JPH07101726A - Production of granular tantalum oxide or niobium oxide - Google Patents

Production of granular tantalum oxide or niobium oxide

Info

Publication number
JPH07101726A
JPH07101726A JP27481793A JP27481793A JPH07101726A JP H07101726 A JPH07101726 A JP H07101726A JP 27481793 A JP27481793 A JP 27481793A JP 27481793 A JP27481793 A JP 27481793A JP H07101726 A JPH07101726 A JP H07101726A
Authority
JP
Japan
Prior art keywords
oxide
fluorine
niobium
precipitate
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27481793A
Other languages
Japanese (ja)
Other versions
JP3305832B2 (en
Inventor
Juntaro Kobayashi
純太郎 小林
Juichi Kawahara
寿一 川原
Masanori Kinoshita
正典 木下
Mitsutoshi Sunahara
光稔 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP27481793A priority Critical patent/JP3305832B2/en
Publication of JPH07101726A publication Critical patent/JPH07101726A/en
Application granted granted Critical
Publication of JP3305832B2 publication Critical patent/JP3305832B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain tantalum oxide or niobium oxide having a desired particle diameter, fluorine content and BET by controlling the conc. of fluorine in a filtrate after cleaning. CONSTITUTION:In this method of producing the granular tantalum oxide and niobium oxide by settling tantalum hydroxide or niobium hydroxide by the addition of ammonia into a solution of tantalum fluoride or niobium fluoride, cleaning and firing the precipitate, the particle diameter, the BET specific surface area and the fluorine content of the granular tantalum oxide or niobium oxide are controlled by cleaning the precipitate until the fluorine content in the filtrate after cleaning is within the prescribed range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミック分野、単結晶
分野、光学ガラス分野等で使用される酸化タンタル又は
酸化ニオブの製造方法に関し、より詳しくは所定の粒
径、BET、弗素含量を有する酸化タンタル又は酸化ニ
オブの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing tantalum oxide or niobium oxide used in the fields of ceramics, single crystals, optical glass, etc., and more specifically, it has a predetermined particle size, BET and fluorine content. The present invention relates to a method for producing tantalum or niobium oxide.

【0002】[0002]

【従来の技術】従来、酸化タンタル又は酸化ニオブの製
造方法として、タンタル化合物又はニオブ化合物の溶液
にアンモニア、炭酸アンモニウム、重炭酸アンモニウ
ム、又はCO2 含有アルカリを添加して水酸化タンタル
又は水酸化ニオブを沈殿させ、該沈殿物を焼成処理する
ことからなる酸化タンタル又は酸化ニオブの製造方法は
公知である(例えば、特公昭49−30354号公報、
特開昭51−10197号公報、特開平1−11582
0号公報、特開平1−176226号公報)。
2. Description of the Related Art Conventionally, as a method for producing tantalum oxide or niobium oxide, tantalum hydroxide or niobium hydroxide is prepared by adding ammonia, ammonium carbonate, ammonium bicarbonate or a CO 2 -containing alkali to a solution of tantalum compound or niobium compound. Is known, and a method for producing tantalum oxide or niobium oxide is known, which comprises firing the precipitate (for example, JP-B-49-30354).
Japanese Unexamined Patent Publication No. 51-10197, Japanese Unexamined Patent Publication No. 11582/1999
No. 0, JP-A-1-176226).

【0003】重炭酸アンモニウムを用いて水酸化タンタ
ル又は水酸化ニオブの沈殿物を生成させる場合には、一
般的には、その沈殿物の粒子(一次粒子)が大きくな
り、これを焼成すると、その一次粒子が凝集して(粒子
の異常成長を起して)更に大きな二次粒子を生成し、こ
の二次粒子を解砕しても(粉砕ではない)、解砕後の生
成酸化物のBETは0.2〜0.5m2/g、ブレーンは7
〜20μmとなるにすぎない。一方、アンモニアを用い
て沈殿物を生成させる場合には、一般に、焼成、解砕後
のその生成酸化物のBETは2〜3m2/g、ブレーンは7
〜10μmとなるにすぎない。
When a precipitate of tantalum hydroxide or niobium hydroxide is formed using ammonium bicarbonate, the particles (primary particles) of the precipitate generally become large, and when this is fired, The primary particles aggregate (causing abnormal particle growth) to generate larger secondary particles, and even if the secondary particles are crushed (not crushed), BET of the generated oxide after crushing Is 0.2-0.5 m 2 / g and the brain is 7
It is only about 20 μm. On the other hand, when a precipitate is produced using ammonia, generally, the BET of the produced oxide after calcination and crushing is 2 to 3 m 2 / g and the grain is 7
It is only about 10 μm.

【0004】[0004]

【発明が解決しようとする課題】生成酸化タンタル又は
酸化ニオブ中の残留弗素が少ない方が好ましいことは当
然であるが、酸化タンタル又は酸化ニオブのユーザはこ
れらの使用に際して、各種の反応に対する反応性、液体
中での分散性が良好であり、誘電体に用いた場合にその
誘電特性が良好になるものを求めており、このような要
求から粒径が小さく且つBETがなるべく大きい粒状酸
化タンタル又は酸化ニオブが要望されている。更に、焼
成の際に異常焼結を起こしたような粒子は当然好ましく
ない。また原料コストの面から考慮すれば炭酸アンモニ
ウム系統のものを用いるよりもアンモニアを用いる方が
有利である。
Naturally, it is preferable that the amount of residual fluorine in the tantalum oxide or niobium oxide formed is small, but the user of tantalum oxide or niobium oxide is liable to react with various reactions in using them. Therefore, it is required to have good dispersibility in a liquid and to have good dielectric properties when used for a dielectric material. From such requirements, granular tantalum oxide having a small particle size and a BET as large as possible or Niobium oxide is desired. Furthermore, particles that cause abnormal sintering during firing are naturally not preferable. From the viewpoint of raw material cost, it is more advantageous to use ammonia than to use ammonium carbonate type.

【0005】本発明はこのような従来技術の課題に鑑み
てなされたものであり、本発明の目的は残留弗素が少な
く、粒径が小さく且つBETがなるべく大きい所定の粒
径、BET、弗素含量を有する酸化タンタル又は酸化ニ
オブの製造方法を提供することにある。
The present invention has been made in view of the above problems of the prior art, and the object of the present invention is to provide a predetermined particle size, BET, and fluorine content with a small amount of residual fluorine, a small particle size, and a BET as large as possible. Another object of the present invention is to provide a method for producing tantalum oxide or niobium oxide having

【0006】[0006]

【課題を解決するための手段】本発明者等は上記の課題
を解決するために種々検討を重ねた結果、弗化タンタル
又は弗化ニオブの溶液(弗酸又は蓚酸等の有機酸溶液)
にアンモニアを加えて得た水酸化タンタル又は水酸化ニ
オブ沈殿物を洗浄した際の該洗浄済沈殿物中の弗素濃度
と洗浄後の濾液中の弗素濃度との間に相関関係があるこ
と、得られた水酸化タンタル又は水酸化ニオブ沈殿物中
のF濃度が低いと乾燥、焼成において固結を起こし易
く、逆にF濃度が比較的高いと乾燥、焼成において固結
が緩和されること、従って、その沈殿物の洗浄を洗浄後
の濾液中の弗素濃度が所定の範囲になるまで実施してそ
の生成水酸化物中の弗素濃度を調節することによって沈
殿物の一次粒子径や、生成酸化タンタル又は酸化ニオブ
の粒径、BETをコントロールすることができることを
見出し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted various studies to solve the above-mentioned problems, and as a result, a solution of tantalum fluoride or niobium fluoride (organic acid solution such as hydrofluoric acid or oxalic acid)
There is a correlation between the concentration of fluorine in the washed precipitate and the concentration of fluorine in the filtrate after washing when washing the tantalum hydroxide or niobium hydroxide precipitate obtained by adding ammonia to If the F concentration in the obtained tantalum hydroxide or niobium hydroxide precipitate is low, solidification is likely to occur in drying and firing, and conversely, if the F concentration is relatively high, the solidification is relaxed in drying and firing. By washing the precipitate until the concentration of fluorine in the filtrate after washing falls within a predetermined range and adjusting the concentration of fluorine in the hydroxide produced, the primary particle diameter of the precipitate and the tantalum oxide oxide produced can be adjusted. Alternatively, they have found that the particle diameter of B niobium oxide and BET can be controlled, and have reached the present invention.

【0007】即ち、本発明の粒状酸化タンタル又は酸化
ニオブの製造方法は、弗化タンタル又は弗化ニオブの溶
液にアンモニアを加えて水酸化タンタル又は水酸化ニオ
ブを沈殿させ、該沈殿物を洗浄し、その後焼成処理する
ことからなる粒状酸化タンタル又は酸化ニオブの製造方
法において、その沈殿物の洗浄を洗浄後の濾液中の弗素
濃度が所定の範囲になるまで実施することにより粒状酸
化タンタル又は酸化ニオブの粒径、BET、弗素含量を
制御することを特徴とする。
That is, in the method for producing granular tantalum oxide or niobium oxide of the present invention, ammonia is added to a solution of tantalum fluoride or niobium fluoride to precipitate tantalum hydroxide or niobium hydroxide, and the precipitate is washed. In the method for producing granular tantalum oxide or niobium oxide, which is followed by firing treatment, the granular tantalum oxide or niobium oxide is washed by washing the precipitate until the fluorine concentration in the filtrate after washing falls within a predetermined range. It is characterized by controlling the particle size, BET, and fluorine content.

【0008】弗化タンタル又は弗化ニオブの溶液にアン
モニアを加えて水酸化タンタル又は水酸化ニオブを沈殿
させ、該沈殿物を洗浄して該沈殿物中の弗素濃度を低減
させるのであるが、本発明者等の実施した多数の実験に
より、弗化タンタル又は弗化ニオブの溶液にアンモニア
を加えて得た水酸化タンタル又は水酸化ニオブ沈殿物を
洗浄した際の該洗浄済沈殿物中の弗素濃度と洗浄後の濾
液中の弗素濃度との間に相関関係があることが見出され
た。沈殿物中の弗素濃度を測定することは、一般的には
時間がかかるため生産工程に応用するには難がある。し
かし、液体中の弗素濃度の測定は容易である。従って、
洗浄後の濾液中の弗素濃度を測定することによって沈殿
物中の弗素濃度を推定することは生産工程に応用するの
に好都合である。
Ammonia is added to a solution of tantalum fluoride or niobium fluoride to precipitate tantalum hydroxide or niobium hydroxide, and the precipitate is washed to reduce the fluorine concentration in the precipitate. According to a number of experiments conducted by the inventors, the concentration of fluorine in the washed precipitate when the tantalum hydroxide or niobium hydroxide precipitate obtained by adding ammonia to a solution of tantalum fluoride or niobium fluoride was washed It was found that there is a correlation between the concentration of fluorine in the filtrate after washing and the concentration of fluorine in the filtrate after washing. Measuring the concentration of fluorine in the precipitate is generally time-consuming and therefore difficult to apply to the production process. However, it is easy to measure the concentration of fluorine in the liquid. Therefore,
It is convenient for application to the production process to estimate the fluorine concentration in the precipitate by measuring the fluorine concentration in the filtrate after washing.

【0009】また、本発明者等の実施した多数の実験に
より、沈殿物中の弗素が焼成の際に焼結を促進したり抑
制したりするので、その生成水酸化物中の弗素濃度を調
節することによってその後の焼成の際の粒子の異常成長
を防止することができ、生成酸化タンタル又は酸化ニオ
ブの粒径をコントロールすることができることが見出さ
れた。
Further, according to a large number of experiments conducted by the present inventors, the fluorine in the precipitate promotes or suppresses the sintering during firing, so that the concentration of fluorine in the produced hydroxide is adjusted. It was found that by doing so, it is possible to prevent abnormal growth of particles during the subsequent firing and to control the particle size of the produced tantalum oxide or niobium oxide.

【0010】以下に実施例に基づいて本発明及びその効
果を一層詳しく説明する。
The present invention and its effects will be described in more detail based on the following examples.

【0011】[0011]

【実施例】【Example】

実施例1 ニオブの弗酸溶液にアンモニア水を添加して水酸化ニオ
ブの沈殿物を生成させた。この沈殿物を小分けし、それ
ぞれ種々の程度に洗浄し、濾過した。その洗浄後の濾液
中の弗素濃度(イオンメーターでの測定値)、濾残を1
30℃で乾燥した後の水酸化ニオブ中の弗素濃度及びそ
の水酸化ニオブ粒子のBETはそれぞれ表1に示す通り
であった。これらの水酸化ニオブを765℃で焼成し、
解砕して得た酸化ニオブ中の弗素濃度及びその酸化ニオ
ブ粒子のBET、ブレーン(空気透過方式で測定した全
粒子の平均粒径)、D50(粒度分布50%に相当する粒
子径、マイクロ・トラック法による値)及び+325M
の量(超音波で1分間分散させた後の325メッシュ湿
式篩上残分)は表1に示す通りであった。
Example 1 Ammonia water was added to a hydrofluoric acid solution of niobium to generate a niobium hydroxide precipitate. The precipitate was subdivided, washed to varying degrees and filtered. Fluorine concentration in the filtrate after washing (measured value with an ion meter), filter residue 1
The fluorine concentration in niobium hydroxide after drying at 30 ° C. and the BET of the niobium hydroxide particles were as shown in Table 1. Firing these niobium hydroxides at 765 ° C.,
Fluorine concentration in niobium oxide obtained by disintegration and BET of the niobium oxide particles, Blaine (average particle diameter of all particles measured by air permeation method), D 50 (particle diameter corresponding to 50% particle size distribution, micro)・ Value by track method) and + 325M
The amount (the residue on the 325 mesh wet sieve after dispersing by ultrasonic waves for 1 minute) was as shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】表1のデータから明らかなように、ニオブ
の弗酸溶液にアンモニアを加えて水酸化ニオブを沈殿さ
せ、該沈殿物を洗浄し、その後焼成、解砕処理すること
からなる酸化ニオブの製造方法において、その洗浄を洗
浄後の濾液中の弗素濃度が約3000ppm以下になる
まで(即ち、沈殿物中の弗素濃度が0.9%以下になる
まで)洗浄することにより焼成後の生成酸化物中の弗素
濃度を10ppm以下に、殊に1ppm以下にすること
ができ、またその洗浄を洗浄後の濾液中の弗素濃度が5
00ppm以上である程度に(即ち、沈殿物中の弗素濃
度が0.2%以上である程度に)洗浄することにより焼
成後の生成酸化物の粒子の異常成長を防止することがで
きる。逆に、洗浄後の濾液中の弗素濃度が400ppm
以下になるまで(即ち、沈殿物中の弗素濃度が0.2%
以下になるまで)洗浄することにより焼成の際に焼結粒
子を生じさせることもできる。
As is clear from the data in Table 1, niobium oxide was prepared by adding ammonia to a hydrofluoric acid solution of niobium to precipitate niobium hydroxide, washing the precipitate, and then calcining and crushing the niobium oxide. In the production method, the washing is performed until the concentration of fluorine in the filtrate after washing becomes about 3000 ppm or less (that is, until the concentration of fluorine in the precipitate becomes 0.9% or less), and thereby the oxidation produced after firing is performed. The fluorine concentration in the product can be reduced to 10 ppm or less, particularly 1 ppm or less, and the concentration of fluorine in the filtrate after washing can be 5 ppm or less.
It is possible to prevent abnormal growth of particles of the produced oxide after firing by washing to a certain extent at a level of 00 ppm or more (that is, to a degree that the concentration of fluorine in the precipitate is at least 0.2%). On the contrary, the concentration of fluorine in the filtrate after washing is 400 ppm.
Until the following (ie, the fluorine concentration in the precipitate is 0.2%
It is also possible to produce sintered particles during firing by washing (until the following).

【0014】表1のデータから、洗浄後の濾液中の弗素
濃度と洗浄済沈殿物中の弗素濃度との関係をグラフに示
すと図1に示す通りである。図1からも明らかなように
洗浄後の濾液中の弗素濃度と洗浄済沈殿物中の弗素濃度
とは明確な相関関係を有しており、従って洗浄後の濾液
中の弗素濃度を測定することによって洗浄済沈殿物中の
弗素濃度を明確に推定することができる。洗浄後の濾液
中の弗素濃度と焼成後の酸化物のBETとの関係をグラ
フに示すとそれぞれ図2に示す通りである。図2からも
明らかなように、洗浄後の濾液中の弗素濃度が2000
〜10000ppmの範囲になるまで洗浄することによ
り焼成後の酸化物のBETを大きくすることができる。
洗浄後の濾液中の弗素濃度と焼成後の酸化物のブレー
ン、マイクロ・トラックD50、又は+325Mとの関係
をグラフに示すとそれぞれ図3、図4及び図5に示す通
りである。図3〜図5、特に図5からも明らかなよう
に、洗浄後の濾液中の弗素濃度が500〜3000pp
mの範囲になるまで(即ち、沈殿物中の弗素濃度が0.
2〜0.9%の範囲になるまで)洗浄することにより焼
成後の酸化物の粒径をコントロールすることができ、酸
化物の99.5%以上を−325メッシュとすることが
できる。
From the data in Table 1, the relationship between the fluorine concentration in the filtrate after washing and the fluorine concentration in the washed precipitate is shown in a graph as shown in FIG. As is clear from FIG. 1, there is a clear correlation between the concentration of fluorine in the filtrate after washing and the concentration of fluorine in the washed precipitate. Therefore, it is necessary to measure the concentration of fluorine in the filtrate after washing. By this, the fluorine concentration in the washed precipitate can be clearly estimated. The relationship between the fluorine concentration in the filtrate after washing and the BET of the oxide after firing is shown in a graph as shown in FIG. As is clear from FIG. 2, the concentration of fluorine in the filtrate after washing was 2000.
The BET of the oxide after firing can be increased by washing to be in the range of 10,000 ppm.
The relationship between the fluorine concentration in the filtrate after washing and the oxide brain after firing, Micro-track D 50 , or +325 M is shown in the graphs as shown in FIGS. 3, 4 and 5, respectively. As is clear from FIGS. 3 to 5, particularly FIG. 5, the concentration of fluorine in the filtrate after washing is 500 to 3000 pp.
up to the range of m (that is, the concentration of fluorine in the precipitate is 0.
The particle size of the oxide after firing can be controlled by washing (until it falls within the range of 2 to 0.9%), and 99.5% or more of the oxide can be made -325 mesh.

【0015】実施例2 タンタルの弗酸溶液にアンモニア水を添加して水酸化タ
ンタルの沈殿物を生成させた。この沈殿物を小分けし、
それぞれ種々の程度に洗浄し、濾過した。その洗浄後の
濾液中の弗素濃度、濾残を130℃で乾燥した後の水酸
化タンタル中の弗素濃度はそれぞれ表1に示す通りであ
った。これらの水酸化タンタルを1000℃で焼成し、
解砕して得た酸化タンタル中の弗素濃度及びその酸化タ
ンタル粒子のBET、ブレーン、D50、D90及び+32
5Mの量は表2に示す通りであった。
Example 2 Aqueous ammonia was added to a solution of tantalum in hydrofluoric acid to form a precipitate of tantalum hydroxide. Divide this precipitate into small pieces,
Each was washed to varying degrees and filtered. The fluorine concentration in the filtrate after washing and the fluorine concentration in tantalum hydroxide after drying the filter residue at 130 ° C. are shown in Table 1, respectively. Firing these tantalum hydroxides at 1000 ° C,
Fluorine concentration in tantalum oxide obtained by crushing and BET, Blaine, D 50 , D 90 and +32 of the tantalum oxide particles
The amount of 5M was as shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】表2のデータから、洗浄後の濾液中の弗素
濃度と洗浄済沈殿物中の弗素濃度との関係をグラフに示
すと図6に示す通りである。図6からも明らかなように
洗浄後の濾液中の弗素濃度と洗浄済沈殿物中の弗素濃度
とは明確な相関関係を有しており、従って洗浄後の濾液
中の弗素濃度を測定することによって洗浄済沈殿物中の
弗素濃度を明確に推定することができる。洗浄後の濾液
中の弗素濃度と焼成後の酸化物のBETとの関係をグラ
フに示すとそれぞれ図7に示す通りである。洗浄後の濾
液中の弗素濃度と焼成後の酸化物のブレーン、マイクロ
・トラックD50、又は+325Mとの関係をグラフに示
すとそれぞれ図8、図9及び図10に示す通りである。
図8〜図10からも明らかなように、洗浄後の濾液中の
弗素濃度が500〜3000ppmの範囲になるまで洗
浄することにより焼成後の酸化物の粒径を小さくコント
ロールすることができる。
From the data in Table 2, the relationship between the fluorine concentration in the filtrate after washing and the fluorine concentration in the washed precipitate is shown in a graph as shown in FIG. As is clear from FIG. 6, there is a clear correlation between the concentration of fluorine in the filtrate after washing and the concentration of fluorine in the washed precipitate. Therefore, it is necessary to measure the concentration of fluorine in the filtrate after washing. By this, the fluorine concentration in the washed precipitate can be clearly estimated. The relationship between the fluorine concentration in the filtrate after washing and the BET of the oxide after baking is shown in the graph as shown in FIG. 7, respectively. The relationships between the fluorine concentration in the filtrate after washing and the oxide branes, Microtrac D 50 , or + 325M after firing are shown in the graphs as shown in FIGS. 8, 9 and 10, respectively.
As is clear from FIGS. 8 to 10, by washing until the concentration of fluorine in the filtrate after washing is in the range of 500 to 3000 ppm, the particle diameter of the oxide after firing can be controlled to be small.

【0018】[0018]

【発明の効果】本発明の製造方法において洗浄後の濾液
中の弗素濃度をチェックことにより、所望の粒径、弗素
含量、BETを有する酸化タンタル又は酸化タンタルを
得ることができる。
INDUSTRIAL APPLICABILITY By checking the fluorine concentration in the filtrate after washing in the production method of the present invention, tantalum oxide or tantalum oxide having a desired particle size, fluorine content and BET can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】洗浄後の濾液中の弗素濃度と洗浄済沈殿物中の
弗素濃度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the fluorine concentration in a filtrate after washing and the fluorine concentration in a washed precipitate.

【図2】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
BETとの関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the BET of the oxide after firing.

【図3】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
ブレーンとの関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the oxide brane after firing.

【図4】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
マイクロ・トラックD50との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the micro track D 50 of the oxide after firing.

【図5】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
+325Mとの関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and +325 M of the oxide after firing.

【図6】洗浄後の濾液中の弗素濃度と洗浄済沈殿物中の
弗素濃度との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the fluorine concentration in the washed precipitate.

【図7】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
BETとの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the BET of the oxide after firing.

【図8】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
ブレーンとの関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the oxide branes after firing.

【図9】洗浄後の濾液中の弗素濃度と焼成後の酸化物の
マイクロ・トラックD50との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and the micro track D 50 of the oxide after firing.

【図10】洗浄後の濾液中の弗素濃度と焼成後の酸化物
の+325Mとの関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the fluorine concentration in the filtrate after washing and + 325M of the oxide after firing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 弗化タンタル又は弗化ニオブの溶液にア
ンモニアを加えて水酸化タンタル又は水酸化ニオブを沈
殿させ、該沈殿物を洗浄し、その後焼成処理することか
らなる粒状酸化タンタル又は酸化ニオブの製造方法にお
いて、その沈殿物の洗浄を洗浄後の濾液中の弗素濃度が
所定の範囲になるまで実施することにより粒状酸化タン
タル又は酸化ニオブの粒径、BET、弗素含量を制御す
ることを特徴とする粒状酸化タンタル又は酸化ニオブの
製造方法。
1. Granular tantalum oxide or niobium oxide comprising adding tantalum hydroxide or niobium fluoride to a solution of tantalum fluoride or niobium fluoride to precipitate tantalum hydroxide or niobium hydroxide, washing the precipitate, and then calcining the precipitate. In the method for producing the same, the precipitate is washed until the concentration of fluorine in the filtrate after washing is within a predetermined range to control the particle size, BET, and fluorine content of granular tantalum oxide or niobium oxide. A method for producing granular tantalum oxide or niobium oxide.
JP27481793A 1993-10-07 1993-10-07 Method for producing granular tantalum oxide Expired - Lifetime JP3305832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27481793A JP3305832B2 (en) 1993-10-07 1993-10-07 Method for producing granular tantalum oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27481793A JP3305832B2 (en) 1993-10-07 1993-10-07 Method for producing granular tantalum oxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002083413A Division JP3907102B2 (en) 2002-03-25 2002-03-25 Method for producing granular niobium oxide

Publications (2)

Publication Number Publication Date
JPH07101726A true JPH07101726A (en) 1995-04-18
JP3305832B2 JP3305832B2 (en) 2002-07-24

Family

ID=17546985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27481793A Expired - Lifetime JP3305832B2 (en) 1993-10-07 1993-10-07 Method for producing granular tantalum oxide

Country Status (1)

Country Link
JP (1) JP3305832B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356328A (en) * 2001-06-01 2002-12-13 Mitsui Mining & Smelting Co Ltd Niobium oxide slurry, niobium oxide powders and their producing method
JP2005001920A (en) * 2003-06-10 2005-01-06 Mitsui Mining & Smelting Co Ltd Tantalum hydroxide, niobium hydroxide, tantalum oxide, niobium oxide, and methods for producing them
US6984370B2 (en) 1995-10-12 2006-01-10 Cabot Corporation Process for producing niobium and tantalum compounds
WO2006075510A1 (en) * 2004-12-27 2006-07-20 Mitsui Mining & Smelting Co., Ltd. Niobium oxide and process for producing the same
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same
WO2008001754A1 (en) * 2006-06-26 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Niobium monoxide
CN102897836A (en) * 2012-10-23 2013-01-30 九江有色金属冶炼有限公司 Preparation method of ultrafine niobium oxide
CN110963529A (en) * 2018-09-30 2020-04-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984370B2 (en) 1995-10-12 2006-01-10 Cabot Corporation Process for producing niobium and tantalum compounds
US7276225B2 (en) 1995-10-12 2007-10-02 Cabot Corporation Process for producing niobium and tantalum compounds
JP2011144110A (en) * 1995-10-12 2011-07-28 Cabot Corp Niobium and tantalum pentoxide compound
JP2008088055A (en) * 1995-10-12 2008-04-17 Cabot Corp Compound of niobium pentoxide and tantalum pentoxide
JP2002356328A (en) * 2001-06-01 2002-12-13 Mitsui Mining & Smelting Co Ltd Niobium oxide slurry, niobium oxide powders and their producing method
JP2005001920A (en) * 2003-06-10 2005-01-06 Mitsui Mining & Smelting Co Ltd Tantalum hydroxide, niobium hydroxide, tantalum oxide, niobium oxide, and methods for producing them
WO2006075510A1 (en) * 2004-12-27 2006-07-20 Mitsui Mining & Smelting Co., Ltd. Niobium oxide and process for producing the same
JP2006206428A (en) * 2004-12-27 2006-08-10 Mitsui Mining & Smelting Co Ltd Niobium oxide and method for producing the same
JP2008001582A (en) * 2006-06-26 2008-01-10 Mitsui Mining & Smelting Co Ltd Niobium monoxide
WO2008001754A1 (en) * 2006-06-26 2008-01-03 Mitsui Mining & Smelting Co., Ltd. Niobium monoxide
DE112007001510T5 (en) 2006-06-26 2009-05-07 Mitsui Mining & Smelting Co., Ltd. niobium monoxide
US7988945B2 (en) 2006-06-26 2011-08-02 Mitsui Mining & Smelting Co., Ltd. Niobium monoxide
JP2007277091A (en) * 2007-07-27 2007-10-25 Dowa Holdings Co Ltd Tantalum oxide and method of manufacturing the same
CN102897836A (en) * 2012-10-23 2013-01-30 九江有色金属冶炼有限公司 Preparation method of ultrafine niobium oxide
CN102897836B (en) * 2012-10-23 2015-06-03 九江有色金属冶炼有限公司 Preparation method of ultrafine niobium oxide
CN110963529A (en) * 2018-09-30 2020-04-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof
CN110963529B (en) * 2018-09-30 2021-12-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof

Also Published As

Publication number Publication date
JP3305832B2 (en) 2002-07-24

Similar Documents

Publication Publication Date Title
JP3963962B2 (en) Method for synthesizing crystalline ceramic powder of perovskite compound
DE3813731C2 (en) Composition with zirconia and process for its manufacture
JPH07101726A (en) Production of granular tantalum oxide or niobium oxide
US8715614B2 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
JP2011116645A (en) Calcium titanate and method for producing the same
JP3907102B2 (en) Method for producing granular niobium oxide
US20050281733A1 (en) Methods of fabricating barium titanate powders
JP4378522B2 (en) Production method of barium carbonate
JPH06305726A (en) Production of powdery oxide of rare earth element
JPS6345127A (en) Method for controlling crystal diameter of uo2 pellet
JP4057475B2 (en) Method for producing barium titanate powder
JP4178224B2 (en) Method for producing yttrium oxide powder
JP4671618B2 (en) Calcium titanate and method for producing the same
JPH06191846A (en) Indium oxide powder, its production and production of ito sintered compact
JPH0688788B2 (en) Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder
JP2557344B2 (en) Method for treating inorganic hydroxide precipitate
JP7104842B2 (en) Ammonium niobate hydrate and its production method
EP0163739B1 (en) Process for preparing fine particles of ba (zrx ti 1-x)o3-solid solution
RU2820108C1 (en) Method of producing weakly aggregated dispersed zirconium dioxide powder
JP2018154527A (en) Method of producing spherical type large particle titanium dioxide
JP3531678B2 (en) Method for producing zirconia powder containing solid solution of stabilizer
KR101751070B1 (en) Method of preparing barium titanate using acid-base reaction
JP3216772B2 (en) Method for producing lead zirconate titanate powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JPH01294528A (en) Production of oxide of perovskite type of abo3 type

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120510

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130510

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140510

Year of fee payment: 12

EXPY Cancellation because of completion of term