JPS59207565A - Control system of air cooling fuel cell - Google Patents

Control system of air cooling fuel cell

Info

Publication number
JPS59207565A
JPS59207565A JP58082194A JP8219483A JPS59207565A JP S59207565 A JPS59207565 A JP S59207565A JP 58082194 A JP58082194 A JP 58082194A JP 8219483 A JP8219483 A JP 8219483A JP S59207565 A JPS59207565 A JP S59207565A
Authority
JP
Japan
Prior art keywords
air
temperature
load
flow rate
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58082194A
Other languages
Japanese (ja)
Other versions
JPH0766827B2 (en
Inventor
Takashi Sakai
井出正裕
Masahiro Ide
酒井貴史
Osamu Tajima
山田誠
Kazuyoshi Tsukamoto
塚本一義
Makoto Yamada
田島収
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP58082194A priority Critical patent/JPH0766827B2/en
Publication of JPS59207565A publication Critical patent/JPS59207565A/en
Publication of JPH0766827B2 publication Critical patent/JPH0766827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To keep cell operation temperature constant by detecting a load, each temperature in air supply and exhaust, and air flow rate during cell operation and calculating them with a controller based on a specified program to control a blower and a damper. CONSTITUTION:Air necessary for reaction and cooling of a fuel cell is supplied to a stack S with a blower 7 through a manifold 8. Exhaust air from a manifold 8' is exhausted through a damper 3. Air flow rate is detected with an air flow rate detector 14, temperature is with temperature detectors 11 and 12 installed in manifolds 8 and 8', and load current is with a detector 4. Detected signals are inputted into a controller 13 and calculated based on a specified program, and the blower 7 and damper 3 are controlled by an output from the controller. Operation temperature of a cell is kept almost constant regardless of load variation, and reliability is increased without installing the temperature detectors 11 and 12 within the stack S.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空冷式燃料電池の制御方式に関するものである
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a control method for an air-cooled fuel cell.

(ロ)従来技術 従来電池温度の制御は、第1図に示すように電池内部に
温度検出器(1)を埋設し、それによυ検出された温度
をコントローラ(2)に入れてダンパ(3)を調整し、
供給空気の温度を制御することにより行っていた。また
同時に負荷電流を変成器などの検出器(4)によシ検出
し、コントローラ(5)を介しインバータ(6)により
プロワ(7)の回転数を調貨1゛」シ、負荷に見合った
風光に制御していた。
(B) Prior Art Conventional battery temperature control involves embedding a temperature detector (1) inside the battery as shown in Figure 1, and transmitting the temperature detected by the temperature detector (2) to a damper (3). ) and
This was done by controlling the temperature of the supplied air. At the same time, the load current is detected by a detector (4) such as a transformer, and the rotation speed of the blower (7) is adjusted to 1" by the inverter (6) via the controller (5) to match the load. It was controlled by the wind.

しかし温度検出器f1+を電池内部に埋設するには、1
)検出部をガス分離板の力゛ス流通溝に入れるため極細
のものを用いる必要があシ、ぜジ械的強度が弱く断線の
おそれがある。11)直接電極に接するため酸による腐
蝕で破損して電気的ショートを起すので危険である11
1)電極を破損する可能性かあると共に埋設部によシ反
応面積を小さくするなどの問題点があった。又前記制省
1方式ではプロアとダンパの調整には相互関連性がなく
、負荷に応じた適正な制御が行はれないきいう欠点があ
った。
However, in order to embed the temperature sensor f1+ inside the battery, 1
) In order to insert the detection part into the force distribution groove of the gas separation plate, it is necessary to use an extremely thin one, which has poor mechanical strength and may break. 11) It is dangerous because it is in direct contact with the electrode, so it can be damaged by corrosion due to acid and cause an electrical short circuit.11
1) There is a possibility of damaging the electrode, and there are problems in that the reaction area is reduced due to the buried portion. Further, in the first system, there is no correlation between the adjustment of the proar and the damper, and there is a drawback that appropriate control according to the load cannot be performed.

(ハ)亮り・jの目的 本発明の目的はl(j記の如く温度検出器を電池内に埋
とすることによる問題点を解消し、負荷変動にかkわら
ず電池作動温度を略一定に維持するよう制御せしめるこ
とである。
(C) Purpose of light/j The purpose of the present invention is l (1) to solve the problems caused by embedding the temperature detector in the battery as described in j, and to make it possible to monitor the battery operating temperature regardless of load fluctuations. The goal is to control the temperature so that it remains constant.

に)発明の梅成 零発り]は電池作動時負荷量、空気の供給、排出各温度
及び空気流量を人々検出して制御器で所定プログラムに
もとづき演算し、該演算出力信号により負荷の変動にか
−わらず電池作動温度が略一定に保たれるよう前記空気
流量及び空気供給温度をブロア及びダンパの調節により
制御せしめたことを特徴とするものである。
2) The invention originated by Rei Umenari] detects the load amount, air supply and exhaust temperature, and air flow rate during battery operation, calculates it with a controller based on a predetermined program, and changes the load based on the calculated output signal. The present invention is characterized in that the air flow rate and air supply temperature are controlled by adjusting a blower and a damper so that the battery operating temperature is kept substantially constant regardless of the temperature.

(利実施例 本発明の実施例を第2図について説明するが、該当部分
は第1図と同一記号を付した。
(Embodiment) An embodiment of the present invention will be explained with reference to FIG. 2, and the corresponding parts are given the same symbols as in FIG. 1.

スタック(S)の各側面には相対向して空気供給及び排
出用マニホルド(8H8)と燃料ガス(水素)供給及び
排出用マニホルド(9バ91とが取付けられている。
An air supply and discharge manifold (8H8) and a fuel gas (hydrogen) supply and discharge manifold (9 bars 91) are attached to each side of the stack (S) so as to face each other.

電池の反応と冷却に必要な空気はブロワ(7)によりマ
ニホルド(8)を介してスタック(S)に遮られ、マニ
ホルド(81より排出された空気は、ダンパ(3)によ
り一部が外部へ排出されると共に残’r(sが循環路(
1(1に入り、前記排出空気に見合って導入きれる新鮮
空気と共にスタック(S)に供給される。一方燃料力゛
スはマニホルド(9)より供給されスタック(S)を経
てマニホルド(9)1より排出される。
The air necessary for the reaction and cooling of the battery is blocked by the blower (7) via the manifold (8) to the stack (S), and a portion of the air exhausted from the manifold (81) is directed outside by the damper (3). At the same time as it is discharged, the remaining 'r(s) is sent to the circulation path (
1 (1), and is supplied to the stack (S) together with fresh air that can be introduced in proportion to the exhaust air.Meanwhile, fuel power is supplied from the manifold (9) and passes through the stack (S) to the manifold (9)1. more excreted.

本発明による温度検出器(n)Oz+は空気用マニホル
ドfg)isr内の供給口及び排出口近傍に夫々設置さ
れ、これらの検出信号(TI)(T2)が演算制御部θ
3)に入力される。
The temperature detector (n)Oz+ according to the present invention is installed near the supply port and the discharge port in the air manifold fg)isr, respectively, and these detection signals (TI) (T2) are sent to the calculation control unit θ.
3) is input.

空気流量検出器(14)はピトー管などを用いて空気差
圧を検出し、これを空電変換器(+51で電気信号にし
て制御器(I(8)に入力される。負荷電流は従来と同
様変成器などの検出器(4)で検出して同じく制a1器
03)に入力される。
The air flow rate detector (14) detects the air differential pressure using a pitot tube, etc., and converts this into an electric signal using a pneumatic converter (+51) and inputs it to the controller (I (8)). Similarly, it is detected by a detector (4) such as a transformer and input to the controller a1 (03).

これら空気の供給、排出側番温度、空気流量及び負荷量
の各入力信号は、制御器(13)で所定フ゛ログラムに
もとづき演算され、出力信号としてブロワ(7)及びグ
ンバー(3)を制御する。以下その詳細について説明す
る2、 −・般に然剣の関係式として電池の発熱量(Ql)は負
荷に関係し Q1=C11CVo−V)kwh ・・=−・・(1)
こ−でC1:係数、I:負向亀流 VO:班論起電力 V:動作室圧 で表はされ、又空気による玲却然貝(Q2)はQ2二C
2yC’12−T’l)  kcal   ・−・−(
2!こ’hfi(:2:係数、v:空気流量]゛l:空
気供Ia温度、T2:空気排出温度で大はされる。
These input signals for air supply, discharge side temperature, air flow rate, and load amount are calculated by the controller (13) based on a predetermined program, and are used as output signals to control the blower (7) and gun bar (3). . The details will be explained below 2. Generally speaking, the heat generation amount (Ql) of a battery is related to the load as a relational expression: Q1=C11CVo-V)kwh...=-...(1)
Here, C1: Coefficient, I: Negative turtle flow VO: Dynamic electromotive force V: Operating chamber pressure, and the air pressure (Q2) is Q22C.
2yC'12-T'l) kcal ・-・-(
2! This is increased by hfi (:2: coefficient, v: air flow rate), l: air supply Ia temperature, T2: air discharge temperature.

電池の発熱量(Ql)と空気による冷却i=、 (Q2
)は等しいので、式(ll(2iよシC,I I (V
O−V)=C227−(T2−TI ) a ・・・・
旧・(31こ覧でQlkw、h  Q2:1ccalと
単位が異るので1kwh=860kcal  より Q
 1 = Q 2/860となり、その祁j止値をαと
した の関係式が成り立つ。
Battery calorific value (Ql) and air cooling i=, (Q2
) are equal, so the formula (ll(2i y C, I I (V
OV)=C227-(T2-TI)a...
Old (31) Since the units are different from Qlkw and h Q2: 1 ccal, 1 kwh = 860 kcal Q
1 = Q 2/860, and the relational expression where α is the final value holds true.

(3)式において1.V、び、’f2.’f1は実際の
電池運転におりる変数であるが、そのうち1.Vは電A
Jl狗荷によシ直接定まシヶ、Tlは負荷にもとづき制
御される。尚T2はT1と電池負荷(発8)に関連する
変数である。
In equation (3), 1. V,bi,'f2. 'f1 is a variable related to actual battery operation, among which 1. V is electric A
Jl is determined directly by the load, and Tl is controlled based on the load. Note that T2 is a variable related to T1 and the battery load (generation 8).

次に実際の制御動作について説明する。Next, the actual control operation will be explained.

電池が或一定条件下で運転中、負荷が*動した場合はこ
れを負荷電流検出器(4)によ量検出し、その結果にも
とづいて制御器(13)よりインバータ(6)を調整し
、負荷に応じた供給空気量を検出器Hでチェックし々か
ら設定する。たとえば100A/cイに対し60 m”
/ H、80A /crrfに対して50 m”、/H
のようにする。
If the load moves while the battery is operating under certain conditions, this is detected by the load current detector (4), and the inverter (6) is adjusted by the controller (13) based on the result. , the amount of air to be supplied according to the load is checked by the detector H and then set. For example, 60 m for 100 A/c
/H, 80A 50 m” for /crrf, /H
Do like this.

同時に電池スタック(S)への供給空気温度(T1)お
よび排出空気温度(T2)を夫々の温度検出器(川(1
2〕で検出し、制御器θ3)において前記式(3)にも
とづき演算し、空気流量(+/)と負荷(V、I)との
関係よシダンバ(3)を調節し、電池スタック(S)へ
の空気供給温度(T1)が適正値に女るよう制御する、
本制御方式では電池の発熱量(Ql)と空気による冷却
量(Q2)が等しくなるよう空気流量(1/)及び空気
供給温度(T1)を制御し、負荷の変動にか−わらず電
池作動温度が略一定に保たれる。
At the same time, the supply air temperature (T1) and the exhaust air temperature (T2) to the battery stack (S) are measured by the respective temperature detectors (river (1)
2], the controller θ3) calculates based on the above equation (3), adjusts the sidamba (3) according to the relationship between the air flow rate (+/) and the load (V, I), and then adjusts the battery stack (S). ) to keep the air supply temperature (T1) to an appropriate value.
In this control method, the air flow rate (1/) and air supply temperature (T1) are controlled so that the amount of heat generated by the battery (Ql) and the amount of cooling by air (Q2) are equal, and the battery operates regardless of load fluctuations. The temperature is kept approximately constant.

電、油温度とT1との関係は負荷量、空気流量などによ
り前述の如くあらかじめプラグラムできるものであり、
また排出側温度検出器θ2)はT2とT1の差を検出す
るためのもので、T2−’l”lの差が最適温度範囲で
あれば良であるが、その温度差が大巾に変化した場合フ
ィードバックをかけてプロア(7)とダンパ(3)を再
調節させ、最適温度範囲に維持する機能を有する。
The relationship between electric and oil temperatures and T1 can be programmed in advance as described above, depending on the load amount, air flow rate, etc.
In addition, the discharge side temperature sensor θ2) is used to detect the difference between T2 and T1.It is fine if the difference between T2-'l"l is within the optimum temperature range, but the temperature difference changes widely. If this occurs, it has a function to apply feedback to readjust the proar (7) and damper (3) to maintain the temperature within the optimum range.

(へ)発明の効果 本発明によれば電池の温度検出器は、従来のように電池
スタック内に埋設することなく空気用マニホルドの供給
口及び排出口にittしているので、電極や電解液に接
しないため、損傷のおそれなく機械的強度の大きいもの
が使用可能となると共に負荷変動に対し応答性が向上し
て制御が正確に行える。
(F) Effects of the Invention According to the present invention, the battery temperature sensor is not embedded in the battery stack as in the past, but is installed in the supply and discharge ports of the air manifold, so it is possible to use the electrodes and the electrolyte. Since it does not come into contact with the load, it is possible to use a device with high mechanical strength without fear of damage, and the response to load fluctuations is improved, allowing accurate control.

特に電池作動中の負荷変動に対し、負荷量、空気の供給
、排出者温度及び空気流量を夫々検出して制御器で所定
のプログラムにもとづき演算し、空気流量を調整しつ!
空気供給温度が適正値になるようブロア及びダンパによ
p制御するものであるから、負荷の変動にか\わらず電
池作動温度を略一定にa持するこ七ができ、電池の寿命
向上に資するものである。
In particular, in response to load fluctuations during battery operation, the load amount, air supply, exhaust temperature, and air flow rate are detected, and the controller calculates them based on a predetermined program to adjust the air flow rate.
Since the blower and damper are used to control the air supply temperature to an appropriate value, it is possible to maintain the battery operating temperature at a nearly constant level regardless of load fluctuations, which improves battery life. It contributes to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は空冷式燃料電池の従来方式による制御装置を示
す系統図、第2図は本発明による制御装置の系統図であ
る。 (S)・・・電池スタック (3)・・・ダンパ (4
)・・・負荷電流検出器 (6)・・・インバータ (
7)・・・ブロワ (8)(8)・・・空気供給及び排
出側番マニホルド (II)(12i・・・空気供給及
び排出側番温度検出器 θ3)・・・演算m1j徒1器
f”I・・空気流量検出器。 代理人 弁理士 佐 野 靜 夫1−.1.’□″i’
、j 。 1・−2r°、パ ・、−′
FIG. 1 is a system diagram showing a conventional control device for an air-cooled fuel cell, and FIG. 2 is a system diagram of a control device according to the present invention. (S)...Battery stack (3)...Damper (4
)...Load current detector (6)...Inverter (
7)...Blower (8) (8)...Air supply and discharge side number manifold (II) (12i...Air supply and discharge side number temperature sensor θ3)...Calculation m1j waste unit f ``I...Air flow rate detector. Agent: Patent attorney: Yasuo Sano 1-.1.'□''i'
,j. 1・−2r°, Pa・,−′

Claims (2)

【特許請求の範囲】[Claims] (1)電池への供給空気量を調節するプロワと、空気の
排出、循環比率を変えて空気取入量を調節するダンパと
を備え、電池の作動時負荷1、電池の空気供給、排出、
各温度及び空気流量を大々検出して制御器で所定プログ
ラムにもとづき演算し、その演算出力により、負荷に応
じた空気流量を前記プロアで設定して前記空気供給温度
が適正値になるよう前記ダンパを制御し、負荷変動にか
−わらず電池作動温度を略一定に維持せしめることを特
徴とする空冷式燃料電池の制御方式。
(1) Equipped with a blower that adjusts the amount of air supplied to the battery, and a damper that adjusts the amount of air intake by changing the air discharge and circulation ratio.
Each temperature and air flow rate are detected extensively, and the controller calculates them based on a predetermined program. Based on the calculated output, the air flow rate is set by the proa according to the load, and the air supply temperature is set to an appropriate value. A control method for an air-cooled fuel cell characterized by controlling a damper to maintain a substantially constant cell operating temperature regardless of load fluctuations.
(2)前記空気供給、排出各温度はマニホルドの供給口
及び排出口近傍に夫々設置した各温度検出器で検出され
ることを特徴とする特許8h才の範囲第1項記載の空冷
式燃料電池の制御方式。
(2) The air-cooled fuel cell according to item 1 of the scope of patent 8h, characterized in that the air supply and exhaust temperatures are detected by temperature detectors installed near the supply port and the discharge port of the manifold, respectively. control method.
JP58082194A 1983-05-11 1983-05-11 Air-cooled fuel cell Expired - Lifetime JPH0766827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58082194A JPH0766827B2 (en) 1983-05-11 1983-05-11 Air-cooled fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58082194A JPH0766827B2 (en) 1983-05-11 1983-05-11 Air-cooled fuel cell

Publications (2)

Publication Number Publication Date
JPS59207565A true JPS59207565A (en) 1984-11-24
JPH0766827B2 JPH0766827B2 (en) 1995-07-19

Family

ID=13767616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58082194A Expired - Lifetime JPH0766827B2 (en) 1983-05-11 1983-05-11 Air-cooled fuel cell

Country Status (1)

Country Link
JP (1) JPH0766827B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
WO2000054357A1 (en) * 1999-03-08 2000-09-14 International Fuel Cells, Llc Method and apparatus for improved delivery of input reactants to a fuel cell assembly
WO2008108497A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Cooler and cooling method of electric apparatus
US8166770B2 (en) 2006-12-14 2012-05-01 Toyota Jidosha Kabushiki Kaisha Apparatus and method for cooling electrical equipment
US8597847B2 (en) 2009-02-27 2013-12-03 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and transportation equipment including the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240865A (en) * 1988-08-01 1990-02-09 Hitachi Ltd Temperature control device of fuel cell
WO2000054357A1 (en) * 1999-03-08 2000-09-14 International Fuel Cells, Llc Method and apparatus for improved delivery of input reactants to a fuel cell assembly
US6497971B1 (en) * 1999-03-08 2002-12-24 Utc Fuel Cells, Llc Method and apparatus for improved delivery of input reactants to a fuel cell assembly
US8166770B2 (en) 2006-12-14 2012-05-01 Toyota Jidosha Kabushiki Kaisha Apparatus and method for cooling electrical equipment
WO2008108497A1 (en) * 2007-03-06 2008-09-12 Toyota Jidosha Kabushiki Kaisha Cooler and cooling method of electric apparatus
US8733430B2 (en) 2007-03-06 2014-05-27 Toyota Jidosha Kabushiki Kaisha Cooling apparatus and cooling method for electrical equipment
US8597847B2 (en) 2009-02-27 2013-12-03 Yamaha Hatsudoki Kabushiki Kaisha Fuel cell system and transportation equipment including the same

Also Published As

Publication number Publication date
JPH0766827B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US20220402363A1 (en) Control method and system of a fuel cell electric vehicle stack
US7687168B2 (en) Fuel cell system for setting predetermined operation state when substitutional value control is impossible
US7824815B2 (en) Fuel cell system
US4859545A (en) Cathode flow control for fuel cell power plant
US9983268B2 (en) Power generation characteristic estimation device for fuel cell
US20130089801A1 (en) Fuel cell system and method of controlling fuel cell system
KR20070110415A (en) Fuel cell system
US7993786B2 (en) Fuel cell system
US11342571B2 (en) Coolant control system and control method of fuel cell
US10115989B2 (en) Operation method of fuel cell system and fuel cell system
CN111354958A (en) Anode protection system of fuel cell and control method
WO2023185596A1 (en) Fuel cell stack control system and control method
JPS59207565A (en) Control system of air cooling fuel cell
US20130157158A1 (en) Fuel cell system
JPH06243882A (en) Protection/suspension method for fuel cell power plant
CN103926535A (en) Transient Inlet Relative Humidity Estimation Via Adaptive Cathode Humidification Unit Model And High Frequency Resistance
CA2635739A1 (en) Fuel cell system having decreased deterioration during initiation
JPH06267577A (en) Control device for fuel cell
JP2008071637A (en) Fuel cell system, fuel cell stack abnormality inspection device, and fuel cell stack abnormality judging method
KR20230133076A (en) Method and system for correcting offset of hydrogen pressure sensor in fuel cell
JP2000243421A (en) Fuel cell apparatus
JPH05335029A (en) Fuel cell power-generating system
US20210257637A1 (en) Fuel cell system and control method thereof
KR20150056344A (en) Fuel cell stack and method for controling temperature of the same
US11870112B2 (en) Apparatus for sensing voltage information of fuel cell