JPS59207897A - Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide - Google Patents
Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphideInfo
- Publication number
- JPS59207897A JPS59207897A JP8150583A JP8150583A JPS59207897A JP S59207897 A JPS59207897 A JP S59207897A JP 8150583 A JP8150583 A JP 8150583A JP 8150583 A JP8150583 A JP 8150583A JP S59207897 A JPS59207897 A JP S59207897A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- layer
- temperature
- gap
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、りん化ひ化ガリウム単結晶薄膜の気相エピタ
キンヤル成長方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase epitaxial growth of gallium phosphide arsenide single crystal thin films.
りん化ひ化ガリウム、GaAs1−xPx (0(x≦
/)はひ化ガリウム(GaAs)及びりん化ガリウム(
GaP )の混晶であり、混晶率(本明細書においては
上記Xの値をいう。)を変化させろことによって、禁制
帯幅をGaA sの値(/’l’乙eV)とGaPの直
(,2,、、?eV)との間で変化させろことかできる
ので可視領域(赤〜緑)におけろ任意の発光色の発光ダ
イオードの製造に用いられる。Gallium arsenide phosphide, GaAs1-xPx (0(x≦
/) is gallium arsenide (GaAs) and gallium phosphide (
By changing the mixed crystal ratio (herein referred to as the above-mentioned value of Since it can be varied between 2 and 2 eV, it can be used to manufacture light emitting diodes of any color in the visible range (red to green).
りん化ひ化ガリウムは通當cap単結晶基板上に、混晶
イ6の変化が容易な気相エピタキシャル成長方法により
単結晶薄膜として形成されろ。Gallium arsenide phosphide is formed as a single-crystal thin film on a cap single-crystal substrate by a vapor phase epitaxial growth method that allows easy change of the mixed crystal.
この場合、りん化ひ化ガリウム単結晶層膜は、GaP基
板とりん化ひ化ガリウム単結晶層の間の格子定数の差て
起因する各種の結晶欠陥の発生を軽減するために、基板
表面にGaP層を形成し、玩いて、混晶率が/から所望
の値(例えば、橙色発光ダイオードの場合θ6夕、黄色
発光ダイオードの場合o、 g s )まで連続的に変
化する混晶率変化層?形成し、さらに混晶率が所望の値
で一定である混晶率一定層を形成するという多層構造を
有するように形成されろ。なお、pn接合は混晶率一定
層中に形成されろ。In this case, the gallium arsenide phosphide single crystal layer film is applied to the substrate surface in order to reduce the occurrence of various crystal defects caused by the difference in lattice constant between the GaP substrate and the gallium arsenide phosphide single crystal layer. A mixed crystal ratio changing layer in which a GaP layer is formed and the mixed crystal ratio changes continuously from / to a desired value (for example, θ6 for an orange light-emitting diode, o, gs for a yellow light-emitting diode). ? It is formed to have a multilayer structure in which a layer having a constant mixed crystal content is formed in which the mixed crystal percentage is constant at a desired value. Note that the pn junction should be formed in a layer with a constant mixed crystal content.
りん化ひ化ガリウム学結晶薄膜は上述の如く構造がM雑
であるので、結晶性が劣化しやすく特に局部的な異常成
長に起因するピラミッド、ヒルロックなどと称される表
面の凹凸を生じ、これが発光ダイオード等半導体累子の
収率の低下の大きな原因となっていた。As mentioned above, the gallium phosphide arsenide scientific crystal thin film has a rough structure, so its crystallinity is easily deteriorated, resulting in surface irregularities called pyramids and hillocks caused by localized abnormal growth. This was a major cause of a decrease in the yield of semiconductor components such as light emitting diodes.
かかる問題を解決するために、従来から基板温度を高温
(900C以上)とする方法、高温でGaP一層の一部
の成長を行ない、続いて単結晶薄膜の成長を中断して基
板温度を低下さぜ、一定温朋に達した後、成長を再開す
る方法等が提案されていた。In order to solve this problem, conventional methods include raising the substrate temperature to a high temperature (900C or higher), growing a portion of a single layer of GaP at high temperature, and then stopping the growth of the single crystal thin film and lowering the substrate temperature. There have been proposals for methods of restarting growth after reaching a certain temperature.
しかしながら、これらの方法では、表面状態の改善が十
分でなく、また生産性の低下を招く等の問題があった。However, these methods have problems such as insufficient improvement of the surface condition and a decrease in productivity.
本発明者等は、かかる問題点を解決することを目的とし
て鋭意研元を重ねた結果本発明に到達したものであって
、本発明の上記の目的は、GaP単結晶基板上にGaP
単結晶層、りん化ひ化ガリウム混晶単変化層及びりん化
ひ化ガリウム混晶¥一定層を上記順序に形成してなろり
ん化ひ化ガリウム単結晶7専膜の気相エピタキシャル成
長方法にお巨【、上記GaP単結晶層の気相エピタキシ
ャル成長に際して、上記単結晶基板温#を気相エピタキ
シャル成長開始後、少なくとも最初のS分間はgso℃
〜qgo℃の範囲の一定の温1iに保持し、続いてりん
化・ガリウム層の成長を継続しながら上記単結晶基板温
度をgoo℃〜900°Cの範囲の温度であって、上記
最初の単結晶基板;温度よりも低い一定の温度まで連続
的に降下させる方法により達せられる。The present inventors have arrived at the present invention as a result of intensive research aimed at solving such problems.
A single crystal layer, a gallium arsenide phosphide mixed crystal single-change layer, and a gallium arsenide phosphide mixed crystal constant layer are formed in the above order to form a vapor phase epitaxial growth method for a gallium arsenide phosphide single crystal 7 film. During the vapor phase epitaxial growth of the GaP single crystal layer, the temperature of the single crystal substrate is kept at gso°C for at least the first S minutes after the start of the vapor phase epitaxial growth.
The temperature of the single crystal substrate is maintained at a constant temperature 1i in the range of ~qgo°C, and then the temperature of the single crystal substrate is maintained at a constant temperature 1i in the range of goo°C ~ 900°C while continuing the growth of the phosphide/gallium layer. Achieved by a method of continuously lowering the temperature to a constant temperature lower than the single crystal substrate temperature.
GaP単結晶基板としては、(100)面又は(100
)面に対してλ〜10°の傾きを有する面が適轟である
。単結晶基板の上にGaP単結晶層を成長させろ。Ga
P単結晶層の厚みは通常は7〜108m 程度である。As a GaP single crystal substrate, (100) plane or (100
) A plane having an inclination of λ~10° with respect to the plane is suitable. Grow a GaP single crystal layer on a single crystal substrate. Ga
The thickness of the P single crystal layer is usually about 7 to 108 m.
上記GaP層は、成長開始後少なくとも最初の6−分間
は、gsθ℃〜qgo℃、好ましくばqooc−qgo
cの範囲の一定の温度に単結晶基板の温度馨保持する。The GaP layer is maintained at a temperature of gsθ°C to qgo°C, preferably qooc-qgo, for at least the first 6 minutes after the start of growth.
The temperature of the single crystal substrate is maintained at a constant temperature in the range c.
この場合基板の温匿父変化させるとGaP層の結晶性が
劣化するので好ましくない。In this case, changing the heating temperature of the substrate is not preferable because the crystallinity of the GaP layer deteriorates.
また、上記単結晶基板温度は、GaP層の気相エピタキ
シャル成長の開始後少なくとも最初のS分間、好ましく
は5〜O・分向上記温度に保持するのが好ましい。S分
間未満では、本発明の効果は発揮されない。捷だ、上記
保持時間はS分間以上であれば特に制限はないが生産性
等の面から、約20分間以下が好ましい。基板温度はq
gocy超えるとGaP層の成長速1yが小さく、gs
oc未満では結晶性が劣化しともに好ましくない。Further, the temperature of the single crystal substrate is preferably maintained at the above temperature for at least the first S minutes, preferably 5 to 0 minutes, after the start of the vapor phase epitaxial growth of the GaP layer. If the time is less than S minutes, the effects of the present invention will not be exhibited. The holding time is not particularly limited as long as it is S minutes or more, but from the viewpoint of productivity etc., it is preferably about 20 minutes or less. The substrate temperature is q
If the growth rate 1y of the GaP layer exceeds gs
If it is less than oc, the crystallinity deteriorates and is not preferable.
続いて、GaP層の成長を継続しながら、基板る。Subsequently, the substrate is grown while continuing to grow the GaP layer.
単結晶基板の温度が、gooc−qoocの範囲の温度
であって、上記最初の温度より低い温度に達した後、必
要に応じてGaP単結晶層が所定の厚みになるまで上記
所定の温度でGaP)Ojを成長させろ。After the temperature of the single crystal substrate reaches a temperature in the gooc-qooc range and lower than the above-mentioned initial temperature, if necessary, the GaP single-crystal layer is heated at the above-mentioned predetermined temperature until it reaches a predetermined thickness. GaP) Grow Oj.
GBp 層の成長に用いられろガス組成としてはGa
HCL PH3H2系が好ましいが、Ga−PH3H2
系、Ga (CH3)3 PH3H2系でもよい。The gas composition used for the growth of the GBp layer is Ga.
HCL PH3H2 system is preferred, but Ga-PH3H2
A Ga (CH3)3 PH3H2 system may be used.
この場合、基板温度がg ooc未満では成長したGa
PJffjの結晶性が劣化し、qoocを超えろと成長
速度が低下するので好ましくない。また、単結晶基板の
温度を、最初高温に保持して、低成長速度であっても、
結晶性の良好なGaP層を形成し、その後、より低温度
に保持してより力Y
高い成長速度を得ることによって、生産性・低GaP単
結晶層の成長の終了後、公知の方法により混晶率Xが/
から所定の値まで変化するりん化O・化ガリウム混晶率
変化層を70〜50μm程度気相成長させ、続いて混晶
率が上記所定の1直で一定であるりん化ひ化ガリウム混
晶率一定層を、20〜100μm 程度成長させろ。上
記一定J・系の混晶率は0 (x≦/の範囲であり、好
ましくはO5≦X≦/の範囲の一定の値に選択されろ。In this case, the grown Ga
This is not preferable since the crystallinity of PJffj deteriorates and the growth rate decreases when the qooc is exceeded. In addition, even if the temperature of the single crystal substrate is initially maintained at a high temperature and the growth rate is low,
By forming a GaP layer with good crystallinity, and then maintaining it at a lower temperature to obtain a higher growth rate, after the growth of the low-productivity GaP single crystal layer is completed, it is mixed by a known method. The crystallinity X is /
A gallium arsenide phosphide mixed crystal whose mixed crystal ratio is constant at the predetermined value is then grown in a vapor phase to a thickness of about 70 to 50 μm. Grow a constant rate layer of about 20 to 100 μm. The above-mentioned constant J-type mixed crystal ratio is selected to be a constant value in the range of 0 (x≦/, preferably in the range of O5≦X≦/).
上記一定層にはpn接合が形成され、また上記一定層を
形成するりん化ひ化ガリウムが間接遷移型である場合(
θダS≦X≦7)は、アイソエレクトロニックトラップ
として窒素がドープされろ。In the case where a pn junction is formed in the above-mentioned constant layer, and the gallium arsenide phosphide forming the above-mentioned constant layer is an indirect transition type (
θdaS≦X≦7) is doped with nitrogen as an isoelectronic trap.
りん化ひ化ガリウム層の成長に用いられるガス組成は、
Ga−HCl−PH3−AsH3−H2系が好寸しく、
他にG a P Cl3 A s Cl3 H2系、G
a (CH3)3 PH3AsH3系等も用いられろ。The gas composition used to grow the gallium arsenide phosphide layer is:
The Ga-HCl-PH3-AsH3-H2 system is suitable;
In addition, G a P Cl3 A s Cl3 H2 system, G
a (CH3)3 PH3AsH3 system etc. may also be used.
本発明方法によると、得られたりん化ひ化ガリウム単結
晶薄膜の表面には局部的な異常成長に伴なう、突起物等
が観察されず、生産性も低下しない。また、該単結晶薄
膜を用いて得られた発光ダイオードの輝度も高〈産業上
の利用価値は犬である。According to the method of the present invention, no protrusions or the like due to local abnormal growth are observed on the surface of the obtained gallium phosphide arsenide single crystal thin film, and productivity does not decrease. Moreover, the brightness of the light emitting diode obtained using the single crystal thin film is also high (the industrial value is high).
本発明方法を実施例に基づいてさらに具体的に説明する
。The method of the present invention will be explained in more detail based on Examples.
実施例1
本発明方法知従い黄色(尖頭発光波長約!、−g g
OX±2 o’X )発光ダイオード用G’aA 80
.l5P0.85単結晶薄膜をGaP単結晶基板上に以
下の如くして形成した。Example 1 According to the method of the present invention, yellow color (approx. peak emission wavelength!, -g g
OX±2 o'X) G'aA 80 for light emitting diode
.. A 15P0.85 single crystal thin film was formed on a GaP single crystal substrate as follows.
まず、n型不純物として硫黄(S)がλ×1017原子
個/ crd添加され、結晶学的面方位が(10o)面
よりく/10〉方向に約乙°偏位した面を有するGaP
単結晶基板乞用意した。First, λ×1017 atoms/crd of sulfur (S) is added as an n-type impurity, and GaP has a crystallographic plane that is deviated from the (10o) plane by about 0° in the /10〉 direction.
A single crystal substrate was prepared.
GaP単結晶基板は、初め約360μmの厚さであった
が、有機溶媒による脱脂工程に引き続いた機械−化学的
研磨(Mechanical−Chemical Po
lish−ing ) 処理により、300μmの厚
さとなった。The GaP single crystal substrate was initially approximately 360 μm thick, but was subjected to a degreasing process using an organic solvent followed by mechanical-chemical polishing.
A thickness of 300 μm was obtained by the lish-ing process.
次に内径70rra、長さ1oocn’+の水平型石英
エピタキシャル・リアクター内の所定の場所ニそれぞれ
前記研磨済みGaP単結晶基板及び高純UCa入り石英
ボート乞セントした。エピタキシャル・リアクター内に
アルゴン(Ar)を導入し、空気を充分置換除去し、次
にギヤリーガスとしての超高測度水素ガス(H2> w
、毎分3o o o cc裏入し、Arの流れを止め昇
温工程に入った。Next, the polished GaP single crystal substrate and the quartz boat containing high-purity UCa were placed at predetermined locations in a horizontal quartz epitaxial reactor with an inner diameter of 70 rra and a length of 1 oocn'+. Argon (Ar) is introduced into the epitaxial reactor to sufficiently replace and remove air, and then ultra-high-intensity hydrogen gas (H2> w
, 3 o o o cc per minute was introduced, the flow of Ar was stopped, and the temperature raising process began.
前記Ga入り石英ポートセット領域並びにGaP単結晶
基板七ソト領域の温度がそれぞれg30℃及び930℃
に保持されていることを確認後、黄色発光ダイオード用
GaAso−+sPo、ss単結晶薄膜の気相成長を開
始した。The temperatures of the Ga-containing quartz port set region and the GaP single crystal substrate seven-layer region are 30°C and 930°C, respectively.
After confirming that the temperature was maintained, vapor phase growth of a GaAso-+sPo, ss single crystal thin film for a yellow light emitting diode was started.
気相成長開始時より、湿度/ Oppmに窒素ガスで希
釈したn型不純物である硫化水素(H2S)を毎分6
cc導入し、一方■族成分として高純度塩化水素ガス(
Hct )を毎分1.0cc導入し、Gaε
と反応させることによ5はソ100%QaCt・φ・生
成させ、他方、H2で希釈された湿度10%の燐化水素
(PH3)を毎分2A’ACC導入し、初めの70分間
は、成長温度(基板温度に相当)を930℃に保持しつ
つ、GaP単結晶基板上に第1のGaP単結晶層を形成
した。From the start of vapor phase growth, hydrogen sulfide (H2S), an n-type impurity, diluted with nitrogen gas to humidity/Oppm was added at a rate of 6/min.
cc was introduced, while high purity hydrogen chloride gas (
By introducing 1.0 cc of Hct) per minute and reacting with Gaε, 5 generates 100% QaCt φ. On the other hand, hydrogen phosphide (PH3) diluted with H2 and having a humidity of 10% is introduced every minute. 2A'ACC was introduced, and the first GaP single crystal layer was formed on the GaP single crystal substrate while maintaining the growth temperature (corresponding to the substrate temperature) at 930° C. for the first 70 minutes.
次の20分間は、各ガスの流量を変える事なく、成長温
度のみ930cからggocまで徐々にIS4下させつ
\、第2のGaP単結晶層を形成した。For the next 20 minutes, only the growth temperature was gradually lowered by IS4 from 930C to GGOC without changing the flow rate of each gas to form a second GaP single crystal layer.
次の60分間はζ成長温度をggoc一定に保持しつつ
、H2で希釈された濃度/θチの砒化水素(AsH3)
を毎分Occより3 A ccまで徐々に増加させなが
ら導入し、上記各ガス流と共に第3の層、すなわちりん
化ひ化ガリウム混晶率変化層(GaP−+GaAs>1
5P(6B5)を成長させた。For the next 60 minutes, the concentration of hydrogen arsenide (AsH3) diluted with H2/θ is maintained at a constant ζ growth temperature of ggoc.
is gradually increased from Occ to 3 Acc per minute, and together with each of the above gas flows, a third layer, that is, a gallium phosphide arsenide mixed crystal ratio changing layer (GaP-+GaAs>1
5P (6B5) was grown.
次の30分間は、各ガスの流量を変える事なく、即ち、
H2、■(2S、、HCt1PH3並びにA a H3
をそれぞれ毎分30−00 cc、4cc、乙Occ、
2AIIcc並びに3 b cc導入して第弘の層、す
なわちG ’A sO,+S Po、85単結晶層を成
長させた。For the next 30 minutes, without changing the flow rate of each gas, i.e.
H2, ■(2S,, HCt1PH3 and A a H3
30-00 cc, 4cc, and Occ per minute, respectively.
2AIIcc and 3bcc were introduced to grow the first layer, ie, G'A sO,+S Po, 85 single crystal layer.
次に最終の40分間は、第グのエピタキシャル層形成条
件に加え、新たに高純度NH,ガス乞毎分、2 q o
cc導入し、窒素(N) ?アイソ・エレクトロニッ
ク・トラップとしてドープした第5の層すなわち、Ga
A so、15 PO,85単結晶層(N濃度gx/
Q18r:)l−3)を成長させた。Next, for the final 40 minutes, in addition to the epitaxial layer formation conditions of G.
Introducing cc and nitrogen (N)? A fifth layer doped as an isoelectronic trap, namely Ga
A so, 15 PO, 85 single crystal layer (N concentration gx/
Q18r:)l-3) was grown.
取出し後のエピタキシャルウェハーの表面状展は極めて
良好で突起物その他の表面欠陥は見られなかった。The surface condition of the epitaxial wafer after being taken out was extremely good, and no protrusions or other surface defects were observed.
す、上の如くして得られたエピタキシャル多層r14>
に対し、各種物性測定並びに解析を実施した結果、第/
、第2、第3、第夕、第5の各エピタキシャル層の層厚
は、それぞ)z 2乙 μm1乙!μm17g、3μm
、10.2μm、/’gOμmで゛あ つブこ 。Epitaxial multilayer r14 obtained as above
As a result of various physical property measurements and analysis,
, the layer thicknesses of the second, third, third, and fifth epitaxial layers are respectively) z 2 μm 1 μm! μm17g, 3μm
, 10.2μm, /'gOμm.
又、n型キャリヤー鎮度は、第7、第λ、第3、第りの
エピタキシャルノ響領域で概ネ3 X / C16(′
7n−3、窒素が添加された第5のエピタキシャル層領
域でgOX 1015cm−3であった。In addition, the n-type carrier suppression is approximately N3X/C16('
7n-3, gOX 1015 cm-3 in the nitrogen-doped fifth epitaxial layer region.
?KVc上述の単、結晶に膜を有づ−ろエピタキシャル
・ウェハー(エピタキシャル層j厘と該Jiの基板との
複合体の呼称)を用い、黄色発光ダイオードを作成し、
輝度値(光出力)を実測した。? A yellow light-emitting diode was prepared using the above-mentioned monocrystalline epitaxial wafer (the name for the composite of the epitaxial layer and the substrate).
The brightness value (light output) was actually measured.
即し、6亥エビクキシヤル・ウェハーを、P型不純物と
1〜ての砒化亜鉛ZnAs2−2 !i m!7と共に
高純度石英アンプル中に真空封入し、温gq、;b。That is, a 6 yen erectile wafer is mixed with a P-type impurity and 1 to 100 g of zinc arsenide, ZnAs2-2! i m! 7 and vacuum sealed in a high purity quartz ampoule at temperature gq; b.
℃で不純物熱拡散を行った。得られた n接 −
合深さく・ま、表面より’A3μm であった。以上の
如くシて得られたエピタキシャル・ウェハーを、裏面(
基板)研磨工程、電り形成工程、ワイヤー・ホンディン
グエ、−Z hit一連のテバイス製作ラインに投入し
、黄色発光タイオード・テップを作成した。Impurity thermal diffusion was performed at °C. The resulting n-junction depth was 3 μm from the surface. The back side (
A yellow light emitting diode tip was created by putting it into a series of device production lines including the substrate polishing process, electrode forming process, wire honing process, and -Z hit.
仄t/ic 、ヨ発光ダイオード・チップ(チップ面積
寸法及びP/n接合面積寸法は、共に!00μzX s
o oμ貰角)K対し、直流電流密度、20A/ C
7dの電流を通電し、該チップにエポキシ樹脂コート無
しの条件下で、輝度値(光出力)を測定した。その結果
、尖頭発光波長5gg0A±/ 5 Aで、輝度値が/
l−300Ft、−L−3,300Ft、−L、平均s
/、xoFt−r、であった。t/ic, light emitting diode chip (chip area size and P/n junction area size are both !00μzXs
DC current density, 20A/C
A current of 7 d was applied, and the brightness value (light output) was measured under the condition that the chip was not coated with epoxy resin. As a result, at a peak emission wavelength of 5gg0A±/5A, the brightness value was /
l-300Ft, -L-3,300Ft, -L, average s
/, xoFt-r.
実施例ユ 実施例/で用いた装置と同一装置を使用し。Example The same equipment as used in Examples was used.
本発明に基づいた橙色発光ダイオード用Q & A、S
O,35P(lj15単結晶薄膜をGaP単結晶基板
上に形成した。Q & A, S for orange light emitting diode based on the present invention
An O,35P(lj15) single crystal thin film was formed on a GaP single crystal substrate.
即し、硫黄が、2//−×/′017原子個/dドープ
され、(100)面より〈/10〉方向に約5°偏位し
た、n型GaP単結晶基板上に実施例/と同様にしてイ
Vt暦、洗浄した。That is, Example/ I cleaned the Vt calendar in the same way.
寸ず、気相成長開始時より、濃度/ Oppmに窒素ガ
スで布釈されたH2Sビ毎分乙CC、キャリヤーガスと
してのH2を毎分3000CC,IlI族成分成分Ga
C1形成用てのHCtを毎分乙occ、V族成分として
一度70%のPH3を毎分/″′/3cc、7CtL
ソれエピタキシャル・リアクター内に導入しつつ、成長
温度(該基板温IVC相当) ’K qa。From the start of vapor phase growth, H2S gas was dispersed with nitrogen gas at a concentration/Oppm of 3000 CC per minute, and H2 as a carrier gas was added at 3000 CC per minute.
HCt for C1 formation is occ per minute, 70% PH3 as V group component is once per minute/'''/3cc, 7CtL.
While introducing it into the epitaxial reactor, the growth temperature (equivalent to the substrate temperature IVC) 'K qa.
℃に保って、70分間に亘り第1のG a P単結晶層
ケ形成した。The first GaP single crystal layer was formed over a period of 70 minutes while maintaining the temperature at .degree.
次の、2!i分間は、各ガスの流量’&2に保持しつつ
、即ち、I(2、H2S 、 I−ICt+PH3をそ
れぞれiy分、3000cc、Acc、乙Occ、/9
!;cc一定量導入しつつ、成長温度を930℃からg
s。Next, 2! For i minutes, while maintaining the flow rate of each gas at '&2, i.e., I(2, H2S, I-ICt+PH3, respectively, for iy minutes, 3000cc, Acc, Occ, /9
! ; While introducing a constant amount of cc, the growth temperature was changed from 930°C to g
s.
℃才で徐々に降下させつつ、第2のGaP単結晶層を形
成した。A second GaP single crystal layer was formed while gradually lowering the temperature at a temperature of .degree.
次の70分間は、成長温度をgso℃一定に保持し、更
に、H2、H2S、HCL並びにPH3を毎分3000
CC1乙cc、乙Occ並びに/93cc一定景知保
持しつつ、A s H3のみ毎分Occから10Scc
iで徐々に増加さすつつ、第3のりん化ひ化ガリウム
混晶率変化層(GaP −+ caAsO,35p0.
65 )を形成した。For the next 70 minutes, the growth temperature was kept constant at gso°C, and H2, H2S, HCL, and PH3 were added at a rate of 3000/min.
CC1 Occ, Otsu Occ and /93cc while maintaining a constant view, A s H3 only from Occ to 10Scc per minute
A third gallium arsenide phosphide mixed crystal ratio variable layer (GaP −+ caAsO, 35p0.
65) was formed.
次の30分間は、結晶成長温度をgsocに保って、■
(2、H,、S 、 HCl 、 PH3並びにA s
H3”;iそれぞれ毎分3000cc、6cc、乙O
CC,/93CC並びに/ 0 、S−cc一定量に保
持しつつ、渠グのQ a A S o、35 PO,6
5混晶率一定量を形成した。For the next 30 minutes, keep the crystal growth temperature at gsoc, and
(2, H,, S, HCl, PH3 and As
H3"; i 3000cc, 6cc, Otsu O, respectively
CC, /93CC and /0, while keeping S-cc constant, the Q a A So of the conduit, 35 PO,6
5. A constant amount of mixed crystals was formed.
次の75分間は、成長温j斐アg 、5−0 ’IC一
定に保付し、又H2,T(2S 、 J(Ct、 PH
3並びK ASH3’(、それぞれ毎分3000cc、
6cc、bOcc、/93cc並びに/θS CC一定
量に保持しつつ、新たにNH3’(< bt、分、25
θcc加え、第夕のG a A 80.75 PO,6
5混漫
黒率一定・(Nm1度l×7019鋸−3)。を形成し
た0
得うしたエピタキシャルウェハーの表面状態は凄めて良
好で突起物その他の表面欠陥は見られなかった。For the next 75 minutes, the growth temperature was kept constant at 5-0' IC, and H2,T(2S, J(Ct, PH
3-row K ASH3' (each 3000cc/min,
6cc, bOcc, /93cc and /θS While maintaining CC constant, newly add NH3'(< bt, min, 25
Added θcc, G a A 80.75 PO, 6
5 Constant black rate (Nm 1 degree l x 7019 saw-3). The surface condition of the epitaxial wafer obtained was very good, and no protrusions or other surface defects were observed.
以上の如くして形成されたかシ/、第ス、第3、第り並
びに第3各エピタキシヤル層の層厚は、それぞれ37μ
m、 3−、311m、 2 !r 2μm、90μm
、/!r、gμmであった。The thickness of each of the first, second, third, and third epitaxial layers formed as described above was 37 μm.
m, 3-, 311m, 2! r 2μm, 90μm
,/! r, gμm.
次に、エピタキシャルウニハル欠円い、芙施汰
例/に記述した方口に従い橙色発光ダイオードを作成し
、輝度11f乞英測した。Next, an orange light-emitting diode with an epitaxial unihull having a missing circle was fabricated according to the direction described in Fuseta Example, and the luminance was measured at 11f.
その結果、本実施例に於て何られた発光ダイオードチッ
プ(チップ面積寸法及びP/n接合面積寸法は、共i/
j j 00μmX500μm角)に対し、直流電流密
度10A/ciの電流を通電L、該チップにエポキシ樹
脂コート無しの条件下で、輝度値は、3000 Ft−
L〜3SOOFL−L、平均3300 Ft4.で゛あ
った。As a result, the light emitting diode chip (chip area size and P/n junction area size are both i/n) in this example.
j j 00 μm x 500 μm square), the brightness value is 3000 Ft-
L~3SOOFL-L, average 3300 Ft4. It was.
尚、尖頭発光波長は乙3θOX±20X であった。The peak emission wavelength was 3θOX±20X.
=547−=547-
Claims (1)
、りん化ひ化ガリウム混晶率変化層、及びりん化ひ化ガ
リウム混晶率一定層を上記順序に形成してなろりん化ひ
化ガリウム単結晶層flu ノ気’Iffエピタキ/ヤ
ル成長方法におし・て、上記りん化ガリウム単結晶層の
気相エピタキシャル成長に際して、上記単結晶基板温度
乞気相エビクキシャル成長開始後少な゛くとも最初のS
分間はgso℃〜9gO℃の範囲の一定の温度に保持し
、続いてりん化ガリウム層の成長を継続しながら上記単
結晶基板温度なgoo℃〜900℃の範囲の温度であっ
て、上記最初の単結晶基板温度よりも低い一定の温度ま
で連続的に降下させることを特徴とする方法。A gallium arsenide phosphide single crystal layer, a gallium arsenide phosphide mixed crystal ratio variable layer, and a gallium arsenide phosphide mixed crystal ratio constant layer are formed in the above order on a gallium phosphide single crystal substrate to produce gallium arsenide phosphide. In the vapor phase epitaxial growth method of the monocrystalline layer, when the gallium phosphide single crystal layer is vapor phase epitaxially grown, at least the initial S
The temperature of the single crystal substrate is maintained at a constant temperature in the range of gso°C to 900°C for a few minutes, and then the temperature of the single crystal substrate is maintained at a constant temperature in the range of goo°C to 900°C while continuing the growth of the gallium phosphide layer. A method characterized by continuously lowering the temperature to a constant temperature lower than the single crystal substrate temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8150583A JPS59207897A (en) | 1983-05-10 | 1983-05-10 | Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8150583A JPS59207897A (en) | 1983-05-10 | 1983-05-10 | Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59207897A true JPS59207897A (en) | 1984-11-26 |
Family
ID=13748212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8150583A Pending JPS59207897A (en) | 1983-05-10 | 1983-05-10 | Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59207897A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226918A (en) * | 1987-03-16 | 1988-09-21 | Shin Etsu Handotai Co Ltd | Epitaxial wafer of mixed crystal of gallium arsenide phosphide |
-
1983
- 1983-05-10 JP JP8150583A patent/JPS59207897A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63226918A (en) * | 1987-03-16 | 1988-09-21 | Shin Etsu Handotai Co Ltd | Epitaxial wafer of mixed crystal of gallium arsenide phosphide |
JPH0579163B2 (en) * | 1987-03-16 | 1993-11-01 | Shinetsu Handotai Kk |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Naniwae et al. | Growth of single crystal GaN substrate using hydride vapor phase epitaxy | |
JPS6115577B2 (en) | ||
US3984263A (en) | Method of producing defectless epitaxial layer of gallium | |
US4216484A (en) | Method of manufacturing electroluminescent compound semiconductor wafer | |
JPS581539B2 (en) | epitaxial wafer | |
JPS59207897A (en) | Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide | |
JPH0940490A (en) | Production of gallium nitride crystal | |
JP3146874B2 (en) | Light emitting diode | |
KR100210758B1 (en) | Epitaxial wafer and process for producing the same | |
JPS61106497A (en) | Method for growing epitaxial film of gallium phosphide and arsenide | |
JP2000049378A (en) | Nitride semiconductor for light emitting element and its manufacture | |
JP3251600B2 (en) | Organic metal growth method | |
JPS59174597A (en) | Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal | |
JP3097587B2 (en) | Epitaxial wafer for light emitting semiconductor device | |
JPS63103893A (en) | Production of 6h-sic substrate | |
JPS5843898B2 (en) | Vapor phase growth method for compound semiconductor single crystal thin films | |
JPH05335621A (en) | Gallium phosphide green light emitting diode | |
JPH01173764A (en) | Manufacture of light-emitting element | |
JPH0654758B2 (en) | Method for growing compound semiconductor single crystal film | |
JPS58115818A (en) | Growing method of silicon carbide epitaxial film | |
JPS59207896A (en) | Gaseous phase epitaxial growth of thin film of single crystal of inorganic compound | |
JPS6324683A (en) | Manufacture of light-emitting element | |
JPH0465036B2 (en) | ||
JPH03203316A (en) | Epitaxial wafer and manufacture thereof | |
JPS6012794B2 (en) | Method for producing electroluminescent material |