JPS59207816A - Production of inp crystal - Google Patents

Production of inp crystal

Info

Publication number
JPS59207816A
JPS59207816A JP8163083A JP8163083A JPS59207816A JP S59207816 A JPS59207816 A JP S59207816A JP 8163083 A JP8163083 A JP 8163083A JP 8163083 A JP8163083 A JP 8163083A JP S59207816 A JPS59207816 A JP S59207816A
Authority
JP
Japan
Prior art keywords
inp
polycrystals
in2o3
phosphine
boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8163083A
Other languages
Japanese (ja)
Inventor
Hidehiko Kamata
英彦 鎌田
Seiji Shinoyama
篠山 誠二
Akinori Katsui
勝井 明憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8163083A priority Critical patent/JPS59207816A/en
Publication of JPS59207816A publication Critical patent/JPS59207816A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To synthesize InP polycrystals of high purity efficiently in the vapor phase, by reducing In oxide vapor with a thermally dissociated phosphine gas. CONSTITUTION:Molten In 1 is placed on a boat in an apparatus, and In2O3 is placed thereon. Resistance heating elements 7 and 10 are respectively set at a polycrystal deposition temperature and geeration temperature of In2O3, and a graphite heating element 9 is set at the reaction temperature. A carrier gas, e.g. Ar, is passed from a carrier gas inlet pipe 3 and a preheated and thermally dissociated phosphine gas is passed from a phosphine inlet pipe 4. Fine particulate polycrystals of InP are stuck and deposited on a crucible 6 and a protrusion 5 for producing eddy currents by the above-mentioned operation. According to the method, impurities contained in the molten InP are left in the boat, and purification is carried out even in reduction of In2O3. Thus, the impurities do not take part in the synthetic reaction, and fine particulate polycrystals of Inp of high purity are obtained.

Description

【発明の詳細な説明】 本発明は、高性能の電子デバイスおよび光デバイスの製
作上に必要なInP結晶の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing InP crystals necessary for manufacturing high-performance electronic devices and optical devices.

従来、化合物半導体の多結晶製造方法として、例えは水
平7゛リッジマン法、除冷法、圧力バランス法等の各種
のボート法が用いられている。第1図に例として水平ノ
リフジマン法でのILI−V族半導体合成装置の概要を
示す。図中、11は石英7ノノル、12は石英ボート、
13はV族元素、」4は■族元素を表わす。これを動作
させるには、以上の11゜12.13.14で構成され
た閉管を、図中上部に示す温度分布を与える電気炉中に
入れ、図の矢印の向きに閉管を移動させる。領域Aで発
生したV族蒸気は石英ボート12中の溶融■族元素中に
拡散し、化合物を合成する。同時に閉管の移動により合
成された化合物融液は冷却されて固化する。しかしなが
らこれらの方法では■族元素支持に用いる容器が高温に
さらされるために、これらの容器からの不純物汚染を防
ぐことが出来ないという欠点があった。
Conventionally, various boat methods such as the horizontal 7° Ridgeman method, gradual cooling method, and pressure balance method have been used as methods for producing polycrystals of compound semiconductors. FIG. 1 shows an outline of an ILI-V group semiconductor synthesis apparatus using the horizontal Norifugeman method as an example. In the figure, 11 is quartz 7-north, 12 is quartz boat,
13 represents a group V element, and 4 represents a group II element. To operate this, the closed tube constructed of the above 11°, 12, 13, and 14 is placed in an electric furnace that provides the temperature distribution shown in the upper part of the figure, and the closed tube is moved in the direction of the arrow in the figure. The group V vapor generated in region A diffuses into the molten group III element in the quartz boat 12 and synthesizes a compound. At the same time, the compound melt synthesized by the movement of the closed tube is cooled and solidified. However, these methods have a drawback in that the containers used to support the Group I elements are exposed to high temperatures, and therefore impurity contamination from these containers cannot be prevented.

さらに溶融法によるため、原料となる■族元素中に含有
される不純物は製造された多結晶内にその脣ま残シ、結
晶の純度が高くならないという欠点もあった。
Furthermore, since the method uses a melting method, impurities contained in group (I) elements used as raw materials remain in the produced polycrystals, and the purity of the crystals cannot be increased.

本発明の目的は、従来の化合物半導体多結晶製造方法に
おける以上の欠点を解決して、高純度1nP多結晶を製
造し得る方法を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of conventional compound semiconductor polycrystal manufacturing methods and to provide a method capable of manufacturing high purity 1nP polycrystals.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、InPの製造において、酸化In蒸気を熱解
離したホスフィンガスによシ還元し、InPを気相合成
することを特徴とする。
The present invention is characterized in that, in the production of InP, InP is synthesized in a vapor phase by reducing InP oxide vapor with thermally dissociated phosphine gas.

次に本発明の実施例につき説明する。Next, examples of the present invention will be described.

第2図は本発明の製造方法によるInP多結晶製造装置
の一例の概略図である。1は溶融インジウム、2はI 
n 201.3はキャリアガス導入管、4はホスフィン
ガス導入管、5は突起、6はるつぼ、7゜10は抵抗発
熱体、8は高周波コイル、9はグラファイト発熱体、1
5は石英反応開管を示す。突起5は渦流生成の為に設け
たもので、石英製治具によってるつぼ6に固定保持され
る。これを動作させるには、第2図中の発熱体7 、9
 、10をそれぞれ多結晶堆積温度(750℃)1反応
温度(950℃)、酸化インジウムガス発生温度(80
0℃)に設定し、キャリアガス導入管3を通してキャリ
アガスを流す。本実施例においてはArを用いた。次に
ホスフィンガス導入管4を通して予備加熱(900℃)
したホスフィンガスを流す。このような操作により、渦
流生成用突起5およびるつぼ6にInPの微粒子状の多
結晶が付着・堆積する。第2図から明らかなように、本
発明の方法によればInPの製造に気相反応を用いてお
り、溶融In内に含有される不純物はボート内に残され
、かつまた、酸化インジウムの還元時にも純化が行なわ
れ、InPの合成反応には不純物が関与しないので、高
純度InP微粒子多結晶を製造できた。ここで成長速度
は5g/時であった。
FIG. 2 is a schematic diagram of an example of an InP polycrystal manufacturing apparatus according to the manufacturing method of the present invention. 1 is molten indium, 2 is I
n 201.3 is a carrier gas introduction tube, 4 is a phosphine gas introduction tube, 5 is a protrusion, 6 is a crucible, 7゜10 is a resistance heating element, 8 is a high frequency coil, 9 is a graphite heating element, 1
5 shows a quartz reaction open tube. The protrusion 5 is provided to generate a vortex flow, and is fixedly held on the crucible 6 by a quartz jig. To operate this, heat generating elements 7 and 9 in FIG.
, 10 are respectively polycrystalline deposition temperature (750°C), reaction temperature (950°C), and indium oxide gas generation temperature (80°C).
0° C.) and flow the carrier gas through the carrier gas introduction pipe 3. In this example, Ar was used. Next, preheat (900°C) through the phosphine gas introduction pipe 4.
Flow the phosphine gas. By such an operation, fine particle-like polycrystals of InP are attached and deposited on the vortex generation projection 5 and the crucible 6. As is clear from FIG. 2, according to the method of the present invention, a gas phase reaction is used to produce InP, impurities contained in the molten In are left in the boat, and the reduction of indium oxide is Since purification was sometimes performed and impurities were not involved in the InP synthesis reaction, high purity InP fine particle polycrystals could be produced. The growth rate here was 5 g/hour.

表1は、従来技術による結晶と、本発明方法による結晶
の比較をInPについて行なったものである。
Table 1 shows a comparison between a crystal according to the prior art and a crystal according to the method of the present invention for InP.

表1結晶純度の比較 以上で明らかなように、本発明方法が結晶純度の向上に
効果があることが確認された。
Table 1 Comparison of crystal purity As is clear from the above, it was confirmed that the method of the present invention is effective in improving crystal purity.

第2図にお(・て、るつぼ6として単結晶製造に用いる
るつばを設置し、多結晶を上記手順で製造した後、単結
晶製造装置内に装填して、液体カプセル引き上げ法等に
より単結晶製造を行なえば、単結晶製造用の新たなるつ
ほが不要となるのみならず、単結晶製造までの操作を簡
略化できる。
In Figure 2, a crucible used for single crystal production is installed as the crucible 6, and after producing polycrystals according to the above procedure, it is loaded into a single crystal production apparatus, and the polycrystals are produced using a liquid capsule pulling method, etc. If crystal production is carried out, not only will a new terminal for single crystal production become unnecessary, but also the operations up to single crystal production can be simplified.

以上詳細に説明したように、本発明によるInP半導体
多結晶製造法においては、■族および■族元素の蒸気か
ら多結晶を合成し、さらには多結晶を単結晶製造用のる
つぼ内部に直接堆積成長させることが出来るため、高純
度の化合物半導体多結晶を直ちに単結晶製造に用いる形
で製造できるので、高純度の多結晶を安価にかつ工程を
簡略化して製造できるという利点がある。
As explained in detail above, in the InP semiconductor polycrystal manufacturing method according to the present invention, polycrystals are synthesized from vapors of group II and group II elements, and the polycrystals are directly deposited inside a crucible for manufacturing single crystals. Since it can be grown, high-purity compound semiconductor polycrystals can be immediately manufactured in a form that can be used for single-crystal manufacturing, so there is an advantage that high-purity polycrystals can be manufactured at low cost and with a simplified process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の水平ブリッジマン法における装置原理を
示す概略断面図、第2図は本発明の方法の一実施例を示
す製造装置の概略断面図である。 11・・・石英アンプル、12・・・石英ボート、13
・・・■族元素、 14・・・■族元素、l・・・溶融
インジウム、 2・・・三二酸化インジウム(In20
a)、 3・・・キャリアガス導入管、4・・・ホスフ
ィンガス導入管、 5・・・突起、6・・・るつは、 
7・・・抵抗発熱体、 8・・・高周波コイル、  9
・・・グラファイト発熱体、lO・・・抵抗発熱体、 
】5・・・石英反応開管。 特許出願人  日本電信電話公社 代 理 人   白  水  常  雄外1名
FIG. 1 is a schematic cross-sectional view showing the principle of an apparatus in a conventional horizontal Bridgman method, and FIG. 2 is a schematic cross-sectional view of a manufacturing apparatus showing an embodiment of the method of the present invention. 11...Quartz ampoule, 12...Quartz boat, 13
...■ group element, 14...■ group element, l... molten indium, 2... indium sesquioxide (In20
a), 3...Carrier gas introduction tube, 4...Phosphine gas introduction tube, 5...Protrusion, 6...Routa,
7... Resistance heating element, 8... High frequency coil, 9
...graphite heating element, lO...resistance heating element,
]5...Quartz reaction open tube. Patent applicant: Nippon Telegraph and Telephone Public Corporation Representative: Tsune Hakusui and one other person

Claims (1)

【特許請求の範囲】[Claims] 酸化インジウムガスを、解離したホスフィンノノスで還
元し反応させることにより、InPの多結晶を製造する
ことを特徴とするInP結晶製造方法。
A method for producing an InP crystal, comprising producing polycrystals of InP by reducing and reacting indium oxide gas with dissociated phosphine nonosu.
JP8163083A 1983-05-12 1983-05-12 Production of inp crystal Pending JPS59207816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8163083A JPS59207816A (en) 1983-05-12 1983-05-12 Production of inp crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8163083A JPS59207816A (en) 1983-05-12 1983-05-12 Production of inp crystal

Publications (1)

Publication Number Publication Date
JPS59207816A true JPS59207816A (en) 1984-11-26

Family

ID=13751650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8163083A Pending JPS59207816A (en) 1983-05-12 1983-05-12 Production of inp crystal

Country Status (1)

Country Link
JP (1) JPS59207816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615762A1 (en) * 1987-05-25 1988-12-02 Nippon Sheet Glass Co Ltd METHOD FOR MANUFACTURING POLYCRYSTALLINE PHOSPHIDE FILM USEFUL AS OPTOELECTRONIC MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2615762A1 (en) * 1987-05-25 1988-12-02 Nippon Sheet Glass Co Ltd METHOD FOR MANUFACTURING POLYCRYSTALLINE PHOSPHIDE FILM USEFUL AS OPTOELECTRONIC MATERIAL

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US7695565B2 (en) Sublimation chamber for phase controlled sublimation
JPS5838399B2 (en) Method for manufacturing silicon carbide crystal layer
US3481711A (en) Crystal growth apparatus
US3036898A (en) Semiconductor zone refining and crystal growth
US20080118648A1 (en) Method For The Production Of Group III Nitride Bulk Crystals Or Crystal Layers From Fused Metals
JPS59207816A (en) Production of inp crystal
US4764350A (en) Method and apparatus for synthesizing a single crystal of indium phosphide
US3078150A (en) Production of semi-conductor materials
JPS6041036B2 (en) GaAs floating zone melting grass crystal production equipment
JPS6120514B2 (en)
JPH0416597A (en) Production of silicon carbide single crystal
JPS5838400B2 (en) Method for manufacturing silicon carbide crystal layer
JPS6152119B2 (en)
JPS5973500A (en) Preparation of compound semiconductor
US3130013A (en) Methods of producing silicon of high purity
JPH0364480B2 (en)
JP2612897B2 (en) Single crystal growing equipment
JPS60264399A (en) Production of single crystal of silicon carbide
JPH0524979A (en) Apparatus for manufacturing compound semiconductor crystal
JPH0327515B2 (en)
JPH0218375A (en) Device for pulling up semiconductor single crystal
JPS6120515B2 (en)
JPS5812238B2 (en) Method for manufacturing silicon carbide crystal layer
Hemmat et al. Solution growth of Electronic Compounds and their solid solutions