JPS59174597A - Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal - Google Patents

Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal

Info

Publication number
JPS59174597A
JPS59174597A JP4988483A JP4988483A JPS59174597A JP S59174597 A JPS59174597 A JP S59174597A JP 4988483 A JP4988483 A JP 4988483A JP 4988483 A JP4988483 A JP 4988483A JP S59174597 A JPS59174597 A JP S59174597A
Authority
JP
Japan
Prior art keywords
gallium
layer
mixed crystal
gallium phosphide
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4988483A
Other languages
Japanese (ja)
Inventor
Hisanori Fujita
尚徳 藤田
Masaaki Kanayama
金山 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Kasei Corp
Priority to JP4988483A priority Critical patent/JPS59174597A/en
Publication of JPS59174597A publication Critical patent/JPS59174597A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow a film of a gallium phosphoarsenide mixed crystal, free from surface defects by temporarily lowering the temp. of a substrate of a gallium phosphide single crystal and suspending the feed of a gallium component in a stage for growing a gallium phosphide layer on the substrate. CONSTITUTION:A gallium phosphide layer is grown on a substrate of a gallium phosphide single crystal kept at 850-980 deg.C, preferably about 900-940 deg.C by feeding a posphorus component and a gallium component, and only the feed of the gallium componnt is supended. At the same time, the temp. of the substrate is lowered to 800-900 deg.C, preferably 820-850 deg.C. After the temp. becomes constant, the gallium component is fed again to grow a gallium phosphide layer. A layer of a gallium phosphoarsenide mixed crystal having a changing mixing ratio is then grown while gradually increasing the feed of an arsenic component such as AsH2, and a layer of a gallium phosphoarsenide mixed crystal having a constant mixing ratio is grown. Thus, an epitaxial film of a gallium phosphoarsenid mixed crystal suitable for use in the manufacture of a red or green light emitting diode is grown without causing surface defects.

Description

【発明の詳細な説明】 本発明は橙色〜黄色の発光ダイオード(LED)の製造
に適したシん化ひ化ガリウム混晶エピタキシャル膜の気
相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for vapor phase growth of a gallium arsenide mixed crystal epitaxial film suitable for manufacturing orange to yellow light emitting diodes (LEDs).

りん化ひ化ガリウム混晶は、混晶率を変化させることに
よシ、禁止帯幅を変化できるので橙色から黄色に至るい
わゆる中間色の発光ダイオードの製造に用いることがで
きる。なお、本明細書においては、混晶率はGaP の
含有率、すなわち、式GaAs□−xPxにおけるXを
表すものとする。
Gallium phosphide arsenide mixed crystals can be used to manufacture so-called intermediate color light emitting diodes ranging from orange to yellow because the forbidden band width can be changed by changing the mixed crystal ratio. In this specification, the mixed crystal ratio represents the content of GaP, that is, X in the formula GaAs□-xPx.

かかるりん化ひ化ガリウム混晶エピタキシャル膜は、通
常はりん化ガリウム単結晶基板上に9ん化ガリウム層、
いわゆるホモエピタキシャル層を気相成長させ、続いて
AsH2等のAs成分を導入し、かつ、その導入量を徐
々に増加させて、りん化ひ化ガリウム混晶率変化層を成
長させ、その後、該混晶率が所望の値に達した後混晶率
一定層を成長させる方法によシ成長させられる。
Such a gallium arsenide phosphide mixed crystal epitaxial film usually includes a gallium nonatonide layer on a gallium phosphide single crystal substrate,
A so-called homoepitaxial layer is grown in a vapor phase, and then an As component such as AsH2 is introduced, and the amount of introduction is gradually increased to grow a gallium phosphide arsenide mixed crystal ratio change layer. After the mixed crystal content reaches a desired value, a layer with a constant mixed crystal content is grown.

しかしながら、従来、上記の方法により成長させたシん
化ひ化ガリウム混晶エピタキシャル膜は、その表面にピ
ラミッド、ヒルロック等の表面欠陥が発生し、該エピタ
キシャル膜の収率を低下させる原因となっていた。
However, in the conventional gallium arsenide mixed crystal epitaxial film grown by the above method, surface defects such as pyramids and hillocks occur on the surface, which causes a decrease in the yield of the epitaxial film. Ta.

本発明者等は、かかる表面欠陥の発生を防止することを
目的として鋭意研究を重ねた結果本発明に到達したもの
である。
The present inventors have arrived at the present invention as a result of extensive research aimed at preventing the occurrence of such surface defects.

本発明の上記の目的は、りん化ガリウム単結晶基板上に
りん化ガリウム層、りん化ひ化ガリウム混晶量変化層及
びシん化ひ化ガリウム混晶率一定層を含むりん化ひ化ガ
リウム混晶エピタキシャル膜を気相成長させる方法にお
いて、上記りん化ガリウム層を成長させる工程が、上記
単結晶基板の温度をgso←〜qgocの範囲に設定し
てりん化ガリウム層を成長させる第1工程、第7エ程終
了後シん成分とガリウム成分のうちガリウム成分の供給
のみを遮断し、かつ上記単結晶基板の温度をg00cm
900’l:の範囲であって第1工程における温度より
も低い温度に低下させる第コニ程及び第ユニ程終了後さ
らにりん化ガリウム層を成長させる第3工程からなるこ
とを特徴とする方法にょシ違せられる。
The above object of the present invention is to provide a gallium arsenide phosphide layer comprising a gallium phosphide layer, a gallium arsenide phosphide mixed crystal content variable layer, and a gallium arsenide phosphide mixed crystal constant layer on a gallium phosphide single crystal substrate. In the method of vapor phase growing a mixed crystal epitaxial film, the step of growing the gallium phosphide layer is a first step of growing the gallium phosphide layer by setting the temperature of the single crystal substrate in the range of gso← to qgoc. , After the seventh step, the supply of only the gallium component among the thin component and the gallium component was cut off, and the temperature of the single crystal substrate was lowered to g00cm.
A method characterized by comprising a third step in which a gallium phosphide layer is further grown after the second step and the first step, in which the temperature is lowered to a temperature in the range of 900'l and lower than the temperature in the first step. I can't stand it.

本発明に用いられるりん化ガリウム単結晶基板としてば
、(100)面に対して2〜g0傾いた面が好ましい。
The gallium phosphide single crystal substrate used in the present invention preferably has a plane inclined by 2 to g0 with respect to the (100) plane.

また、気相成長用ガス組成としては、Ga−Hot −
PH3−AsH3系、Ga (CH3)3− As H
,−PH,系等が好ましい。
In addition, the gas composition for vapor phase growth is Ga-Hot-
PH3-AsH3 system, Ga (CH3)3- As H
, -PH, and the like are preferred.

第1工程においてはりん化ガリウム単結晶基板の温度を
gso’6−qgor)、、好ましくは7θorb〜q
qoCの温度に設定するのが適当である。基板の温度が
高いと得られるエピタキシャル層の結晶性が良好となる
が、エピタキシャル層の成長速度が小さくなるので上記
温度が適当である。
In the first step, the temperature of the gallium phosphide single crystal substrate is set to gso'6-qgor), preferably 7θorb~q
It is appropriate to set the temperature to qoC. If the temperature of the substrate is high, the crystallinity of the epitaxial layer obtained will be good, but the growth rate of the epitaxial layer will be low, so the above temperature is appropriate.

第1工程で成長させるりん化ガリウム層の厚さは/〜S
μm程度が好ましい。第1工程終了後基板温度を第1工
程における温度よシも低い温度に低下させる。これは、
高温度ではりん化ガリウム層の成長速度が小さいので基
板温度を低下させて成長速度を大とし、生産性を向上さ
せるためである。この場合、基板温度を低下させると同
時にりん化ガリウム層の成長を行なうと当該りん化ガリ
ウム層の結晶性が劣化するので成長を停止することが必
要であるが、その場合、高い蒸気圧を有するりんが飛散
するのを防止するためにりん成分とガリウム成分のうち
ガリウム成分の供給のみを遮断することが必要である。
The thickness of the gallium phosphide layer grown in the first step is /~S
The thickness is preferably about μm. After the first step, the substrate temperature is lowered to a temperature lower than the temperature in the first step. this is,
This is because the growth rate of the gallium phosphide layer is slow at high temperatures, so the substrate temperature is lowered to increase the growth rate and improve productivity. In this case, if the gallium phosphide layer is grown at the same time as the substrate temperature is lowered, the crystallinity of the gallium phosphide layer will deteriorate, so it is necessary to stop the growth. In order to prevent phosphorus from scattering, it is necessary to cut off only the supply of the gallium component of the phosphorus component and the gallium component.

基板の温度が、goo’5−qooc、好it。The temperature of the substrate is goo'5-qooc, which is good.

くはgso−gsoCの範囲の温度であって第1工程に
おける温度よりも低い温度で一定に々つた後、ガリウム
成分の供給を開始してりん化ガリウム層を成長させる第
3工程を実施する。
After the temperature is maintained at a constant temperature in the range of gso-gsoC and lower than the temperature in the first step, a third step is performed in which the supply of gallium component is started and a gallium phosphide layer is grown.

第3工程で成長させるりん化ガリウム層の厚さは通常は
/〜Sμm程度である。
The thickness of the gallium phosphide layer grown in the third step is usually about 1 to S μm.

第3工程終了後AsH3等のひ素成分の供給量を徐々に
増加させながらりん化ひ化ガリウム混晶量変化層を成長
させる。これはりん化ガリウムとりん化ひ化ガリウム混
晶率一定層を構成するりん化ひ化ガリウム混晶との間の
格子定数の差に基づく歪を緩和して転位の発生等を防止
するためである。混晶率が所望の値に達・−シた後りん
化ひ化ガリウム混晶率一定層を成長させる。
After the third step is completed, a layer with a variable amount of gallium phosphide arsenide mixed crystal is grown while gradually increasing the supply amount of an arsenic component such as AsH3. This is to alleviate the strain caused by the difference in lattice constant between gallium phosphide and the gallium arsenide phosphide mixed crystal that constitutes the constant gallium phosphide mixed crystal layer, thereby preventing the occurrence of dislocations, etc. be. After the mixed crystal content reaches a desired value, a layer of constant mixed crystal content of gallium arsenide phosphide is grown.

この場合、混晶率がo、lIsよりも大であると間接遷
移であるので発光効率を向上させるためにアイソエレク
トロニックトラップとして窒素をドープすることが好ま
しい。
In this case, if the mixed crystal ratio is greater than o or lIs, indirect transition occurs, so it is preferable to dope nitrogen as an isoelectronic trap in order to improve luminous efficiency.

本発明方法によって得られたエピタキシャル膜を有する
エピタキシャルウェハは、i面K ヒルロック、ピラミ
ッド等の表面欠陥の発生がなく、かつ、生産性も高いの
で産業上の利用価値は犬である。
The epitaxial wafer having the epitaxial film obtained by the method of the present invention is free from surface defects such as i-plane K hillocks and pyramids, and has high productivity, so it has great industrial value.

゛以下に実施例に基づいて本発明をさらに具体的に説明
する。
゛The present invention will be explained in more detail below based on Examples.

実施例1 本発明に従い黄色(尖頭発光波要約3 g g nm±
2Q nm ) 発光ダイオード用シん化ひ化ガリラム
エピタキシャル膜、GaAel−xPX、で×4o、g
sλを、GaP単結晶基板上に以A< して形成した。
Example 1 Yellow (peak emission wave summary 3 g g nm±) according to the present invention
2Q nm) Gallium arsenide epitaxial film for light emitting diode, GaAel-xPX, ×4o, g
sλ was formed on a GaP single crystal substrate as follows.

まず、n型不純物として硫黄(S)が3×1015原子
個/ cA添加され、結晶学的面方位が(10o)面よ
り〈/10〉方向に約6°偏位した面を有するGaP単
結晶基板を用意した。GaP単結晶基板は、初め約37
0μmの厚さであったが有機溶媒による脱脂工程に引き
続いた機械−化学的研磨(Mechanical−Oh
eaicalpolishing)処理に−より、30
0μmの厚さとなった。
First, sulfur (S) is added as an n-type impurity at 3 x 1015 atoms/cA, and the GaP single crystal has a crystallographic plane deviated by about 6° from the (10o) plane in the 〈/10〉 direction. A board was prepared. Initially, the GaP single crystal substrate was approximately 37
Although the thickness was 0 μm, mechanical-chemical polishing (Mechanical-Oh
30 by eaical polishing) treatment
The thickness was 0 μm.

次に内径70rrnn長さ100cmの水平型石英エピ
タキシャル・リアクター内の所定の場所にそれぞれ前記
研磨済みGaP単結晶基板並びに高純度Ga入り石英ボ
ートをセットした。エピタキシャル・リアクター内にア
ルゴン(Ar)を導入し、空気を充分置換除去し、次に
キャリヤーガスとして水素ガス(H2)を毎分、700
0 cc導入し、Arの流れを止め昇温工程に入った。
Next, the polished GaP single crystal substrate and the high-purity Ga-containing quartz boat were set at predetermined locations in a horizontal quartz epitaxial reactor with an inner diameter of 70 rrnn and a length of 100 cm. Argon (Ar) was introduced into the epitaxial reactor to sufficiently replace and remove air, and then hydrogen gas (H2) was introduced as a carrier gas at a rate of 700 m/min.
0 cc was introduced, the flow of Ar was stopped, and the temperature raising process began.

前記Ga入り石英ポートセット領域並びにGaP単結晶
基板セット領域の温度がそれぞれg 、? OJ:並び
に93θCに保持されていることを確認後、黄色発光ダ
イオード用エピタキシャル膜GaAs1−xPxの気相
成長を開始した。
The temperatures of the Ga-containing quartz port set region and the GaP single crystal substrate set region are g, ? After confirming that OJ: and 93 θC were maintained, vapor phase growth of an epitaxial film GaAs1-xPx for a yellow light emitting diode was started.

気相成長開始時よシ濃度/ Oppmに窒素ガスで希釈
したn型不純物である硫化水素(H2”’)を毎分60
C導入し、一方■族成分として高純度塩化水素ガス(H
Cl)を毎分10 cc導入し、Gaと反応させること
によシは′!″/θθ%、GaC!tに変換生成させ、
他方H2で希釈された濃度10係のPH3を毎分λ61
ICC導入し、初めの70分間は、成長温度(基板温度
に相当)を930Cに保持しつ\、Gap単結晶基板上
に第1のGaPエピタキシャル層を形成した。
At the start of vapor phase growth, hydrogen sulfide (H2''), which is an n-type impurity, diluted with nitrogen gas at a concentration of 60 ppm per minute.
C was introduced, while high-purity hydrogen chloride gas (H
By introducing 10 cc of Cl) per minute and reacting with Ga, '! ″/θθ%, converted to GaC!t and generated,
On the other hand, PH3 with a concentration of 10 diluted with H2 is heated at λ61 per minute.
After introducing ICC, the first GaP epitaxial layer was formed on the Gap single crystal substrate while maintaining the growth temperature (corresponding to the substrate temperature) at 930 C for the first 70 minutes.

Gaの供給源である塩化水素(HCl)を遮断しその他
のガスは流量を変える事なく、成長温度のみ930Cか
らggoCまで降下させた。
Hydrogen chloride (HCl), which is a source of Ga, was shut off, and only the growth temperature was lowered from 930C to ggoC without changing the flow rates of other gases.

温度がggoCで二定になった後1yGaの供給源であ
る塩化水素(HCl、)を再供給し70分間第2のGa
Pエピタキシャル層を第1エピタキシャル層上に形成し
た。
After the temperature became constant at ggoC, hydrogen chloride (HCl, ), which is the source of 1yGa, was resupplied and the second Ga
A P epitaxial layer was formed on the first epitaxial layer.

次の60分間は、成長温度をgg’o’6一定に保持し
つNH2で希釈された濃度10チのAsH3を毎分OC
Cより36 cc 4で徐々に導入し、上記各ガス流と
共に第3のGaABl−xPxエピタキシャル層を第2
のエピタキシャル層上に形成した。
For the next 60 minutes, the growth temperature was kept constant at gg'o'6 and AsH3 diluted with NH2 at a concentration of 10 was added every minute to OC.
The third GaABl-xPx epitaxial layer was gradually introduced at 36 cc 4 from C, and the third GaABl-xPx epitaxial layer was
was formed on the epitaxial layer.

次の30分間は、各ガスの流量を変える事なく、即ちH
2,H2S 、 HCt、 PH3並びにAsH3をそ
れぞれ毎分3θθθcc 、 a cc 、 /lθC
C,21rグcc並びに36 CC導入して第グのGa
As1−xPxエピタキシャル層を成長さぜた。
For the next 30 minutes, without changing the flow rate of each gas, that is, H
2, H2S, HCt, PH3 and AsH3 at 3θθθcc, acc, /lθC per minute, respectively.
By introducing C, 21rg cc and 36cc, the Ga of the th
An As1-xPx epitaxial layer was grown.

次に最終の60分間は、第グのエピタキシャル層形成条
件に加え、新らたに高純度NH3ガスを毎分、i qO
CC導入し、窒素(N)をアイソ・エレクトロニックト
ラップとしてドープした。
Next, for the final 60 minutes, in addition to the conditions for forming the epitaxial layer in G.
CC was introduced and nitrogen (N) was doped as an isoelectronic trap.

m j G aA 8 H−xPXエピタキシャル層を
形成し、エピタキシャル多層膜の全形成工程を終了した
A m j GaA 8 H-xPX epitaxial layer was formed, and the entire formation process of the epitaxial multilayer film was completed.

取出し後のエピタキシャル・ウェハーの表面状態は極め
て良好で突起物その他の表面欠陥は見られなかった。
The surface condition of the epitaxial wafer after removal was extremely good, with no protrusions or other surface defects observed.

以上の如くして得られたエピタキシャル多層膜に対し、
各種物性測定並びに解析を実施した結果、第1.第λの
各エピタキシャル層の層厚はそれぞれ2.g ttm 
、 3.k μm、jた、/ 9.2 μmの組成変化
層及び/ 0.31Lmの組成一定層であった。
For the epitaxial multilayer film obtained as above,
As a result of various physical property measurements and analyses, the first. The layer thickness of each λ-th epitaxial layer is 2. g ttm
, 3. The composition was a variable composition layer of km, j, /9.2 μm and a constant composition layer of /0.31 Lm.

又n型キャリヤー濃度は、第1.第λ、第3゜第グのエ
ピタキシャル層領域で概ね、? X / 0 ” cm
−3、窒素が添加された第Sのエピタキシャル層領域で
7J X 10  Cm  であった。
Also, the n-type carrier concentration is 1. In the epitaxial layer region of the λth, 3rd degree and the 3rd degree, approximately ? X/0”cm
-3, and 7J x 10 Cm in the S-th epitaxial layer region doped with nitrogen.

次に本実施例により得られたエピタキシャル膜を有した
エピタキシャル・ウェハーヲ用い、黄色発光ダイオード
を作成し、輝度値(光出力)を実測した。
Next, a yellow light emitting diode was prepared using the epitaxial wafer having the epitaxial film obtained in this example, and its brightness value (light output) was actually measured.

即ち、該エピタキシャル・ウェハーを、p型不純物とし
てZnAs2.2 !;〜と共に高純度石英アンプル中
に真空封入し、温度72゜Cで不純物熱拡散を行った。
That is, the epitaxial wafer was prepared using ZnAs2.2! as a p-type impurity. It was vacuum-sealed in a high-purity quartz ampoule together with ~, and impurity thermal diffusion was performed at a temperature of 72°C.

得られたp −n接合深さは、表面よ99.38mであ
った。
The resulting p-n junction depth was 99.38 m from the surface.

以上の如くして得られたエピタキシャル・ウェハーを、
裏面(基板)研磨工程、電極形成工工程、ワイヤー↑ボ
ンデイング工程等一連のデバイス製作ラインに投入し、
黄色発光ダイオード・チップを作成した。
The epitaxial wafer obtained as above,
The product is put into a series of device production lines including backside (substrate) polishing process, electrode formation process, wire ↑ bonding process, etc.
A yellow light emitting diode chip was created.

次に該発光ダイオード・チップ(チップ・・寸法及びp
/n接合・・寸法は、共にSOOμ×50θμ角)に対
し直流電流密度20A/cr/lの電流を通電し、該チ
ップにエポキシ樹脂コート無しの条件下で、輝度値(光
出力)を測定した。
Next, the light emitting diode chip (chip... size and p
/n junction (both dimensions are SOOμ × 50θμ angle), a current with a DC current density of 20A/cr/l is applied, and the brightness value (light output) is measured under the condition that the chip is not coated with epoxy resin. did.

その結果、尖頭発光波長k g g nm士ハ!inm
輝度値がり乙00 Ft−L−!;230 Ft−L、
平均!r/30Ft−Lであった。
As a result, the peak emission wavelength is k g g nm! inm
Brightness value has increased 00 Ft-L-! ;230 Ft-L,
average! It was r/30Ft-L.

実施例ユ 実施例/で用いた装置と同一装置を使用し、本発明に基
づいた橙色発光ダイオード用シん化ひ化ガリウムエピタ
キシャル膜GaAs+−汐モ;”0、A 5)をGaP
単結晶基板上に形成した。
Example U Using the same device as that used in Example 1, a gallium arsenide epitaxial film GaAs+-ShioMo; 0, A 5) for an orange light emitting diode based on the present invention was prepared using GaP.
Formed on a single crystal substrate.

即ち、硫黄が3.3 X 1017原子個7’ ctr
lドープされ(100)面より〈/10〉方向に約50
偏位した、n型GaP単結晶基板上にエピタキシャル膜
GaPe、−xPxの気相成長を行った。
That is, sulfur has 3.3 X 1017 atoms 7' ctr
About 50 l-doped in the 〈/10〉 direction from the (100) plane
An epitaxial film GaPe, -xPx was grown in a vapor phase on a shifted n-type GaP single crystal substrate.

まず、気相成長開始時より、濃度/ Oppmに窒素ガ
スで希釈されたH2Sを毎分4 CC、キャリヤーガス
としてのH2を毎分30.00 cc、■族成分GaC
1形成用としてのHClを毎分t、、occ、v族成分
として濃度10%のPH3を毎分/ 95 CC1それ
ぞれエピタキシャル・リアクター内に導入しつ5成長部
度(該基板温度に相当)を9300に保って、70分間
にわたり第1のGaPエピタキシャル層を形成した。
First, from the start of vapor phase growth, H2S diluted with nitrogen gas to a concentration of 4 cc/min, H2 as a carrier gas at 30.00 cc/min, and group Ⅰ component GaC
HCl for 1 formation was introduced into the epitaxial reactor at t, occ, and PH3 at a concentration of 10% as a V group component at a rate of 95 CC1 per minute, respectively, and 5 growth regions (corresponding to the substrate temperature) were introduced into the epitaxial reactor. The first GaP epitaxial layer was formed by maintaining the temperature at 9300° C. for 70 minutes.

次にGaの供給源である塩化水素(HCl)の供給を遮
断し、その他のガス即ち、H2,H2S 、 PH3を
それぞれ毎分3000 cc、6cc 、および/ワタ
CCの一定量導入しつ\、成長温度をq3oCからgs
oCまで降下させた。
Next, the supply of hydrogen chloride (HCl), which is the source of Ga, was cut off, and other gases, namely H2, H2S, and PH3, were introduced at fixed amounts of 3000 cc, 6 cc, and 1/min, respectively. Growth temperature from q3oC to gs
It was lowered to oC.

次に温度がgsoCで一定になった後にGaの供給源で
ある塩化水素(HCl)  の供給を再開し70分間第
2のGaAB、−xPxエピタキシャル層を形成した。
Next, after the temperature became constant at gsoC, the supply of hydrogen chloride (HCl), which is a Ga supply source, was restarted and a second GaAB, -xPx epitaxial layer was formed for 70 minutes.

次の90分゛間゛は、成長温度をgsoCの一定に保持
し更に、H2,H2S 、 HO7並びにPH,を毎分
、yooo cc 、 b cc 、乙OCC並びに/
 q5 QCの一定量に保持しっぺ、AsH2のみ毎分
OCCから/ 0 !; ccまで徐々に増加させつ\
、第3のGaAS、−xPxエピタキシャル層を形成し
た。
During the next 90 minutes, the growth temperature was kept constant at gsoC, and H2, H2S, HO7, and PH were added every minute to yooo cc, b cc, OCC, and /
q5 Keep a constant amount of QC, AsH2 only from OCC every minute / 0! ; Gradually increase to cc\
, a third GaAS, -xPx epitaxial layer was formed.

次の75分間は、成長温度をgsoc一定にに保持し、
又H2,H2S 、 HOt、 PH3およびAsF3
を、それぞれ毎分3000cc’、bcc、乙Qcc、
/9!;CCおよび/’03c、tcの一定量に保持し
つ\、新たにNH3を毎分230 cc加え、第5のG
aABl−xPxエピタキシャル層を形成しエピタキシ
ャル膜の全形成工程を終了した。エピタキシャル成長後
のエビタキシャルウエノ・−の表面状態は極めて良好で
突起物その他の表面欠陥は見られなかった。
For the next 75 minutes, the growth temperature was held constant at gsoc;
Also H2, H2S, HOt, PH3 and AsF3
, respectively, 3000cc', bcc, OtsuQcc,
/9! ; While maintaining CC and /'03c, tc constant, NH3 was newly added at 230 cc/min, and the fifth G
An aABl-xPx epitaxial layer was formed to complete all epitaxial film formation steps. The surface condition of the epitaxial urethane after epitaxial growth was extremely good, with no protrusions or other surface defects observed.

以上の如くして形成された第1.第コ、第3゜第りの各
エピタキシャル層の層厚は、それぞれ、z、b ttm
、 3.’/ tlm、 xll、3 ttm、 / 
0.2 pmであり第S層は窒素が7×/θ19cm−
3 添加され、厚さ/り、3μmであった。
The first. The layer thicknesses of the first and third epitaxial layers are z and b ttm, respectively.
, 3. '/ tlm, xll, 3 ttm, /
0.2 pm, and the S layer has nitrogen at 7×/θ19 cm−
3 was added, and the thickness was 3 μm.

次に、本実施例により得られたエピタキシャル膜を有す
るエビタキシャルウエノ・−を用い、実施例/に記述し
た方法に従い橙色発光ダイオードを作成し、輝度値を実
測した。
Next, an orange light emitting diode was produced using the epitaxial film having the epitaxial film obtained in this example according to the method described in Example 1, and the luminance value was actually measured.

その結果、本実施例に於て得られた発光ダイオードチッ
プ(テップ・・寸法及びp/n接合・・寸法は、共にS
OOμ×300μ角)に対し、直流電流密度/θA/f
flの電流を通電し、該チップにエポキシ樹脂コート無
しの条件下で輝度値は、2g3θFt −L〜、70A
0Ft−L、平均29gθFt −Lと判明し、本実施
例に於ても、高輝度値が得られている事が確認された。
As a result, the light emitting diode chip obtained in this example (the tip dimensions and the p/n junction dimensions are both S
OOμ x 300μ square), DC current density/θA/f
When a current of fl is applied and the chip is not coated with epoxy resin, the brightness value is 2g3θFt -L~, 70A.
0Ft-L, and an average of 29gθFt-L, confirming that high brightness values were obtained in this example as well.

尚尖頭発光波長はA 30 nm −1m 2nmであ
った。
The peak emission wavelength was A 30 nm −1 m 2 nm.

特許出願人   三菱モンサント化成株式会社同   
 三菱化成工業株式会社 手続補正書(自発) 2 発 明 の名称 シん化ひ化ガリウム混晶エピクキシャル膜の気相成長方
法3 補正をする者 事件との関係  特許出願人 5 補正の対象  明細書の発明の詳細な説明の欄6補
正の内容 (1)  明細書第2頁第2行目を、次の通シに訂正す
る。
Patent applicant Mitsubishi Monsanto Chemical Co., Ltd.
Mitsubishi Kasei Corporation procedural amendment (voluntary) 2 Name of the invention Method for vapor phase growth of gallium sino-arsenide mixed crystal epitaxial film 3 Relationship with the case of the person making the amendment Patent applicant 5 Subject of the amendment Description of the specification Contents of amendment in Column 6 of Detailed Description of the Invention (1) The second line of page 2 of the specification is corrected as follows.

(L、FiD)J (2)  明細書第2頁第6行目及び第7行目を次の通
シに訂正する。
(L, FiD) J (2) Lines 6 and 7 of page 2 of the specification are corrected as follows.

[せることによシ、禁止帯幅を変化できるので赤色から
緑色に至るいわゆる中間色の発光ダイオ」 (3)  明細書第4頁第20行目を次の通りに訂正す
る。
[The forbidden band width can be changed by changing the width of the forbidden band, so it is a so-called intermediate color light emitting diode that ranges from red to green.'' (3) Page 4, line 20 of the specification is corrected as follows.

「±2 nm )発光ダイオード用シん化ひ化ガ1月(
4)  明細書筒13頁第S行目を次の通シに訂正する
``±2 nm'' January (
4) Correct line S on page 13 of the specification cylinder to the following text.

「次のttS分間は、成長温度をg5θ℃一定」以  
 上
``For the next ttS minute, keep the growth temperature g5θ℃ constant.''
Up

Claims (1)

【特許請求の範囲】[Claims] りん化ガリウム単結晶基板上にりん化ガリウム層、りん
化ひ化ガリウム混晶率変化層及びりん化ひ化ガリウム混
晶率一定層を含むりん化ひ化ガリウム混晶エピタキシャ
ル膜を気相成長させる方法において、上記りん化ガリウ
ム層を成長させる工程が、上記単結晶基板の温度をgs
oC−qgoCの範囲に設定してりん化ガリウム層を成
長させる第1工程、第1工程終了後りん成分とガリウム
成分のうちガリウム成分の供給のみを遮断し、かつ上記
単結晶基板の温度をgooc−qoocの範囲であって
第1工程における温度よりも低い温度に低下させる第コ
ニ程及び第1工程終了後さらにりん化ガリウム層を成長
させる第3工程からなることを特徴とする方法。
A gallium phosphide arsenide mixed crystal epitaxial film including a gallium phosphide layer, a gallium phosphide arsenide mixed crystal ratio variable layer, and a gallium phosphide arsenide mixed crystal constant layer is grown in a vapor phase on a gallium phosphide single crystal substrate. In the method, the step of growing the gallium phosphide layer increases the temperature of the single crystal substrate to gs.
The first step is to grow a gallium phosphide layer in the range of oC-qgoC. After the first step, only the supply of the gallium component of the phosphorus component and the gallium component is cut off, and the temperature of the single crystal substrate is A method characterized by comprising a second step in which the temperature is lowered to a temperature within the range of -QOOC and lower than the temperature in the first step, and a third step in which a gallium phosphide layer is further grown after the first step.
JP4988483A 1983-03-25 1983-03-25 Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal Pending JPS59174597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4988483A JPS59174597A (en) 1983-03-25 1983-03-25 Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4988483A JPS59174597A (en) 1983-03-25 1983-03-25 Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal

Publications (1)

Publication Number Publication Date
JPS59174597A true JPS59174597A (en) 1984-10-03

Family

ID=12843460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4988483A Pending JPS59174597A (en) 1983-03-25 1983-03-25 Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal

Country Status (1)

Country Link
JP (1) JPS59174597A (en)

Similar Documents

Publication Publication Date Title
JPS6115577B2 (en)
US3984263A (en) Method of producing defectless epitaxial layer of gallium
US4216484A (en) Method of manufacturing electroluminescent compound semiconductor wafer
JP4768975B2 (en) GaN crystal and GaN crystal substrate manufacturing method
JPS581539B2 (en) epitaxial wafer
US5445897A (en) Epitaxial wafer and process for producing the same
JPH0940490A (en) Production of gallium nitride crystal
JPS59174597A (en) Vapor phase growing method of epitaxial film of gallium phospho-arsenide mixed crystal
KR100210758B1 (en) Epitaxial wafer and process for producing the same
JP3301371B2 (en) Method for manufacturing compound semiconductor epitaxial wafer
JPS61106497A (en) Method for growing epitaxial film of gallium phosphide and arsenide
JP3111644B2 (en) Gallium arsenide arsenide epitaxial wafer
JPS59207897A (en) Gaseous phase epitaxial growth of thin film of single crystal of gallium arsenide phosphide
JPS60214524A (en) Growing method of gallium phosphide arsenide epitaxial film
JPS63103893A (en) Production of 6h-sic substrate
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JPH01173764A (en) Manufacture of light-emitting element
JP2021182615A (en) Compound semiconductor epitaxial wafer and method for manufacturing the same
JPH03203316A (en) Epitaxial wafer and manufacture thereof
JPS59207896A (en) Gaseous phase epitaxial growth of thin film of single crystal of inorganic compound
KR100309402B1 (en) A method for manufacturing compound semiconductor epitaxial wafer
JPS60155598A (en) Epitaxial wafer of mixed crystal of gallium phosphide arsenide
JPH065789B2 (en) Semiconductor crystal growth method
JPS5843898B2 (en) Vapor phase growth method for compound semiconductor single crystal thin films
JP3156514B2 (en) Manufacturing method of semiconductor epitaxial wafer