湯の急冷が可能で、
溶湯への圧力伝達のよい竪型加圧鋳造法を用いた。
Example In this example, hypersilumin (Cu: 1.5%, Si: 18.0% in weight%) was used as the matrix alloy.
, Mg: 1.0%, Cr: 0.4%, Ni: ], 88%
A1: Remaining part) was used to manufacture a rocker arm using SiC having an average particle size of 0.05 μm as fine particles for dispersion reinforcement. At this time, the casting method allows rapid cooling of the molten metal,
A vertical pressure casting method was used, which allows for good pressure transmission to the molten metal.

最初に、ハイパーシルミン原料を溶解炉に投入して溶融
させた後、溶湯を攪拌しつつSi微粒子を不活性ガスを
キャリヤとして溶湯中に混入した。
First, the Hyper Silumin raw material was put into a melting furnace and melted, and then Si fine particles were mixed into the molten metal using an inert gas as a carrier while stirring the molten metal.

このようにして調整した溶湯を、図面に示す竪型加圧鋳
造装置に注ぎロッカ−アームを製造した。
The molten metal thus prepared was poured into a vertical pressure casting apparatus shown in the drawing to manufacture a rocker arm.

図は、竪型加圧鋳造装置の要部断面図であり、■は上型
、2は下型である。この上型1と下型2によりロッカー
アーム形状の製品キャビティ3が郭定される。型l、2
の中央にはプランジャスリーブ4が設けられており、こ
のプランジャスリーブ4内には加圧プランジャ5とカウ
ンタプランジャ6が慴動自在に嵌挿されている。この両
方のプランジャ5.6の先端には、それぞれ加圧チップ
7とカウンタチップ8が装着されている。また、製品キ
ャビティ3とプランジャスリーブ4はゲート9を介して
連通されている。なお、10は注湯口であり、11は押
出しピンである。
The figure is a sectional view of a main part of a vertical pressure casting apparatus, where ■ is an upper die and 2 is a lower die. The upper die 1 and the lower die 2 define a rocker arm-shaped product cavity 3. Type l, 2
A plunger sleeve 4 is provided at the center of the plunger sleeve 4, and a pressure plunger 5 and a counter plunger 6 are slidably inserted into the plunger sleeve 4. A pressure tip 7 and a counter tip 8 are attached to the tips of both plungers 5.6, respectively. Further, the product cavity 3 and the plunger sleeve 4 are communicated via a gate 9. In addition, 10 is a pouring hole, and 11 is an extrusion pin.

次に作動を説明する。Next, the operation will be explained.

型締めを行い、カウンタチップ8によりゲート9を閉じ
、加圧プランジャ5を引き上げて図に示す状態とした。
The mold was clamped, the gate 9 was closed by the counter chip 8, and the pressure plunger 5 was pulled up to the state shown in the figure.

次いで、注湯口IOからSjC微粒子を混入したハイパ
ーシルミン溶湯12を注いだ。その後、カウンタチップ
8を除々に下げ、静かに溶湯12を製品キャビティ3に
導入した。製品キャヒティ内に1/4〜1/3熔湯が導
入されたとき、加圧プランジャ5により溶湯12を加圧
し、急速に溶湯12を製品キャビティ3に充填した。凝
固後、型を開き、押出しビン11により製品を取り出し
た。
Next, Hyper Silumin molten metal 12 mixed with SjC fine particles was poured from the pouring port IO. Thereafter, the counter chip 8 was gradually lowered, and the molten metal 12 was gently introduced into the product cavity 3. When 1/4 to 1/3 of the molten metal was introduced into the product cavity, the pressure plunger 5 pressurized the molten metal 12 to rapidly fill the product cavity 3 with the molten metal 12. After solidification, the mold was opened and the product was taken out using the extrusion bottle 11.

このロッカーアームの製造をSiCの分散量をかえて行
った。
This rocker arm was manufactured by changing the amount of SiC dispersed.

この結果、ロッカーアームの裏面部近傍の初晶Siの大
きさは3μ、中心部で12μ程度であった。また、Si
C微粒子が初晶Si内に混在しているのが確かめられた
As a result, the size of primary Si near the back surface of the rocker arm was 3 μm, and about 12 μm at the center. Also, Si
It was confirmed that C fine particles were mixed in the primary Si.

本実施例において、強度、耐摩耗性を調べるために、引
張り試験と回転摩耗試験を行った。この結果を第1表に
示す。
In this example, a tensile test and a rotational abrasion test were conducted to examine strength and abrasion resistance. The results are shown in Table 1.

第1表 第1表より、本発明の分散強化型過共晶Al−3i系合
金は強度、耐摩耗性が著しく向上しているのが判る。
From Table 1, it can be seen that the dispersion-strengthened hypereutectic Al-3i alloy of the present invention has significantly improved strength and wear resistance.

以上述べた如く、本発明の分散強化型過共晶A1−3i
系合金は、従来の過共晶Al −St系合金に比べ強度
、耐摩耗性が格段に向上するため、軽量で強度、耐摩耗
性を要求される部品、例えばロッカーアーム、プーリ、
歯車、カムシャフト、シフトフォーク等の自動車部品に
適用することができる。
As described above, the dispersion-strengthened hypereutectic A1-3i of the present invention
This alloy has significantly improved strength and wear resistance compared to conventional hypereutectic Al-St alloys, so it can be used for parts that require lightweight strength and wear resistance, such as rocker arms, pulleys, etc.
It can be applied to automobile parts such as gears, camshafts, and shift forks.

【図面の簡単な説明】[Brief explanation of drawings]

図面ば本発明の実施例に使用した竪型加圧鋳造装置の要
部断面図である。 1−一一一上型 2−−m−下型 3−−−一製品キャビティ 4−−−−プランジャスリーブ 5−−一加圧プランジャ 6−−−−一カウンタプランジャ 7−−−一加圧チツブ 8−−−−一カウンタチソブ 9−−−−ゲート 10−−−一注湯口 11−押出しピン 12−−−−熔湯
The drawing is a sectional view of a main part of a vertical pressure casting apparatus used in an embodiment of the present invention. 1-11 Upper mold 2--M lower mold 3--Product cavity 4--Plunger sleeve 5--Press plunger 6--Counter plunger 7--Press Tip 8----One counter tip 9----Gate 10---One pouring spout 11-Eject pin 12----Molten metal

Claims (1)

【特許請求の範囲】[Claims] (1)アルミニウムのマトリックス中に強化用の微粒子
が分散され、かつ初晶シリコンが微細である分散強化型
過共晶アルミ−シリコン系合金であって、 前記微粒子は粒径0.5μ以下で粒子間距離30μ以下
であり、体積比で20%以下分散されており、かつ初晶
シリコンの大きさは20μ以下であり、この初晶シリコ
ンの中にも前記微粒子が分散していることを特徴とする
分散強化型過共晶アルミ−シリコン系合金。
(1) A dispersion-strengthened hypereutectic aluminum-silicon alloy in which reinforcing fine particles are dispersed in an aluminum matrix and primary crystal silicon is fine, the fine particles having a particle size of 0.5μ or less. The particle distance is 30μ or less, the volume ratio is 20% or less dispersed, and the size of the primary silicon is 20μ or less, and the fine particles are also dispersed in the primary silicon. A dispersion-strengthened hypereutectic aluminum-silicon alloy.
JP8467283A 1983-05-13 1983-05-13 Dispersion strengthened hypereutectic aluminum silicon alloy Granted JPS59208039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8467283A JPS59208039A (en) 1983-05-13 1983-05-13 Dispersion strengthened hypereutectic aluminum silicon alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8467283A JPS59208039A (en) 1983-05-13 1983-05-13 Dispersion strengthened hypereutectic aluminum silicon alloy

Publications (2)

Publication Number Publication Date
JPS59208039A true JPS59208039A (en) 1984-11-26
JPH0471980B2 JPH0471980B2 (en) 1992-11-17

Family

ID=13837198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8467283A Granted JPS59208039A (en) 1983-05-13 1983-05-13 Dispersion strengthened hypereutectic aluminum silicon alloy

Country Status (1)

Country Link
JP (1) JPS59208039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290244A (en) * 2013-07-08 2013-09-11 重庆理工大学 Simple method for manufacturing deformation aluminum alloy spherical crystals
CN104593628A (en) * 2015-01-08 2015-05-06 上海交通大学 Preparation method of aluminum based composite material with low hot-crack tendency
CN112746200A (en) * 2020-12-29 2021-05-04 中南大学 Dispersion strengthening high-silicon aluminum alloy and preparation method thereof
CN115961184A (en) * 2023-03-16 2023-04-14 湖南星盛新材料科技有限公司 Nanoparticle reinforced aluminum alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320244A (en) * 1976-08-05 1978-02-24 Mitsubishi Electric Corp Automatic transmission for light vehicle
JPS548325A (en) * 1977-06-20 1979-01-22 Kobe Steel Ltd Device for operating car clutch
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine
JPS5727161A (en) * 1980-05-30 1982-02-13 Oreal Cap for dispenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320244A (en) * 1976-08-05 1978-02-24 Mitsubishi Electric Corp Automatic transmission for light vehicle
JPS548325A (en) * 1977-06-20 1979-01-22 Kobe Steel Ltd Device for operating car clutch
JPS56116851A (en) * 1980-02-21 1981-09-12 Nissan Motor Co Ltd Cylinder liner material for internal combustion engine
JPS5727161A (en) * 1980-05-30 1982-02-13 Oreal Cap for dispenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103290244A (en) * 2013-07-08 2013-09-11 重庆理工大学 Simple method for manufacturing deformation aluminum alloy spherical crystals
CN104593628A (en) * 2015-01-08 2015-05-06 上海交通大学 Preparation method of aluminum based composite material with low hot-crack tendency
CN112746200A (en) * 2020-12-29 2021-05-04 中南大学 Dispersion strengthening high-silicon aluminum alloy and preparation method thereof
CN115961184A (en) * 2023-03-16 2023-04-14 湖南星盛新材料科技有限公司 Nanoparticle reinforced aluminum alloy and preparation method thereof
CN115961184B (en) * 2023-03-16 2023-05-16 湖南星盛新材料科技有限公司 Nanoparticle reinforced aluminum alloy and preparation method thereof

Also Published As

Publication number Publication date
JPH0471980B2 (en) 1992-11-17

Similar Documents

Publication Publication Date Title
CN110157935A (en) Cast Al-Si alloy Al-V-B fining agent, preparation method and application
US5791397A (en) Processes for producing Mg-based composite materials
CN102869799A (en) Aluminium die casting alloy
CN110423915B (en) Preparation method of aluminum-based composite material
Gui M.-C. et al. Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process
JPS59219444A (en) Dispersion strengthened aluminum alloy
US6086688A (en) Cast metal-matrix composite material and its use
US5402843A (en) Stepped alloying in the production of cast composite materials
JPS59208039A (en) Dispersion strengthened hypereutectic aluminum silicon alloy
JPS59208040A (en) Dispersion strengthened eutectic aluminum alloy
US5513688A (en) Method for the production of dispersion strengthened metal matrix composites
JPS59208042A (en) Dispersion strengthened magnesium alloy
JPH062057A (en) Al base composite material
EP3650560A1 (en) Oxidation-resistant heat-resistant alloy and preparing method
JP2000073129A (en) Production of metal-ceramic composite material for casting
JPH08165529A (en) Production of aluminum alloy die casting excellent in airtightness
JPH1150172A (en) Carbide-dispersion strengthened copper alloy material
JP2832660B2 (en) Casting method of Al-based alloy casting
CA2086520C (en) Cast composite materials
JP4269761B2 (en) Method of forming semi-solid metal with excellent wear resistance
JPH05214477A (en) Composite material and its manufacture
JPH0826419B2 (en) Method for manufacturing dispersion-reinforced composite material
JPS59208033A (en) Production of dispersion strengthened light alloy
JP3290615B2 (en) Free-cutting Fe-based members
JP2002146451A (en) Metal-ceramics composite material for casting, and method for producing the same