JPS59207839A - Microspherical rare earth metal oxide and its production - Google Patents

Microspherical rare earth metal oxide and its production

Info

Publication number
JPS59207839A
JPS59207839A JP58079420A JP7942083A JPS59207839A JP S59207839 A JPS59207839 A JP S59207839A JP 58079420 A JP58079420 A JP 58079420A JP 7942083 A JP7942083 A JP 7942083A JP S59207839 A JPS59207839 A JP S59207839A
Authority
JP
Japan
Prior art keywords
rare earth
gel
hydroxide
aqueous solution
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58079420A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurokawa
洋 黒川
Akira Kaneda
金田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP58079420A priority Critical patent/JPS59207839A/en
Publication of JPS59207839A publication Critical patent/JPS59207839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To produce a rare earth metal oxide composed of small spherical particles having low primary agglomeration force, by reacting an aqueous solution of a water-soluble salt of a rare earth element with an alkaline aqueous solution, and calcining the resultant amorphous gel of the rare earth metal hydroxide. CONSTITUTION:An aqueous solution of a water-soluble salt of a rare earth element (e.g. YCl2) is added rapidly with more than equivalent (>=3 equivalent) of an alkaline aqueous solution (e.g. NaOH solution), and made to react with each other keeping the pH at >=9. The reaction product is separated e.g. by a centrifugal separator using a G-3 level glass filter or a filter cloth corresponding to 800 mesh, and washed with water. The obtained amorphous gel of the rare earth metal hydroxide is calcined in a furnace maintained at several hundred deg.C. An easily pulverizable microspherical rare earth metal oxide containing small bubbles in the particle and useful as a ceramic material can be obtained by this process.

Description

【発明の詳細な説明】 本発明は、セラミック材料として必要な微粒径でかつ、
粒子の形が球形に近い特長を有する希土類酸化物および
その製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention has a fine particle size necessary for a ceramic material and
The present invention relates to a rare earth oxide whose particle shape is nearly spherical, and a method for producing the same.

従来、希土類元素の酸化物は、希土類元素の蓚酸塩ある
いは炭酸塩等を焙焼して作る事が一般的な方法であり、
これをセラミック材料、たとえばジルコニア焼結体の安
定化剤、窒化ケイ素焼結体の焼結助剤などに使用する場
合、微粒である事が必要である為、ボールミル、ジェッ
トミル等の粉砕機を使用して微粒化していた。この様に
して得られた希土類酸化物粉は、その形状が岩石を粉砕
して得られる砂の様に多角形状を有している事、また、
−次粒子の凝集力が大きい事の理由で、セラミック母材
、たとえばジルコニア、窒化ケイ素などの粉末と混合し
、加圧成形する場合、粒界での移動、くずれを多く期待
する事が出来ず、成形体の密度を上げ、その特性を充分
発揮する為には高圧成形を必要とされていた。従って、
これら成形体の製造に必要な装置は複雑となり、かつ、
生産性の低いものとなっていた。
Conventionally, the common method for producing rare earth element oxides is to roast rare earth element oxalates or carbonates.
When using this as a stabilizer for ceramic materials, such as a stabilizer for zirconia sintered bodies or a sintering aid for silicon nitride sintered bodies, fine particles are required, so a pulverizer such as a ball mill or jet mill is used. It was used to atomize the particles. The rare earth oxide powder obtained in this way has a polygonal shape similar to sand obtained by crushing rocks, and
- Due to the large cohesive force of secondary particles, when mixing with powders of ceramic base materials such as zirconia and silicon nitride and press-forming, we cannot expect much movement or deformation at grain boundaries. In order to increase the density of the molded product and fully demonstrate its properties, high-pressure molding was required. Therefore,
The equipment required to manufacture these molded bodies is complex, and
Productivity was low.

セラミック材料粉体に期待される特性の中には、形状が
球に近い事、−次粒子が小さい事、−次粒子どうしの凝
集力が小さい事である。
Among the properties expected of ceramic material powder are that the shape is close to a sphere, that the secondary particles are small, and that the cohesive force between the secondary particles is small.

本発明者らは、希土類元素の水溶性塩類のアルカリによ
る水酸化物生成の研究を行ってきた結果、ある条件で得
られる希土類水酸化物は、形状が球形で、かつ極めて粒
子径が小さく、この希土類水酸化物を焙焼したとぎ、そ
の形状を保持すると共に一次凝集力の小さい希土類元素
の酸化物が得られることを見出し、本発明を完成した。
The present inventors have conducted research on the generation of hydroxides using alkalis from water-soluble salts of rare earth elements, and have found that rare earth hydroxides obtained under certain conditions have a spherical shape and an extremely small particle size. The present invention was completed based on the discovery that by roasting this rare earth hydroxide, a rare earth element oxide that retains its shape and has a small primary cohesive force can be obtained.

即ち、本発明は、希土類元素の水溶性塩の水溶液とアル
カリの水溶液とを反応させて得られるゲル状不定形希土
類酸化物を、焙焼して得た微粒球状希土類酸化物及びそ
の製造方法である。
That is, the present invention provides a fine spherical rare earth oxide obtained by roasting a gel-like amorphous rare earth oxide obtained by reacting an aqueous solution of a water-soluble salt of a rare earth element with an aqueous alkali solution, and a method for producing the same. be.

以下に、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用する希土類元素の水溶性塩基は、プラセオ
ジム、ネオジウム、サマリウム、2−ロビウム、ガドリ
ニウム、テルビウム、イツトリウム、シスグロシウム、
ホルミウム、エルビウム。
The water-soluble bases of rare earth elements used in the present invention include praseodymium, neodymium, samarium, 2-robium, gadolinium, terbium, yttrium, cisglosium,
Holmium, erbium.

ツーリウム、イッテルビウム、ルテチウムの中から選ば
れた塩酸塩、硝酸塩または有機酸塩(例えば酢酸塩、ギ
酸塩)である。特に限定するものではないが、これらの
うち塩酸塩、硝酸塩が好ましい。また、本願発明に2い
ては、これらの単独または2種以上を混合したものも使
用することができる。
Hydrochloride, nitrate or organic acid salt (eg acetate, formate) selected from thulium, ytterbium and lutetium. Although not particularly limited, among these, hydrochloride and nitrate are preferred. Further, in the present invention, these may be used alone or in combination of two or more thereof.

本発明に使用するアルカリの水溶液とは、具体的にはア
ンモニア、力性ソーダ、力性カリ、各種有機アミン等の
水溶液である。これらのうちアンモニア水が好ましい。
The aqueous alkali solution used in the present invention is specifically an aqueous solution of ammonia, aqueous soda, aqueous potassium, various organic amines, and the like. Among these, ammonia water is preferred.

また、その使用量は、希土類元素の水溶性塩とアルカリ
との反応が、下記反応式に従って反応するために、希土
類元素1に対して3当量以上であることが必要で力、る
The amount used must be 3 equivalents or more based on 1 part of the rare earth element, so that the water-soluble salt of the rare earth element reacts with the alkali according to the reaction formula below.

(反応式ン LnXs+ROH−+Ln(OH)s+3RX3(Ln
;希土類元素、X;NO8,C#CH3COO。
(Reaction formula: LnXs+ROH-+Ln(OH)s+3RX3(Ln
; Rare earth element, X; NO8, C#CH3COO.

HCOO等の酸残基、R;NH,、Na、に等のアルカ
リ種を示す。) 本発明におけるゲル状不定形希土類水酸化物は希土類の
水溶性塩の水溶液とアルカリの水溶液とを反応させて得
ることができる。この際、反応系のP■■は希土類水酸
化物の水溶液、あるいはスラリーが示すPH以上で反応
さゼる必要があり、該PHは使用する希土類元素の種類
によって異なるが、実用的には反応系のPHが9以上を
維持してい几ばゲル状不定形水酸化物を得ることができ
る。
Indicates acid residues such as HCOO, and alkali species such as R; NH, Na, and the like. ) The gel-like amorphous rare earth hydroxide in the present invention can be obtained by reacting an aqueous solution of a water-soluble rare earth salt with an aqueous alkali solution. At this time, P in the reaction system must be reacted at a pH higher than that indicated by the rare earth hydroxide aqueous solution or slurry.The pH varies depending on the type of rare earth element used, but in practical terms If the pH of the system is maintained at 9 or higher, a gel-like amorphous hydroxide can be obtained.

PHを9以下に維持して反応を行った場合には得られる
生成物は反応系に存在する酸残基を取込んだ構造を有す
るものになる。例えば、塩化イツトリウムの水溶液中に
アンモニア水をゆつ(り添加し、PHを9以下に維持し
て反応させた場合、得られる生成物は、本発明における
ゲル状不定形水酸化イツトリウムではなく、組成式がY
2(OH)5Cl・nH2Oなどの結晶質の塩基性塩化
イツトリウムが生成し、また、硝酸ガドリニウム水溶液
と力性ソーダ水溶液とをPH9以下に維持しつつ反応さ
せた場合、Gd2(OH)5NO3・nH2Oのような
塩基性硝酸ガドリニウムが生成する。従って、反応当量
以上のアルカリ水溶液中に、希土類元素の水浴性の水浴
液を添加した場合がPH調整が容易であり、ゲル状不定
形希土類水酸化物は製造し易い。また、ゲル状不定形希
土類水酸化物は、水中での加熱により徐々に結晶質の希
土類水酸化物へ変質するので、高温での反応は好ましく
ない。しかし、高温における反応に26いて初期に生成
するのはゲル状不定形希土類水酸化物であるので、これ
を反応系外に取出す手段を構した場合は実施が可能とな
る。
When the reaction is carried out while maintaining the pH at 9 or less, the resulting product has a structure incorporating acid residues present in the reaction system. For example, when aqueous ammonia is slowly added to an aqueous solution of yttrium chloride and the reaction is carried out while maintaining the pH at 9 or less, the resulting product is not the gel-like amorphous yttrium hydroxide of the present invention, The composition formula is Y
Crystalline basic yttrium chloride such as 2(OH)5Cl・nH2O is generated, and when a gadolinium nitrate aqueous solution and a sodium hydroxide aqueous solution are reacted while maintaining the pH below 9, Gd2(OH)5NO3・nH2O Basic gadolinium nitrate is produced. Therefore, when a water bathing liquid of a rare earth element is added to an aqueous alkaline solution having an amount equal to or more than the reaction equivalent, pH adjustment is easy and a gel-like amorphous rare earth hydroxide is easy to produce. Furthermore, since the gel-like amorphous rare earth hydroxide gradually changes into crystalline rare earth hydroxide when heated in water, reaction at high temperatures is not preferred. However, since the gel-like amorphous rare earth hydroxide is initially produced during the reaction at high temperatures, this method can be implemented if a means is provided to take it out of the reaction system.

それ故、実施に際してその態様によって条件は選定され
る。さらに、使用するアルカリのsThによっては、反
応生成物であるゲル状不定形希土類水酸化物溶液中にア
ルカリと希土類の塩とから生ずるアンモニウム塩、ナト
リウム塩等が溶り−ているために、焙焼後に製品となる
希土類酸化物中に残る場合がある。このような場合には
、洗浄、希釈等の手段を必要とする場合がある。この際
、ゲル状不定形希土類水酸化物は変質1−ることばない
Therefore, conditions are selected depending on the mode of implementation. Furthermore, depending on the sTh of the alkali used, ammonium salts, sodium salts, etc. generated from the alkali and rare earth salts may be dissolved in the gelled amorphous rare earth hydroxide solution, which is the reaction product. It may remain in the rare earth oxide product after firing. In such cases, measures such as washing and dilution may be required. At this time, the gel-like amorphous rare earth hydroxide undergoes no deterioration.

製造されたケル状不定形希土類水酸化物は、通常の希土
類水酸化物が白色の結晶質であるのに対し、半透明の非
晶質の物質である。すなわち、該ゲル状不定形希土類水
酸化物の形状は東1及び7図に示すSEMによる写真か
ら判るように微小な球状体の凝集物であり、第2及び1
0図に示したX線回折チャートから判るように、結晶格
子が充分に生長していな(、また、岑3及び11図に示
した赤外吸収スペクトルから判るように、明確な水酸基
を有しておらず、数分子の希土類水酸化物が脱水縮重合
したものであることが予想される。また、該ゲル状不定
形水酸化物は、目の細かさがG−3レベルのガラスフィ
ルター、800メツシユ相当のf布を用いた遠心分離機
等で容易にf別することができ、そのゲルの色が半透明
であることを考えると、重合状態にある希土類水酸化物
に多数の水が水和した構造が考えられる。従って、水中
で通常の粉末と水とからなるスラリーと可溶性塩類の水
溶液との中間の挙動を示し、これを加熱、脱水する過程
で水酸化物の移動、配列が自由に起り表面張力、凝集力
などの作用が働もぎ、球形化するものと考えられる。
The produced Kel-shaped amorphous rare earth hydroxide is a translucent amorphous substance, whereas ordinary rare earth hydroxide is white crystalline. That is, the shape of the gel-like amorphous rare earth hydroxide is an aggregate of minute spheres, as can be seen from the SEM photographs shown in Figures 1 and 7.
As can be seen from the X-ray diffraction chart shown in Figure 0, the crystal lattice has not grown sufficiently (and as seen from the infrared absorption spectra shown in Figures 3 and 11, it has clear hydroxyl groups). It is expected that the gel-like amorphous hydroxide is obtained by dehydration condensation polymerization of several molecules of rare earth hydroxide.In addition, the gel-like amorphous hydroxide is a glass filter with a mesh size of G-3 level, Considering that the gel can be easily separated using a centrifuge using a 800-mesh f cloth and the color of the gel is translucent, it is possible that a large amount of water is present in the rare earth hydroxide in the polymerized state. The structure is thought to be hydrated.Therefore, it exhibits behavior in water intermediate between that of a normal slurry of powder and water and an aqueous solution of soluble salts, and during the process of heating and dehydrating it, the movement and arrangement of hydroxides occur. It is thought that it occurs freely and becomes spherical due to the effects of surface tension, cohesive force, etc.

本発明におけるゲル状不定形希土類水酸化物を焙焼する
方法は、特に限定するものではないが、通常、含水状態
の希土類水酸化物を加熱して得られる希土類酸化物は、
凝集の強い塊状物となり易いので、ゲル状不定形希土類
水酸化物のスラリーをスプレーで微粒の浮遊体として焙
焼する方法、または、凝集の原因となるゲル状不定形希
土類水酸化物に付着または包含されている水を急激に気
化させて粒子間隔を拡げ、凝集に必要な微細な一次粒子
の移動を妨げろ方法が有用である。具体的には、数百度
の温度に保持された炉内に、上記ゲルを少量づN投入す
る方法、または数百度に保持された炉内に直接上記ゲル
を一度に投入する方法である。また、温度は、ゲル状不
定形希土類水酸化物を該当する希土類酸化物にする温度
と1−る。
Although the method of roasting the gelled amorphous rare earth hydroxide in the present invention is not particularly limited, the rare earth oxide obtained by heating the rare earth hydroxide in a water-containing state is usually
Since it tends to form solid lumps with strong agglomeration, there is a method in which a slurry of gel-like amorphous rare earth hydroxide is roasted as fine suspended particles by spraying, or a slurry of gel-like amorphous rare earth hydroxide that adheres to or A method is useful in which the contained water is rapidly vaporized to widen the particle spacing and prevent the movement of fine primary particles necessary for aggregation. Specifically, there is a method in which the above gel is introduced little by little into a furnace maintained at a temperature of several hundred degrees, or a method in which the above gel is directly introduced all at once into a furnace maintained at several hundred degrees. Moreover, the temperature is 1- the temperature at which the gel-like amorphous rare earth hydroxide is converted into the corresponding rare earth oxide.

またはゲル状不定形希土類水酸化物の付着または吸着水
分を除去しうる温度で凝集のない水酸化物粉体としたの
ち、酸化物となるに必要な温度とすることもできる。ま
た、ゲル状不定形希土類水酸化物の付着または吸着水を
除去したのちの生成物に凝集がみられる場合、この段階
での解凝集操作、即ちボールミル、ジェットミル等によ
ってはクスこともできる。この操作は、ゲル状不足形希
土類水酸化物を焙焼して酸化物としたのちにほぐす場合
に比べて容易であり、このように解凝集操作が行われた
生成物は、焙焼によって酸化物となった場合に再凝集す
ることはない。
Alternatively, it is also possible to form a hydroxide powder without agglomeration at a temperature that can remove adhering or adsorbed moisture of the gel-like amorphous rare earth hydroxide, and then raise the temperature to a temperature necessary to form an oxide. Furthermore, if agglomeration is observed in the product after removing the adhering or adsorbed water of the gel-like amorphous rare earth hydroxide, it may be removed by a deagglomeration operation at this stage, that is, by a ball mill, a jet mill, or the like. This operation is easier than when the gel-like deficient rare earth hydroxide is roasted to form an oxide and then loosened. It will not re-agglomerate if it becomes a substance.

実施例−1 塩化イツトリウムのo、iM/A濃度の水溶液1.、e
中に、3M/l濃度のアンモニア水110m1を一度に
加え、30分間攪拌した。(該溶液のPHは9.8であ
った)生じたスラリーをG−3のガラスフィルターで沢
別し、ゲル状不定形水酸化イツトリウムを得た。該水酸
化イツ)IJウムの1部を取り出し、水洗を行なった後
、硝酸に溶解してイツトリウム濃度が01PA/、eの
溶液とし、該溶液中のアンモニウム1オンと塩素イオン
とを通常のイオンクロマト分析機で分析したが、両イオ
ンとも検出されなかった。
Example-1 Aqueous solution of yttrium chloride at o, iM/A concentration 1. , e
110 ml of ammonia water with a concentration of 3 M/l was added at once to the mixture, and the mixture was stirred for 30 minutes. (The pH of the solution was 9.8) The resulting slurry was filtered through a G-3 glass filter to obtain gel-like amorphous yttrium hydroxide. A portion of the yttrium hydroxide is taken out, washed with water, and then dissolved in nitric acid to form a solution with a concentration of 01 PA/e. Although it was analyzed using a chromatograph, neither ion was detected.

また、得られたゲル状不定形水酸化イツトリウムの1部
を用いてX線回折分析したところ、そのパターンはイ2
図に示すごとく、不定形物の特徴をよく表わしていた。
In addition, when a part of the obtained gel-like amorphous yttrium hydroxide was analyzed by X-ray diffraction, the pattern was
As shown in the figure, the characteristics of amorphous objects were well expressed.

また、得られたゲル状不定形水酸化イツトリウムの1部
を取出し、水洗した後、加熱する事無く真空乾燥を行な
った後、赤外分光分析を行ったところ、芽3図に示すご
と(、明確な水酸基の吸収ピークを示さず、分子構造的
には水酸基が水分子と結合したゲル状態にある事が判っ
た。
In addition, a portion of the obtained gel-like amorphous yttrium hydroxide was taken out, washed with water, and vacuum-dried without heating. Infrared spectroscopic analysis was performed, as shown in Fig. 3 (bud 3). It did not show a clear absorption peak for hydroxyl groups, and it was found that the molecular structure was in a gel state in which hydroxyl groups were bonded to water molecules.

また、得られたゲル状不定形水酸化イツ)IJウムの1
部を用いて粒度分布を、光透過式遠心沈降法で測定した
ところ、芽4図に示すようにシャープなものであり、か
つ、平均粒径も小さいものである事が分った。
In addition, 1 of the obtained gel-like amorphous hydroxide (IJ)
When the particle size distribution was measured using a light transmission centrifugal sedimentation method, it was found that the grain size was sharp as shown in Fig. 4, and the average grain size was small.

ついで、得られたゲル状不定形水酸化イツトリウムを1
100℃2時間の焙焼を行った。得られた粉末のX線回
折パターンは、穿5図に示すごと(、ASTMに記載さ
れている酸化イツ)IJウムの回折パターンと同じであ
る事がわかった。
Then, the obtained gel-like amorphous yttrium hydroxide was added to 1
Roasting was performed at 100°C for 2 hours. The X-ray diffraction pattern of the obtained powder was found to be the same as that of IJium oxide (as described in ASTM), as shown in Figure 5.

得られた酸化イツトリウム粉の形状をSEMにより観察
したところ、千6図に示す様に微球状の一次粒子が凝集
して、雲状の二次粒子を形成している事が判った。
When the shape of the obtained yttrium oxide powder was observed by SEM, it was found that fine spherical primary particles aggregated to form cloud-like secondary particles as shown in Figure 1.

また、焙焼して得られた酸化イツトリウムは、軽度な塊
状をなしていたので、振動ボールミルで塊状をほぐし、
その粒度分布を光透過式遠心沈降法で測定した結果、穿
7図に示す様に平均粒径が0.32μmの極めて細かい
粉末である事が判った。
In addition, the yttrium oxide obtained by roasting was slightly lumpy, so it was loosened using a vibrating ball mill.
The particle size distribution was measured by a light transmission centrifugal sedimentation method, and as shown in Figure 7, it was found to be an extremely fine powder with an average particle size of 0.32 μm.

実施例−2 実施例−1と同様な方法でゲル状不定形水酸化イツトリ
ウムを作り3oo℃、および700Cの温度で30分間
軽焼した。得られた白色の塊状物を実施例−1と同様な
方法でボールミルによりほぐした。得られた各粉末′を
それぞれ1100Uの温度で1時間焙焼し、それぞれの
X線回折パターンを測定したところ、実施例−1で得ら
れた酸化イツトリウムのX線回折パターンと極めて良(
一致した。
Example 2 A gel-like amorphous yttrium hydroxide was prepared in the same manner as in Example 1, and was lightly calcined at 30°C and 700C for 30 minutes. The obtained white lump was loosened using a ball mill in the same manner as in Example-1. Each of the obtained powders was roasted at a temperature of 1100 U for 1 hour, and the X-ray diffraction pattern of each was measured.
Agreed.

また、得られた各酸化物の粒度分布を実施例−1と同様
に、光透過式遠心沈降法で測定したところ、ヰ8図に示
すような結果であり、それぞれの平均粒径は300℃@
焼品(同図中のA)が0.3μm。
In addition, when the particle size distribution of each of the obtained oxides was measured by the light transmission centrifugal sedimentation method in the same manner as in Example 1, the results were as shown in Figure 8, and the average particle size of each was measured at 300°C. @
The baked product (A in the same figure) is 0.3 μm.

700℃軽焼品(同図中のB)が0.32μmであった
The product lightly fired at 700°C (B in the figure) had a diameter of 0.32 μm.

実施例3〜9 硝酸イツトリウム(実施例3)、ギ酸イツトリウム(実
施例4)、酢酸イツトリウム(実施例5)、塩化ガドリ
ニウム(実施例6)、塩化エルビウム(実施例7)、塩
化ホルミウム(実施例8)、塩化ルテチウム(実施例9
)の各0.1M/Jlの濃度の水溶液を用い、実施例−
1と同様の方法で上記各希土類元素のゲル状不定形水酸
化物を作った。得られたノリ状の各水酸化物のX線回折
パターンは、実施例−1で作ったゲル状不定形水酸化イ
ツトリウムのX線回折パターン(半1図)とほぼ同じパ
ターンを示し、不定形のゲル状物である事を示していた
Examples 3 to 9 Yttrium nitrate (Example 3), Yttrium formate (Example 4), Yttrium acetate (Example 5), Gadolinium chloride (Example 6), Erbium chloride (Example 7), Holmium chloride (Example 8), lutetium chloride (Example 9)
) with a concentration of 0.1 M/Jl, Example-
Gel-like amorphous hydroxides of each of the above rare earth elements were prepared in the same manner as in Example 1. The X-ray diffraction pattern of each of the obtained paste-like hydroxides showed almost the same pattern as the X-ray diffraction pattern (half figure) of the gel-like amorphous yttrium hydroxide prepared in Example-1, and the amorphous It was shown that it was a gel-like substance.

上記で゛得られた各ゲル状不定形水酸化物を300℃の
加熱炉内で30分間軽焼した後、実施例−2と同様にボ
ールミルでほぐし、その後1100℃の温度で1時間焙
焼した。得られた粉末のxlv回折パターンは、該当す
る希土類元素の酸化物のAsTMカード記載の値と良く
一致している事から、それぞれ該当する希土類元素の酸
化物が得られた事が分った。
Each gel-like amorphous hydroxide obtained above was lightly baked in a heating furnace at 300°C for 30 minutes, then loosened in a ball mill in the same manner as in Example-2, and then roasted at a temperature of 1100°C for 1 hour. did. The xlv diffraction pattern of the obtained powders matched well with the values written on the AsTM card of the corresponding rare earth element oxides, indicating that the corresponding rare earth element oxides were obtained.

また、各粉末のSEHによる粒子形観察の結果それぞれ
の酸化物は、実施例−1で得られた酸化イツトリウムと
同様に、微粒球形の一次粒子が、凝集して雲状の二次粒
子を形成している事が分った。
Furthermore, as a result of particle shape observation by SEH of each powder, each oxide showed that, similar to the yttrium oxide obtained in Example-1, fine spherical primary particles aggregated to form cloud-like secondary particles. I realized what I was doing.

また、得られた各粉末の平均粒径を実施例−1と同様、
光透過式遠心沈降法により測定したところ、硝酸イツト
リウムより作ったものは0.29μm。
In addition, the average particle size of each powder obtained was determined as in Example-1.
When measured by a light transmission centrifugal sedimentation method, the diameter of the one made from yttrium nitrate was 0.29 μm.

ギ酸イツトリウムより作ったものは0.28μm1酢酸
イツトリウムより作ったものは0.35μm1塩化ガド
リニユウムより作ったものは0.20μm、塩化エルビ
ウムより作ったものは0.41μm1塩化ホルミウムよ
り作ったものは0,38μm、塩化ルテチウムより作っ
たものは0.33μmがあった。
The one made from yttrium formate is 0.28 μm, the one made from yttrium acetate is 0.35 μm, the one made from gadolinium chloride is 0.20 μm, the one made from erbium chloride is 0.41 μm, the one made from holmium chloride is 0, The diameter was 38 μm, and the one made from lutetium chloride was 0.33 μm.

なお、実施例6におけ゛ろ水酸化物のSEMによる写真
、X紐回折チャート及び渉外吸収スペクトルをを9〜1
1図に、また、実施例6の酸化物のXi回回折パターン
びSEMによる写真な穿12〜13図に示す。
In addition, the SEM photograph, X-string diffraction chart, and external absorption spectrum of dihydroxide in Example 6 are 9 to 1.
1, and the Xi diffraction pattern and SEM photographs of the oxide of Example 6 are shown in FIGS. 12 and 13.

実施例10 塩化イツトリウムのo、xM/i濃度の水溶液1ノ中に
、3M/4a度の力性ソーダ水溶液zxomを一度に加
え、30分撹拌しくPH=11)、生じたスラリーをf
別しゲル状不定形水酸化イツトリウムを得た。
Example 10 A 3M/4a degree strength soda aqueous solution zxom was added at once to an aqueous solution of yttrium chloride with a concentration of
Separation yielded gel-like amorphous yttrium hydroxide.

得られたゲル状不定形水酸化イツ)IJウムを実施例1
と同様にしてX線回折パターン、赤外吸収スペクトルを
測定した。その結果は実施例−1で作ったゲル状不定形
水酸化イツトリウムのそれに極めて良(一致していた。
Example 1 The obtained gel-like amorphous hydroxide (IJ)
The X-ray diffraction pattern and infrared absorption spectrum were measured in the same manner as above. The results were very good (in agreement) with those of the gel-like amorphous yttrium hydroxide prepared in Example-1.

得られたゲル状不足形水酸化イツトリウムを実施例〜2
に記したように、3oo℃で軽焼した後、ボールミルで
ほぐし、ついで1ioo℃の温度で1時間焙焼した。
The obtained gel-like deficient yttrium hydroxide was used in Example 2.
As described in , the material was lightly baked at 30°C, loosened with a ball mill, and then roasted at 100°C for 1 hour.

得られた白色粉末のX線回折パターンは、実施例=1で
得られた酸化イツトリウムと同じであった。
The X-ray diffraction pattern of the obtained white powder was the same as that of the yttrium oxide obtained in Example=1.

また、得られた酸化イツトリウムの粒子形状をSEMに
より観察したところ、芽6図に示した実施例−1の酸化
イツトリウムと類似していた。
Further, when the particle shape of the obtained yttrium oxide was observed by SEM, it was similar to the yttrium oxide of Example-1 shown in Fig. 6.

また、得られた酸化イツ)IJウム粉末を、実施例−1
と同様に光透過式遠心沈降法で測定したところ、平均粒
子径は0.31μmであった。
In addition, the obtained IJ oxide powder was used in Example-1
When measured using the light transmission centrifugal sedimentation method in the same manner as above, the average particle diameter was 0.31 μm.

実施例−11 0,3M/沼濃度のアンモニア水21中に、o、lh(
/−g濃度の塩化イツトリウムを、撹拌を行ないながら
滴下した。滴下に要した時間は2時間であった。
Example-11 o, lh(
Yttrium chloride at a concentration of /-g was added dropwise with stirring. The time required for dropping was 2 hours.

得られたスラリーを1別し、ゲル状物を得た。該ゲル状
物を水洗した後、実施例−1と同様にX線回折パターン
、赤外吸収スペクトルを調べたところ、実施例−jのゲ
ル状不足形水酸化イツトリウムのそれと良く一致した。
The obtained slurry was separated into a gel-like substance. After washing the gel with water, the X-ray diffraction pattern and infrared absorption spectrum were examined in the same manner as in Example-1, and the results showed good agreement with those of the gel-like deficient yttrium hydroxide of Example-j.

得られたゲル状物を300℃で軽焼した後、ボールミル
で11ぐし、ついで1100℃で焙焼を行った。
The resulting gel was lightly calcined at 300°C, milled in a ball mill, and then roasted at 1100°C.

得られた白色粉末はX線回折パターンより酸化イツトリ
ウムである事が判った。
The obtained white powder was found to be yttrium oxide from the X-ray diffraction pattern.

また、得られた粉末の粒子形状をSEMで観察したとこ
ろ、実施例−1と同様微粒球状体の凝集体であることが
判った。
Furthermore, when the particle shape of the obtained powder was observed using a SEM, it was found that it was an aggregate of fine spheroidal bodies as in Example-1.

また、得られた粉末の粒度分布を実施例−1と同様に測
定した結果、平均粒径が0.32μmである事が判った
Furthermore, the particle size distribution of the obtained powder was measured in the same manner as in Example-1, and as a result, it was found that the average particle size was 0.32 μm.

比較例−1,2 塩化イツトリウム(比較例1)、および塩化ガドリニウ
ム(比較例2)の各0.1M/l濃度の水溶液1l中に
0.3M/l濃度のカ性ソーダ水溶液を1.05l加え
、95℃に加温し3時間攪拌を続けた。
Comparative Examples 1 and 2 1.05 liters of caustic soda aqueous solution with a concentration of 0.3 M/l was added to 1 liter of each 0.1 M/l aqueous solution of yttrium chloride (Comparative Example 1) and gadolinium chloride (Comparative Example 2). The mixture was then heated to 95° C. and stirring was continued for 3 hours.

得られたスラリーなそれぞれP別し、X線回折パターン
を調べたところ、寥15図(比較例1)第20図(比較
例2)に示すごとくシャーブナ回折ピークを有しており
、ASTMカードに記されている水酸化イツトリウム、
水酸化ガドリニウムの回折ピークと良く一致していた。
When the obtained slurry was separated into P and X-ray diffraction patterns were examined, it had a Schabner diffraction peak as shown in Figure 15 (Comparative Example 1) and Figure 20 (Comparative Example 2), and it was Yttrium hydroxide,
It matched well with the diffraction peak of gadolinium hydroxide.

また、得られた各水酸化物のsEMによる観察の結果は
、等14図(比較例1)及び茅19図(比較例2)に記
したごとく柱状晶を有し、・七の大きさも大きいことが
判る。
In addition, as shown in Figure 14 (Comparative Example 1) and Figure 19 (Comparative Example 2), each of the obtained hydroxides has columnar crystals, and the size of 7 is also large. I understand that.

また、得られた各水酸化物の赤外吸収スペクトルは、茅
18図(比較何重)及び第21図(比較例2)に示すこ
と<3600crrL付近に、水酸基特有の鋭どい吸収
ピークがある。
In addition, the infrared absorption spectra of each of the obtained hydroxides are shown in Figure 18 (comparison multiplex) and Figure 21 (comparative example 2).There is a sharp absorption peak unique to hydroxyl groups around <3600 crrL. .

ついで、得られた各水酸化物を300℃で軽焼した後、
実施例−1と同様にボールミルで粉砕し、ついで110
0℃の温度で1時間焙焼し、得られた谷酸化物の粒子形
状をSEMにより観察したところ、各水酸化物の形状(
柱状)がそのまま残っていた。
Then, each of the obtained hydroxides was lightly calcined at 300°C,
Grind with a ball mill in the same manner as Example-1, then 110
When the particle shape of the obtained valley oxide was observed by SEM after roasting at a temperature of 0°C for 1 hour, the shape of each hydroxide (
(columnar) remained intact.

また、得られた水酸化イツトリウムの粒度分布を測定し
たところ、茅16図のような分布を示し、平均粒径が1
.55μmであった。また得られた酸化イツトリウムの
粒度分布は、第17図に示すように、分布幅が広(、平
均粒径も21nnと太きいものであった。
In addition, when the particle size distribution of the obtained yttrium hydroxide was measured, it showed a distribution as shown in Figure Kaya 16, with an average particle size of 1.
.. It was 55 μm. Furthermore, the particle size distribution of the obtained yttrium oxide was wide (and the average particle size was as large as 21 nn), as shown in FIG.

比較例−3 塩化イツトリウムのo、xM/43114度の水溶液I
J3中に蓚酸の0.15M/4濃度の水溶液1.01を
加え、イツトIJウムの蓚酸塩を作った。該蓚酸塩を1
100℃の温度で2時間焙焼し酸化イツトリウムを作っ
た。該酸化イツトリウムをジェットミルで粉砕し得られ
た粉末の形状をSEIVIにより観察したところ、茅2
2図に示したごと(多面体の砕石状である事が判った。
Comparative Example-3 Aqueous solution I of yttrium chloride at o, xM/43114 degrees
1.01 of an aqueous solution of oxalic acid at a concentration of 0.15 M/4 was added to J3 to prepare oxalate of oxalic acid. The oxalate is 1
Yttrium oxide was produced by roasting at a temperature of 100°C for 2 hours. When the shape of the powder obtained by pulverizing the yttrium oxide with a jet mill was observed using SEIVI, it was found that
As shown in Figure 2, it was found to be a polyhedral crushed stone.

また得られた粉末の平均粒径は1.0μmであった。Moreover, the average particle size of the obtained powder was 1.0 μm.

本発明の方法で得られる希土類酸化物粉は、通常の方法
で得られる希土類酸化物粉と異なり、平均粒径カー小さ
く、かつ、粒子形状が球形に近℃・特徴を有する。また
、数百度に保持された炉内(/rCゲル状不状形定形希
土類水酸化物入する方法て゛製3された希土類酸化物は
粉粒内部に細か(・気泡を有しており、容易に微粉化さ
れ易し・。この様な倣粉体は、セラミック材料としては
理想的な物と言え、本発明はセラミックの発展に犬(・
に寄与する技術と言える。
The rare earth oxide powder obtained by the method of the present invention is different from the rare earth oxide powder obtained by a conventional method, and has characteristics such as a small average particle size and a nearly spherical particle shape. In addition, the rare earth oxide produced by the method of charging rare earth hydroxide in a gel-like unshaped form in a furnace maintained at several hundred degrees has fine air bubbles inside the powder particles, making it easy to This type of imitation powder can be said to be ideal as a ceramic material, and the present invention contributes to the development of ceramics.
It can be said that this technology contributes to

【図面の簡単な説明】[Brief explanation of drawings]

イ・1図は本発明の実施例1で作ったゲル状不定形水酸
化・イツトリウムのSEMによる写真、イ2図は本発明
の実施例1で作ったゲル状不定形水酸化イットリウノ・
のX線回折チャート、〉3図は本発明の実施例1で作っ
たゲル状不定形水酸化イツトリウムの赤外吸収スペクト
ル、724図は本発明の実施例1で作ったゲル状不定形
水酸化イツ)IJウムの光透過式遠心沈降法による粒度
分布バター・ン、 千5図は本発明の実施例1で作った微球状酸化イツトリ
ウムのX線回折チャート、 16図は本発明の実施例−1で作った微球状酸化イツト
リウムのSEMによる写真、 坏7図は本発明の実施例−1で作った微球状酸化イツト
リウムの光透過式遠心沈降法による粒度分布パターン、 凛8図は本発明の実施例−2で作った微球状酸化イツト
リウムの粒度分布パターンであり、図中Aは300℃軽
焼後1焼抜0℃で焙焼した物、Bは700℃で軽焼した
後、1100℃で焙焼した物、市9図は本発明の実施例
6で作ったゲル状不定形水酸化ガドリニウムのSEMに
よる写真、寡10図は本発明の実施例6で作ったゲル状
不定形水誘化ガドリニウムのX線回折チャート、ブ】1
図は本発明の実施例6で作ったゲル状不定形水酸化ガド
リニウムの赤外吸収スペクトル、ヰ12図は本発明の実
施例−6で作った微球状酸化ガドリニウムのX線回折チ
ャート、713図は本発明の実施例−6で作った微球状
酸化ガドリニウムのSEI辺写真、 714図は本発明の比較例1で作った水酸化イツ)・リ
ウムのSEM写真、 半15図は比較例1で作った水酸化イツトリウム、のX
線回折チャート、 ?16図は本発明の比較例−1で作った水酸化イツトリ
ウムの光透過式遠心沈降法による粒度分イ(〕パターン
、 117図は本発明の比較例−1で作った酸化イツトリウ
ム、の光透過式遠心沈降法による粒度分イ1jバター/
、 718図は本発明の比較例−1で作った水酸化イツトリ
ウムの赤外吸収スペクトル、 ’J、19図は本発明の比較例2で作った水酸化ガドリ
ニウムのSEM写真、 120図は比較例2で作った水酸化ガドリニウム・のX
線回折ナヤ−1・、 7−21図は本発明の比較例−2で作った水酸化ガドリ
ニウムの渉外吸収スペクトル、 422図は本発明の比較例−3で作ったジェットミル粉
砕による微粒酸化イツトリウムのSEM写真である。 0、カ璋 第8図 粒B:(pm) 第9図 O,!5P、処 第1!l 第18図 テ皮委又(xl○2cm−’) 茅22図 包、OP夙 手続補正書(方式) %式%(1) (2) 1、事イ11の表示1’:Mn584閘り許I9面λ7
9420号(3)。 2、発明の名称 微粒球状希土類酸化物およびその製造方d、3.7市止
をする者 事件との関係特許出願人 大1訓大阪市北区堂島浜1丁目2番6列・(003)旭
化成工業株式会社 代表取締役社長宮崎輝 4、補正命令のFヨイ」 昭和59年4月4日(発送口59./12□1)5、補
正の対象 明1[11書の1図面の簡単な説明]の欄6、袖■′の
内容 別紙の通り 補正の内容 明細書第19頁第11行のrsEMJを、「粒子構造の
電子線」に訂正する。 同第20頁第2.11及び19行のrsEMJを、1粒
子構造の電子線」に訂正する。 同第21頁第1.13及び19行のrSIEM−1を、
1粒子構造の電子線」に訂正する。 以上 手続補正書(自発 昭和59年5月8日 特許庁長官若杉和夫殿 1、事イ牛の)じR 昭和58年特許願第79420号 2、発明の名称 微粒球状希土類酸化物およびその製造方法3、補正をす
る者 事件との関係二特許出願人 大阪府大阪市北区堂島浜1丁目2番6号5、補正の内容 別紙の通り 補正の内容 (1)、明細書第7頁第15行のrSEMJを、「電子
線、jに訂正する。 (2)、同第11頁第12行のrsEMjを、「電子線
」に訂正する。 (3)、同第13頁第16行のrSEMJを、「電子線
」に訂正する。 (4)、同第14頁第10及び13行のrsEMjを、
「電子線」に訂正する。 (5)、同第15頁第14行のrsEMJを、「電子線
」に訂正する。 (6)、同第16頁第12行のrsEMjを、「電子線
」に訂正する。 (7)6同第17頁第9及び20行のrsEMJを、「
電子線」に訂正する。 (8)、同第18頁第15行のrSEMJを、「電子線
」に訂正する。 以上
Figure A-1 is an SEM photograph of gel-like amorphous yttrium hydroxide produced in Example 1 of the present invention, and Figure A-2 is a photograph of gel-like amorphous yttrium hydroxide produced in Example 1 of the present invention.
Figure 3 is an infrared absorption spectrum of the gelled amorphous yttrium hydroxide produced in Example 1 of the present invention, and Figure 724 is the infrared absorption spectrum of the gelled amorphous yttrium hydroxide produced in Example 1 of the present invention. Figure 15 is an X-ray diffraction chart of microspherical yttrium oxide prepared in Example 1 of the present invention, Figure 16 is an example of the present invention. Figure 7 shows the particle size distribution pattern of the microspherical yttrium oxide produced in Example 1 of the present invention by a light transmission centrifugal sedimentation method. This is the particle size distribution pattern of the microspherical yttrium oxide produced in Example-2, where A is the one that was lightly fired at 300°C and then roasted at 0°C, and B is the one that was lightly fired at 700°C and then roasted at 1100°C. Fig. 9 is an SEM photograph of the gel-like amorphous gadolinium hydroxide produced in Example 6 of the present invention, and Fig. 10 is a photograph of the gel-like amorphous gadolinium hydroxide produced in Example 6 of the present invention. X-ray diffraction chart of gadolinium oxide, 1
Figure 713 shows an infrared absorption spectrum of the gelled amorphous gadolinium hydroxide produced in Example 6 of the present invention, Figure 12 is an X-ray diffraction chart of microspherical gadolinium oxide produced in Example 6 of the present invention. Figure 714 is an SEI photograph of microspherical gadolinium oxide produced in Example 6 of the present invention, Figure 714 is an SEM photograph of hydroxide (gadolinium) produced in Comparative Example 1 of the present invention, and Figure 15 is an SEM photograph of gadolinium oxide produced in Comparative Example 1 of the present invention. Yttrium hydroxide made by X
Line diffraction chart, ? Figure 16 shows the particle size pattern of yttrium hydroxide produced in Comparative Example 1 of the present invention by the light transmission centrifugal sedimentation method, and Figure 117 shows the light transmission of yttrium oxide produced in Comparative Example 1 of the present invention. Particle size by centrifugal sedimentation method 1j butter/
, Figure 718 is an infrared absorption spectrum of yttrium hydroxide produced in Comparative Example 1 of the present invention, Figure 19 is an SEM photograph of gadolinium hydroxide produced in Comparative Example 2 of the present invention, Figure 120 is a comparative example. Gadolinium hydroxide made in step 2
Linear diffraction Naya-1., Figure 7-21 shows the external absorption spectrum of gadolinium hydroxide produced in Comparative Example 2 of the present invention, and Figure 422 shows the fine particle yttrium oxide produced by jet mill pulverization in Comparative Example 3 of the present invention. This is an SEM photo of. 0, Figure 8 Grain B: (pm) Figure 9 O,! 5P, first place! l Figure 18 te skin cover (xl○2cm-') Figure 22 package, OP procedure amendment (method) % formula % (1) (2) 1, Indication of matter A11 1': Mn584 block I9 side λ7
No. 9420 (3). 2. Name of the invention Fine spherical rare earth oxide and its manufacturing method d. 3.7 Relationship with the city arrest case Patent applicant Daiichikun 1-2-6 Dojihama, Kita-ku, Osaka (003) Asahi Kasei Kogyo Teru Miyazaki, President and Representative Director of Co., Ltd. 4, F Yoi of Amendment Order” April 4, 1980 (Shipping port 59./12□1) 5, Subject of amendment 1 [Brief explanation of 1 drawing of Book 11] Column 6, Contents of Sleeve ■' As shown in the attached sheet, rsEMJ on page 19, line 11 of the amended statement of contents is corrected to "particle-structured electron beam." rsEMJ on page 20, lines 2.11 and 19 is corrected to ``one-particle electron beam''. rSIEM-1 on page 21, lines 1.13 and 19,
It has been corrected to "an electron beam with a one-particle structure." Written amendment to the above procedure (spontaneous May 8, 1980, Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office, 1981) Patent Application No. 79420, 1982, 2, Title of Invention: Fine spherical rare earth oxide and process for producing the same. 3. Person making the amendment Relationship with the case 2. Patent applicant 1-2-6-5 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture Contents of the amendment Contents of the amendment (1) as shown in the attached sheet, page 7, line 15 of the specification Correct rSEMJ to "electron beam, j." (2) Correct rsEMj on page 11, line 12 to "electron beam." (3), rSEMJ on page 13, line 16 is corrected to "electron beam". (4), rsEMj on page 14, lines 10 and 13,
Corrected to "electron beam." (5), rsEMJ on page 15, line 14 is corrected to "electron beam". (6), rsEMj on page 16, line 12 is corrected to "electron beam". (7) 6. rsEMJ on page 17, lines 9 and 20 of
Corrected to "electron beam." (8), rSEMJ on page 18, line 15 is corrected to "electron beam". that's all

Claims (1)

【特許請求の範囲】 ■、希土類元素の水溶性塩の水溶液とアルカリの水溶液
とを反応させて得られるゲル状不定形希土類水酸化物を
焙焼して得られる微粒球状希土類酸化物 28土類元素の水溶性塩の水溶液中に、反応当量以上の
アルカリ゛の水溶液を急速に加えて得も、れるゲル状不
定形希土類水酸化物を用いる事を特徴とする特許請求の
範囲第1項記載の微粒球状希土類酸化物 3、希土類元素の水溶性塩の水溶液を、反応当量板」二
のアルカリの水溶液中へ添加して得られるゲル状不定形
希土類水酸化物を用いる事を特徴とする特許請求の範囲
第1項記載の微粒球状希土類酸化物 4、希土類元素の水溶性塩がイツトリウム、あるいはガ
ドIJニウムの塩酸塩、硝酸塩より選ばれた物である事
を特徴とする特許請求の範囲を1項記載の微粒球状希土
類酸化物 5、アルカリの水溶液がアンモニア水である事を特徴と
する特許請求の範囲第1項記載の微粒球状希土類酸化物 6、ゲル状不定形希土類水酸化物を焙焼する方法が、高
温雰囲気の焙焼器中に直接ゲル状不定形希土類水酸化物
を投入する事である特許請求の範囲第1項記載の微粒球
状希土類酸化物7、希土類元素の水溶性塩の水溶液と、
アルカリの水溶液とを反応させて得られるゲル状不定形
希土類水酸化物を焙焼する事を特徴とする微粒球状希土
類酸化物の製造方法
[Scope of Claims] (2) Fine spherical rare earth oxide 28 earth obtained by roasting a gel-like amorphous rare earth hydroxide obtained by reacting an aqueous solution of a water-soluble salt of a rare earth element with an aqueous alkali solution. Claim 1, characterized in that a gel-like amorphous rare earth hydroxide is used, which can be obtained by rapidly adding an aqueous solution of alkali equal to or more than the reaction equivalent to an aqueous solution of a water-soluble salt of an element. A patent characterized in that it uses a gel-like amorphous rare earth hydroxide obtained by adding a microscopic spherical rare earth oxide 3, an aqueous solution of a water-soluble salt of a rare earth element to an aqueous solution of an alkali in the reaction equivalent plate 2. The fine spherical rare earth oxide 4 described in claim 1 is characterized in that the water-soluble salt of the rare earth element is selected from the hydrochloride and nitrate of yttrium or gado IJnium. The fine spherical rare earth oxide 5 according to claim 1, the fine spherical rare earth oxide 6 according to claim 1, characterized in that the aqueous alkali solution is aqueous ammonia, and the gel-like amorphous rare earth hydroxide are roasted. Fine spherical rare earth oxide 7 according to claim 1, wherein the baking method is to directly introduce the gelled amorphous rare earth hydroxide into a roaster in a high temperature atmosphere, a water-soluble salt of a rare earth element. an aqueous solution of
A method for producing a fine spherical rare earth oxide, which comprises roasting a gel-like amorphous rare earth hydroxide obtained by reacting it with an aqueous alkali solution.
JP58079420A 1983-05-09 1983-05-09 Microspherical rare earth metal oxide and its production Pending JPS59207839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58079420A JPS59207839A (en) 1983-05-09 1983-05-09 Microspherical rare earth metal oxide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58079420A JPS59207839A (en) 1983-05-09 1983-05-09 Microspherical rare earth metal oxide and its production

Publications (1)

Publication Number Publication Date
JPS59207839A true JPS59207839A (en) 1984-11-26

Family

ID=13689368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58079420A Pending JPS59207839A (en) 1983-05-09 1983-05-09 Microspherical rare earth metal oxide and its production

Country Status (1)

Country Link
JP (1) JPS59207839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265928A (en) * 1985-07-11 1987-03-25 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Production of precursor of oxygen-containing derivative of rare earth element and product
FR2640953A1 (en) * 1988-12-23 1990-06-29 Rhone Poulenc Chimie
JP2001335318A (en) * 2000-05-23 2001-12-04 Mitsui Mining & Smelting Co Ltd High purity holmium oxide and its production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6265928A (en) * 1985-07-11 1987-03-25 ロ−ヌ−プ−ラン・スペシアリテ・シミ−ク Production of precursor of oxygen-containing derivative of rare earth element and product
FR2640953A1 (en) * 1988-12-23 1990-06-29 Rhone Poulenc Chimie
JP2001335318A (en) * 2000-05-23 2001-12-04 Mitsui Mining & Smelting Co Ltd High purity holmium oxide and its production method
JP4565704B2 (en) * 2000-05-23 2010-10-20 三井金属鉱業株式会社 High purity holmium oxide and method for producing the same

Similar Documents

Publication Publication Date Title
US8173084B2 (en) Yb:Y2O3 ceramic powders
JP4992003B2 (en) Method for producing metal oxide fine particles
JP2005519831A (en) Method for producing nano-sized and sub-micron sized lithium transition metal oxides
JPS63295405A (en) Manufacture of finely crushed powdery composition
JPH02503790A (en) sinterable nitride
DE102005027246A1 (en) Process for producing an alpha alumina powder
CN108137345A (en) FeOOH nano dispersion fluid
JP4088721B2 (en) Conductive tin oxide fine powder and method for producing conductive tin oxide sol
JPS59207839A (en) Microspherical rare earth metal oxide and its production
KR20150043590A (en) Method for manufacturing fullerene
JP3874494B2 (en) Method for producing rare earth element spherical monodisperse fine particles
JP4184683B2 (en) Metal oxide spherical particles and method for producing the same
JPS60166222A (en) Preparation of fine powder of rare earth element oxide
JPS59111922A (en) Production of fine powder of zirconium oxide
JPH06305726A (en) Production of powdery oxide of rare earth element
JP2005170700A (en) Zirconium oxide particle and method for producing the same
JPH0587445B2 (en)
US4774068A (en) Method for production of mullite of high purity
JP6257243B2 (en) Rare earth titanate powder, method for producing the same, and dispersion containing the same
JP4822550B2 (en) Spherical multi-component glass particles
JPH07101726A (en) Production of granular tantalum oxide or niobium oxide
JPS59213620A (en) Preparation of fine powdery yttrium oxide
JP2002321917A (en) Method for manufacturing granulated niobium oxide
JPS60166223A (en) Preparation of basic chloride of rare earth element
JPS63222014A (en) Production of oxide fine powder of perovskite type