JPH06243882A - Protection/suspension method for fuel cell power plant - Google Patents

Protection/suspension method for fuel cell power plant

Info

Publication number
JPH06243882A
JPH06243882A JP50A JP2586593A JPH06243882A JP H06243882 A JPH06243882 A JP H06243882A JP 50 A JP50 A JP 50A JP 2586593 A JP2586593 A JP 2586593A JP H06243882 A JPH06243882 A JP H06243882A
Authority
JP
Japan
Prior art keywords
voltage
fuel cell
cell
protection
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50A
Other languages
Japanese (ja)
Inventor
Takashi Ujiie
孝 氏家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP50A priority Critical patent/JPH06243882A/en
Publication of JPH06243882A publication Critical patent/JPH06243882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent a fuel cell from being damaged by detecting a gas shortage condition which locally takes place in a cell stack when a command is directed to increase fuel cell loading, and thereby suspending the operation of the fuel cell for protecting the cell. CONSTITUTION:A fuel cell stack 1 is divided into a plurality of cell blocks 1a, 1b, 1c,...1f and the like while plural unit cells are made to be one unit, so that each voltage Va, Vb, Vc,...Vf and the like in each cell block is thereby detected by a voltage detector 22. Detected voltage is compared by a judging means, with a protection level set value Vp determined in advance when either one of respective voltages Va, Vb, Vc,...Vf and the like for the cell blocks is found to have been lowered to the protection level set value Vp in a process that the output electric power of fuel cell stack is quickly increased by a load change command 9s, it is judged that gas shortage takes place in some cell blocks, so that the fuel cell is suspended in operation so as to be protected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池発電装置が
その運転中に負荷上昇指令を受けて出力電力を急上昇す
る際、燃料ガスの供給不足によるガス欠,およびこれに
起因する燃料電池の損傷を回避するために行う保護停止
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generation apparatus which is out of gas due to insufficient supply of fuel gas when a load increase command is received during its operation to rapidly increase the output power, and a fuel cell The present invention relates to a protection stop method for avoiding damage.

【0002】[0002]

【従来の技術】図5は燃料電池発電装置の一般的なシス
テム構成図であり、単位セルの積層体からなる燃料電池
スタック1を含む燃料電池発電装置は、化石燃料,炭化
水素系燃料を燃料電池用アノ−ドガスとしての水素リッ
チな燃料ガスに改質する燃料処理装置2と、酸化剤とし
ての空気を燃料電池に供給する空気供給装置3と、燃料
電池の出力直流電力を外部負荷が要求する形の電力に変
換する電力変換装置4と、これら各部を制御する制御装
置5などで構成される。
2. Description of the Related Art FIG. 5 is a general system configuration diagram of a fuel cell power generation system. A fuel cell power generation system including a fuel cell stack 1 composed of a unit cell stack uses fossil fuel and hydrocarbon fuel as fuel. A fuel processing device 2 for reforming to hydrogen-rich fuel gas as an anode gas for a cell, an air supply device 3 for supplying air as an oxidant to the fuel cell, and an external load demanding output DC power of the fuel cell. A power conversion device 4 for converting the electric power into a form of electricity, a control device 5 for controlling each of these parts, and the like.

【0003】このように構成された燃料電池発電装置の
運転中における外部負荷への供給電力の上昇,降下は、
制御装置5が外部負荷変化指令9Sを受けて燃料処理装
置2および空気供給装置3に向けて発する制御信号2
S,3S,電力変換装置4に向けて発する制御信号4S
等によって制御され、燃料ガスおよび空気の供給量およ
び外部負荷への供給電力が、外部負荷変化指令9Sに対
応するそれぞれの目標値に一致するよう制御される。
The rise and fall of the electric power supplied to the external load during the operation of the fuel cell power generator configured as described above is as follows.
The control device 2 receives the external load change command 9S and outputs the control signal 2 to the fuel processing device 2 and the air supply device 3.
S, 3S, control signal 4S issued to the power conversion device 4
And the like, and the supply amounts of the fuel gas and air and the electric power supplied to the external load are controlled so as to match the respective target values corresponding to the external load change command 9S.

【0004】上記燃料電池発電装置の運転中に外部負荷
変化指令9Sが負荷上昇を指令した場合、電力変換装置
4はミリセカンド以下の応答速度で指令値に対応した電
力を出力しようとするするが、燃料電池1は燃料処理装
置2および空気供給装置3の応答速度に律せられ、上昇
指令に対する燃料ガスおよび空気の供給増加に遅れが発
生する。なお、燃料処理装置2および空気供給装置3の
応答速度が電力変換装置4のそれに比べて遅いのは、例
えば燃料処理装置ではその応答プロセスにおいて改質量
増加(改質反応の増加)という化学反応を含んでいるこ
と、また、配管中でのガスの移動という物質移動の過程
を含んでいるためである。
When the external load change command 9S commands a load increase during the operation of the fuel cell power generator, the power conversion device 4 attempts to output the power corresponding to the command value at a response speed of millisecond or less. The fuel cell 1 is limited by the response speeds of the fuel processing device 2 and the air supply device 3, and there is a delay in increasing the supply of fuel gas and air in response to the increase command. Note that the response speed of the fuel processing device 2 and the air supply device 3 is slower than that of the power conversion device 4, for example, in the fuel processing device, a chemical reaction of increasing the reforming amount (increasing the reforming reaction) occurs in the response process. This is because it includes the process of mass transfer such as gas transfer in the pipe.

【0005】[0005]

【発明が解決しようとする課題】燃料電池発電装置を外
部負荷変化指令による電力制御で負荷上昇を行う場合、
次のような問題が発生する。すなわち、外部負荷変化指
令9Sにより燃料電池発電装置をフィ−ドフォワ−ド制
御すると、制御装置は外部負荷変化指令に対応した目標
値を設定し、制御信号4Sにより電力変換装置4に目標
値に対応した電力の出力を指令し、制御信号2S,3S
により、燃料処理装置2および空気供給装置3に目標値
に対応した量の燃料ガスおよび空気の供給を指令する。
ところが、前述したように燃料ガスおよび空気の供給は
電気的出力の上昇に比べて応答速度が低いため、急激な
負荷上昇指令に追従して燃料電池1への燃料ガスおよび
空気の供給量が増加せず、燃料電池1の燃料極および空
気極に一時的にガス不足状態が発生する。
When the load is increased by the electric power control by the external load change command in the fuel cell power generator,
The following problems occur. That is, when the fuel cell power generator is feed-forward controlled by the external load change command 9S, the control device sets the target value corresponding to the external load change command, and the power conversion device 4 responds to the target value by the control signal 4S. The output of the generated electric power, and the control signals 2S, 3S
Thus, the fuel processing device 2 and the air supply device 3 are instructed to supply the fuel gas and the air in the amounts corresponding to the target values.
However, as described above, the supply speed of the fuel gas and air is lower than the increase in the electrical output, so that the supply amount of the fuel gas and air to the fuel cell 1 increases in response to the sudden load increase command. Without doing so, a gas shortage state temporarily occurs in the fuel electrode and the air electrode of the fuel cell 1.

【0006】燃料電池にガス不足状態が一旦発生する
と、燃料電池の発電電圧が低下するため、電力変換装置
4は燃料電池の出力電流を増加させて出力電力を目標値
に合わせようとし、これが原因で燃料電池1の電圧が一
層低下する悪循環が発生し、ついには燃料電池がガス欠
状態に至る。この場合、燃料電池の熱容量による温度上
昇の遅れも、燃料電池に発電特性の温度依存性があるた
め負荷上昇時の電流の増加につながる。この結果、多数
積層された単位セルのうち、各電極に形成された反応ガ
ス通路の断面形状のバラツキなどにより、反応ガスの流
れ難い単位セルからセル電圧が逆転したり、あるいは電
極間に加わるガス圧の差が増大して電極間でガスの吹き
抜けが生ずるなどの燃料電池の損傷が発生し、遂には燃
料電池の連続運転が不可能になる事態に進展するという
問題がり、ガス不足状態を早期に検知して燃料電池の発
電運転を停止し、燃料電池の損傷を防止できる保護停止
方法の確立が求められている。
[0006] Once a gas shortage state occurs in the fuel cell, the power generation voltage of the fuel cell drops, so the power conversion device 4 tries to increase the output current of the fuel cell to match the output power with the target value, which is the cause. Then, a vicious cycle occurs in which the voltage of the fuel cell 1 further decreases, and the fuel cell eventually reaches a gas shortage state. In this case, a delay in the temperature rise due to the heat capacity of the fuel cell also leads to an increase in the current when the load rises because the fuel cell has temperature dependence of the power generation characteristics. As a result, among a large number of stacked unit cells, due to variations in the cross-sectional shape of the reaction gas passages formed in each electrode, the cell voltage is reversed from the unit cell in which the reaction gas does not flow easily, or the gas applied between the electrodes There is a problem that the pressure difference increases and gas blows between the electrodes causing damage to the fuel cell, which eventually leads to a situation where continuous operation of the fuel cell becomes impossible. Therefore, it is required to establish a protection stop method that can prevent the fuel cell from being damaged by stopping the power generation operation of the fuel cell upon detection.

【0007】図6は燃料電池発電装置の従来の保護停止
方法における保護動作の説明図であり、燃料電池スタッ
ク1のガス不足状態をその出力直流電圧の低下によって
検知するために、燃料電池スタック1の計画I−V特性
曲線(計画電流−電圧特性曲線)10に対し、保護停止
の判定曲線11として電流Iの大小に関わりなく一定電
圧VL を設定し、燃料電池スタック1の出力直流電圧V
i が判定レベルVL まで低下したとき、燃料電池にガス
不足状態が発生したものと判断し、例えば電力変換装置
4の出力を絞り、燃料電池スタック1の発電を停止する
保護停止を行うよう構成した方法が知られている。ま
た、燃料電池スタック1を複数の単位セルを1ブロック
とする複数のセル区間に区分し、セル区間それぞれの電
圧を検出し、一定電圧VL と照合し、保護停止する方法
も知られている。
FIG. 6 is an explanatory diagram of a protection operation in the conventional protection stopping method of the fuel cell power generator, and in order to detect the gas shortage state of the fuel cell stack 1 by the decrease of the output DC voltage, the fuel cell stack 1 With respect to the planned IV characteristic curve (planned current-voltage characteristic curve) 10 of the above, a constant voltage VL is set as the protection stop judgment curve 11 regardless of the magnitude of the current I, and the output DC voltage V of the fuel cell stack 1 is set.
When i falls to the determination level VL, it is determined that a gas shortage state has occurred in the fuel cell, and for example, the output of the power conversion device 4 is narrowed to perform a protective stop for stopping the power generation of the fuel cell stack 1. The method is known. There is also known a method in which the fuel cell stack 1 is divided into a plurality of cell sections having a plurality of unit cells as one block, the voltage of each cell section is detected, collated with a constant voltage VL, and protection is stopped.

【0008】しかしながら、保護停止開始の判定曲線1
1が燃料電池の出力電流Iに無関係に一定電圧VL に固
定されているために、計画I−V曲線との差電圧ΔV=
VO−VL (出力電圧の低下量に相当する)が低電流
(低電力)領域で大きくなり、この領域でガス不足が生
じた場合にはその検知が大幅に遅れ、単位セルの損傷を
回避できないという問題が発生する。また、過渡的にあ
る部分の単位セルのみに電圧低下を生ずる場合を想定し
て、燃料電池スタック1を複数のセル区間に区分して電
圧を検出するよう構成した場合においても、低電流領域
で差電圧ΔVが大きいことが障害となり、この領域での
ガス不足状態の検出が大幅に遅れ、単位セルの損傷を十
分には回避できないという問題が発生する。
However, the judgment curve 1 for starting the protection stop
1 is fixed to the constant voltage VL irrespective of the output current I of the fuel cell, the difference voltage ΔV = V from the planned IV curve
VO-VL (corresponding to the amount of decrease in the output voltage) becomes large in the low current (low power) region, and if a gas shortage occurs in this region, the detection will be greatly delayed and damage to the unit cell cannot be avoided. The problem occurs. Further, even when the fuel cell stack 1 is divided into a plurality of cell sections to detect the voltage, assuming that a voltage drop occurs only in a certain unit cell in a transient state, even in the low current region. The large difference voltage ΔV becomes an obstacle, the detection of the gas shortage state in this region is significantly delayed, and there arises a problem that damage to the unit cell cannot be sufficiently avoided.

【0009】この発明の目的は、燃料電池の負荷上昇指
令時に燃料電池スタックに局部的に発生するガス不足状
態を早期に検知して保護停止することにより、燃料電池
の損傷を回避することにある。
An object of the present invention is to avoid damage to the fuel cell by early detecting a gas shortage condition locally generated in the fuel cell stack at the time of a load increase command of the fuel cell and stopping the protection. .

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、単位セルの積層体からなる燃料
電池スタックと、この燃料電池スタックに燃料ガスを供
給する燃料処理装置、および空気供給装置と、前記燃料
電池スタックの出力直流電力を負荷電力に変換して出力
する電力変換装置と、前記各部を連系制御する制御装置
とを含む燃料電池発電装置において、負荷上昇指令時に
生ずるガス不足状態を前記燃料電池スタックの出力電圧
の低下により検出して保護停止する方法であって、前記
燃料電池スタックの出力電圧を複数単位セルをセル区間
として複数のセル区間について検出し、検出電圧の最低
値が負荷電力の大きさに係わりなく一定電圧低下したと
き保護停止することとする。
In order to solve the above-mentioned problems, according to the present invention, a fuel cell stack comprising a unit cell stack, a fuel processor for supplying a fuel gas to the fuel cell stack, and In a fuel cell power generation device including an air supply device, a power conversion device that converts the output DC power of the fuel cell stack into load power and outputs the load power, and a control device that interconnect-controls the above-mentioned parts, a fuel cell power generation device generates when a load increase command is issued. A method of detecting a gas shortage state by detecting a decrease in the output voltage of the fuel cell stack and stopping protection, wherein the output voltage of the fuel cell stack is detected for a plurality of cell sections with a plurality of unit cells as a cell section, and a detection voltage is detected. Protection shall stop when the minimum value of voltage drops by a certain voltage regardless of the load power.

【0011】また、セル区間の計画I−V曲線を一定電
圧低い側に平行移動した曲線を電圧低下の判定曲線と
し、所定の指令電力値に対する検出電圧の最低値が、判
定曲線上の指令電力値に対応する電圧値まで低下したと
き、セル区間電圧の最低値が一定電圧低下したものと判
定して保護停止することとする。さらに、複数のセル区
間の検出電圧の平均値、およびこの平均値と各検出電圧
との差電圧を求め、得られた差電圧とセル区間毎に定ま
る補正電圧との和の最大値が一定電圧を越えたとき、セ
ル区間電圧の最低値が一定電圧低下したものと判定して
保護停止することとする。
Further, a curve obtained by moving the planned IV curve in the cell section in parallel to the lower side of the constant voltage is used as a judgment curve of voltage drop, and the minimum value of the detected voltage with respect to a predetermined command power value is the command power on the judgment curve. When the voltage value corresponding to the value decreases, it is determined that the minimum value of the cell section voltage has decreased by a certain voltage, and the protection is stopped. Further, the average value of the detection voltage of a plurality of cell sections and the difference voltage between this average value and each detection voltage are obtained, and the maximum value of the sum of the obtained difference voltage and the correction voltage determined for each cell section is a constant voltage. When the voltage exceeds the threshold value, it is determined that the minimum value of the cell section voltage has decreased by a certain voltage, and the protection is stopped.

【0012】[0012]

【作用】この発明のにおいて、燃料電池スタックの出力
電圧が負荷電力の大きさに係わりなく一定電圧低下した
とき保護停止するよう構成したことにより、低電流領域
でのガス不足状態を早期に検出できないという従来技術
の問題点を排除し、全ての負荷領域でガス不足状態を早
期に検知して燃料電池の損傷を防止する機能が得られ
る。また、複数単位セルをセル区間として複数のセル区
間について電圧の低下を検出し、検出電圧の最低値が一
定電圧低下したとき保護停止するよう構成したことによ
り、限られた単位セルで発生したガス不足状態をも迅速
かつ高感度で検出して単位セルの損傷を防止する機能が
得られる。
In the present invention, the gas shortage state in the low current region cannot be detected early because the protection stop is performed when the output voltage of the fuel cell stack drops by a constant voltage regardless of the magnitude of the load power. The problem of the prior art is eliminated, and the function of preventing damage to the fuel cell by early detection of a gas shortage condition in all load regions can be obtained. In addition, by using a plurality of unit cells as a cell section, a voltage drop is detected for a plurality of cell sections, and protection is stopped when the minimum value of the detected voltage drops by a certain voltage. It is possible to obtain the function of preventing damage to the unit cell by detecting an insufficient state quickly and with high sensitivity.

【0013】また、セル区間の計画I−V曲線を一定電
圧低い側に平行移動した曲線を電圧低下の判定曲線と
し、所定の指令電力値に対する検出電圧の最低値が、判
定曲線上の指令電力値に対応する電圧値まで低下したと
き保護停止するよう構成すれば、燃料電池スタックの初
期特性として補償された計画I−V曲線に基づいて一定
電圧低い保護停止の判定レベルを全ての負荷領域に渡っ
て精度よく設定できるとともに、電力上昇指令の指令電
力値に対応する保護電圧値を判定曲線上から容易に選択
できるので、セル区間電圧の出力電圧の最低値が選択さ
れた保護電圧値まで低下したとき保護停止を行うことに
より、ガス不足の発生をセル区間単位で早期に検出し、
単位セルの損傷を防止する機能が得られ、かつ計画I−
V曲線と判定曲線の間に保持する一定の電圧差の決め方
により、保護停止するガス不足状態の程度を調整する機
能も得られる。
Further, a curve obtained by moving the planned IV curve in the cell section in parallel to the lower side of the constant voltage is used as a judgment curve of voltage drop, and the minimum value of the detected voltage with respect to a predetermined command power value is the command power on the judgment curve. If the protection is stopped when the voltage drops to the voltage value corresponding to the value, the protection stop judgment level lower than the constant voltage is applied to all load regions based on the planned IV curve compensated as the initial characteristic of the fuel cell stack. It is possible to set with high accuracy over the whole range, and the protection voltage value corresponding to the command power value of the power rise command can be easily selected from the judgment curve, so the minimum output voltage of the cell section voltage drops to the selected protection voltage value. When this happens, protection stop is performed to detect the occurrence of gas shortage at an early stage for each cell section,
The function of preventing damage to the unit cell is obtained, and the plan I-
Depending on how to determine a constant voltage difference held between the V curve and the judgment curve, a function of adjusting the degree of the gas shortage state in which the protection is stopped can be obtained.

【0014】さらに、複数のセル区間の検出電圧の平均
値、およびこの平均値と各検出電圧との差電圧を求め、
得られた差電圧とセル区間毎に定まる補正電圧との和の
最大値が一定電圧を越えたとき、セル区間電圧の最低値
が一定電圧低下したものと判定して保護停止するよう構
成すれば、負荷上昇指令による出力電力の増加に反比例
して下降過程にある各セル区間の検出電圧の平均値を基
準にして、電圧上昇の最も遅いセル区間を検出し、かつ
そのセル区間におけるセル温度,燃料ガスの流れ易さな
ど電圧のバラツキ要因を補正電圧を加えることによって
補正し、なおかつ平均値に対する電圧差(電圧低下)が
一定電圧を越えたとき保護停止するので、負荷上昇指令
直後に過渡的に生ずる供給ガスの過不足状態を電圧の過
渡的変化としてセル区間毎にリアルタイムで監視し、木
目細かい状況判断に基づいて保護停止を行うことが可能
となり、局所的,経時的なセルの特性低下を迅速に検知
してセルの損傷を最小限に抑制する機能が得られるとと
もに、保護停止が掛からない状態ではガス不足による燃
料電池の損傷を懸念することなく、燃料電池発電装置を
安全な継続運転状態に保持する機能が得られる。
Further, an average value of the detection voltages in a plurality of cell sections and a voltage difference between the average value and each detection voltage are obtained,
If the maximum value of the sum of the obtained difference voltage and the correction voltage determined for each cell section exceeds a certain voltage, it is determined that the minimum value of the cell section voltage has decreased by a certain voltage, and protection is stopped. , A cell section with the slowest voltage rise is detected based on the average value of the detected voltage in each cell section in the descending process which is inversely proportional to the increase in the output power due to the load increase command, and the cell temperature in that cell section, Voltage fluctuation factors such as the ease of fuel gas flow are corrected by adding a correction voltage, and protection stops when the voltage difference (voltage drop) from the average value exceeds a certain voltage. The excess or deficiency state of the supply gas that occurs in 1) can be monitored in real time for each cell section as a transient change in voltage, and it becomes possible to perform protection stop based on a detailed situation judgment. A function to quickly detect the deterioration of cell characteristics over time to minimize damage to the cell is obtained, and there is no need to worry about damage to the fuel cell due to gas shortage without the need to stop the protection. The function of keeping the generator set in a safe continuous operation state is obtained.

【0015】[0015]

【実施例】以下、この発明を実施例に基づいて説明す
る。図1はこの発明の実施例になる燃料電池発電装置の
保護停止方法における保護動作の説明図、図2は実施例
になる保護停止方法を示すシステム構成図であり、従来
技術と同じ構成部分には同一参照符号を付すことによ
り、重複した説明を省略する。実施例になる燃料電池発
電装置の保護停止方法においては、図に示すように燃料
電池スタック1を複数の単位セルを単位として複数のセ
ル区間1a,1b,1c,・・1f 等1i に区分し、複数の
電圧検出器22によりそれぞれのセル区間の電圧Va,V
b,Vc,・・Vn等1i を検出し、判断部23において各
検出電圧をあらかじめ定まる保護レベルの設定値Vp と
照合し、負荷変化指令9s により燃料電池スタックの出
力電力を急増する過程で、セル区間電圧Va,Vb,Vc,・
・Vf 等のいずれかが保護レベル設定値にまで低下した
とき、いずれかのセル区間にガス不足状態が発生したも
のと判断して保護停止するよう構成される。
EXAMPLES The present invention will be described below based on examples. FIG. 1 is an explanatory diagram of a protection operation in a protection stop method for a fuel cell power generator according to an embodiment of the present invention, and FIG. 2 is a system configuration diagram showing a protection stop method according to an embodiment. Are denoted by the same reference numerals, and redundant description will be omitted. In the method for stopping and protecting the fuel cell power generator according to the embodiment, the fuel cell stack 1 is divided into a plurality of cell sections 1a, 1b, 1c ,. , A plurality of voltage detectors 22 are used to detect the voltages Va and V in the respective cell sections.
b, Vc, ... Vn, etc. 1i are detected, each detection voltage is compared with the preset protection level set value Vp in the judgment unit 23, and in the process of suddenly increasing the output power of the fuel cell stack by the load change command 9s, Cell section voltage Va, Vb, Vc,
-When any of Vf etc. falls to the protection level set value, it is judged that a gas shortage condition has occurred in any of the cell sections and the protection is stopped.

【0016】この実施例の場合、保護レベルの設定値V
p の決め方としては、図1に示すように、初期セル区間
電圧に対応する計画I−V曲線20を基準とし、この曲
線を一定電圧ΔV低い側に平行移動した曲線を電圧低下
の判定曲線21として設定する。負荷変化指令9s によ
る所定の指令電力値をIs ×Vs とした場合、電流Is
に相応する判定曲線21上の電圧値Vp が保護レベル設
定値として判断部23に自動設定され、電圧検出器22
の検出電圧Va,Vb,Vc,・・Vf と保護レベル設定値V
p とがそれぞれ照合される。
In the case of this embodiment, the set value V of the protection level is
As a method of determining p, as shown in FIG. 1, a planned IV curve 20 corresponding to the initial cell section voltage is used as a reference, and a curve obtained by moving this curve in parallel to the lower side of the constant voltage ΔV is a determination curve 21 for the voltage drop. Set as. If the predetermined command power value by the load change command 9s is Is × Vs, the current Is
The voltage value Vp on the judgment curve 21 corresponding to is automatically set in the judgment unit 23 as the protection level setting value, and the voltage detector 22
Detection voltage Va, Vb, Vc, ... Vf and protection level set value V
p and are matched respectively.

【0017】燃料電池スタック1の出力電流がIs より
小さい負荷領域で電流をIs に増加する負荷上昇指令9
s を受けた場合、制御部5(図5参照)が発する制御信
号4Sにより電力変換装置4に目標値に対応した電力の
出力を指令し、制御信号2s,3sにより、燃料処理装
置2および空気供給装置3に目標値に対応した量の燃料
ガスおよび空気の供給を指令することにより、燃料電池
スタック1の出力電流が増加するに伴い、各セル区間の
電圧Va,Vb,Vc,・・Vf が目標電圧Vs に向けて変化
する。しかし、セル区間相互間には単位セルの温度上昇
の遅れや、反応ガス通路の断面形状のバラツキなどにバ
ラツキがあり、悪条件が重なった単位セルでガス不足が
発生し、これに伴ってこの単位セルを含むセル区間電圧
の低下幅が大きくなり判定曲線21に近づく。従って、
このガス不足状態となったセル区間電圧が判定レベルの
設定値Vp に一致するよう、計画I−V曲線20と判定
曲線21との電圧差ΔVを設定しておけば、検出電圧の
最低値を早期に検知して燃料電池スタックを保護停止す
ることが可能になり、単位セルの損傷を最小限に抑える
ことができるとともに、保護停止が掛からない状態では
燃料電池発電装置を安心して継続運転できる信頼性の高
い保護停止方法が得られる。なお、計画I−V曲線と判
定曲線の間に保持する一定の電圧差ΔVを可変にすれ
ば、保護停止するガス不足状態の程度を調整できる利点
も得られる。
A load increase command 9 for increasing the current to Is in the load region where the output current of the fuel cell stack 1 is smaller than Is.
When s is received, the power converter 4 is instructed to output the power corresponding to the target value by the control signal 4S issued by the control unit 5 (see FIG. 5), and the fuel processor 2 and the air are controlled by the control signals 2s and 3s. By instructing the supply device 3 to supply the amount of fuel gas and air corresponding to the target value, as the output current of the fuel cell stack 1 increases, the voltages Va, Vb, Vc ,. Changes toward the target voltage Vs. However, there are variations in the temperature rise of the unit cells between the cell sections, and variations in the cross-sectional shape of the reaction gas passages, and gas shortages occur in the unit cells under adverse conditions. The decrease width of the cell section voltage including the unit cell increases and approaches the determination curve 21. Therefore,
If the voltage difference ΔV between the planned IV curve 20 and the judgment curve 21 is set so that the cell section voltage in the gas shortage state matches the set value Vp of the judgment level, the minimum value of the detected voltage is set. It becomes possible to detect and stop the fuel cell stack early by detecting it, and it is possible to minimize damage to the unit cell, and in the state where protection stop does not occur, the fuel cell power generator can be operated safely with confidence A highly effective protection stop method can be obtained. In addition, if the constant voltage difference ΔV held between the planned IV curve and the judgment curve is made variable, there is an advantage that the degree of the gas shortage state in which the protection is stopped can be adjusted.

【0018】図3はこの発明の異なる実施例になる燃料
電池発電装置の保護停止方法を示すシステム構成図、図
4は異なる実施例になる保護停止方法における保護動作
の説明図である。図において、燃料電池スタック1を例
えば1a,1b,1c,・・1nなどn個のセル区間に区分
し、電圧検出器22でそれぞれ検出されたセル区間電圧
Va,Vb,Vc,Vd,Ve,Vf 等n個の検出値は、平均値演
算部32でその平均値Vave =Va+Vb+Vc+Vd+Ve+V
f ・・/nが求められる。次いで、電圧低下の演算部3
3において検出電圧の平均値Vave に対する各検出電圧
の低下量およびその補正 (Vave −Vi ) +Vki(添字
iは任意のセル区間を示す)が計算される。ただし、補
正電圧Vkiは、セル区間相互の温度差,燃料ガスの流れ
易さ,などの初期条件の差がセル区間電圧に及ぼす影響
を考慮して予め決められる。また、上記検出電圧の低下
量の計算は平均値Vave より低い検出電圧に対してのみ
行うよう構成されてよい。
FIG. 3 is a system block diagram showing a protection stop method of a fuel cell power generator according to a different embodiment of the present invention, and FIG. 4 is an explanatory view of a protection operation in the protection stop method according to a different embodiment. In the figure, the fuel cell stack 1 is divided into n cell sections such as 1a, 1b, 1c, ... 1n, and the cell section voltages Va, Vb, Vc, Vd, Ve, respectively detected by the voltage detector 22 are divided. The average value calculation unit 32 calculates the average value of the n detected values such as Vf Vave = Va + Vb + Vc + Vd + Ve + V
f ··· / n is required. Next, the voltage drop calculator 3
In 3, the decrease amount of each detection voltage with respect to the average value Vave of the detection voltage and its correction (Vave-Vi) + Vki (subscript i indicates an arbitrary cell section) are calculated. However, the correction voltage Vki is determined in advance in consideration of the influence of the difference in initial conditions such as the temperature difference between the cell sections and the easiness of fuel gas flow on the cell section voltage. The calculation of the decrease amount of the detection voltage may be performed only for the detection voltage lower than the average value Vave.

【0019】計算結果は判断部34に送られて保護レベ
ル設定器35に予め設定された判定電圧ΔVj と照合さ
れ、図4に示すように例えばセル区間1f が (Vave −
Vf) +Vkf≧ΔVj を満たす状態となったとき、セル
区間1f にガス不足状態が発生したものと判断し、判断
部が保護停止指令を発するよう構成される。このように
構成された保護停止方法においては、負荷上昇指令によ
る出力電力の増加に反比例して下降過程にある各セル区
間の検出電圧の平均値Vave を基準にして、電圧上昇の
最も遅いセル区間(図では1f )を平均値Vave に対す
る検出電圧の低下分として検出し (Vave −Vi ) 、か
つそのセル区間におけるセル温度,燃料ガスの流れ易さ
など電圧のバラツキ要因を補正電圧Vkiを加えることに
よって補正し、なおかつ平均値に対する電圧差 (Vave
−Vi ) +Vkiが判定電圧ΔVj を越えたとき保護停止
するので、負荷上昇指令直後に過渡的に生ずる供給ガス
の過不足状態を電圧の過渡的変化としてセル区間毎にリ
アルタイムで監視し、木目細かい状況判断に基づいて保
護停止を行うことが可能となり、局所的,経時的なセル
の特性低下を検知してセルの損傷を最小限に抑制する機
能が得られるとともに、保護停止が掛からない状態では
ガス欠やこれに伴う燃料電池の損傷を懸念することなく
負荷の上昇,下降制御を行えるとともに、燃料電池発電
装置を安全に継続運転できる利点が得られる。
The calculation result is sent to the judgment unit 34 and collated with the judgment voltage ΔVj preset in the protection level setting unit 35. As shown in FIG. 4, for example, the cell section 1f is (Vave-
When the condition of (Vf) + Vkf ≧ ΔVj is satisfied, it is determined that the gas shortage condition has occurred in the cell section 1f, and the determination unit issues a protection stop command. In the protection stop method configured as described above, the cell section with the slowest voltage rise is based on the average value Vave of the detected voltage in each cell section that is in the descending process in inverse proportion to the increase in the output power due to the load increase command. (1f in the figure) is detected as the amount of decrease in the detection voltage with respect to the average value Vave (Vave-Vi), and the correction voltage Vki is added to the voltage variation factors such as the cell temperature in that cell section and the easiness of fuel gas flow. The voltage difference (Vave
Since the protection is stopped when -Vi) + Vki exceeds the judgment voltage ΔVj, the excess or deficiency state of the supply gas that occurs transiently immediately after the load increase command is monitored in real time as a transient change of the voltage for each cell section, and fine grained. It becomes possible to stop the protection based on the situation judgment, and it is possible to obtain the function to minimize the damage of the cell by detecting the local and time-dependent deterioration of the cell characteristics. There is an advantage that the load can be controlled to rise and fall without fear of running out of gas or damage to the fuel cell due to this, and the fuel cell power generator can be safely operated continuously.

【0020】[0020]

【発明の効果】この発明は前述のように、燃料電池スタ
ックの出力電圧を複数単位セルをセル区間として複数の
セル区間について検出し、検出電圧の最低値が負荷電力
の大きさに係わりなく一定電圧低下したとき保護停止す
るよう燃料電池の負荷上昇時における保護停止方法を構
成した。その結果、低電流領域でのガス不足状態を早期
に検出できないという従来技術の問題点を排除し、全て
の負荷領域でガス不足状態を早期に検知して燃料電池の
損傷を防止できるとともに、限られた単位セルで過渡的
に発生するガス不足状態をも迅速かつ高感度で検出して
単位セルの特性低下を防止できる燃料電池発電装置の保
護停止方法を提供することができる。
As described above, the present invention detects the output voltage of the fuel cell stack for a plurality of cell sections using a plurality of unit cells as a cell section, and the minimum value of the detected voltage is constant regardless of the magnitude of the load power. The protection stop method when the load of the fuel cell is increased is configured to stop the protection when the voltage drops. As a result, the problem of the prior art that the gas shortage condition in the low current region cannot be detected early, the gas shortage condition can be detected early in all the load regions, and the fuel cell can be prevented from being damaged. It is possible to provide a method for stopping and protecting a fuel cell power generation device that can detect a gas shortage state that transiently occurs in a given unit cell with high sensitivity and prevent deterioration of the characteristics of the unit cell.

【0021】また、保護停止が掛からない状態ではガス
欠やこれに伴う燃料電池の損傷を懸念することなく負荷
の上昇,下降制御を行えるとともに、燃料電池発電装置
を安全に継続運転できる利点が得られる。
Further, in the state where the protection stop is not applied, there is an advantage that the load increase / decrease can be controlled without fear of gas shortage and damage to the fuel cell due to this, and the fuel cell power generator can be continuously operated safely. To be

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例になる燃料電池発電装置の保
護停止方法における保護動作の説明図
FIG. 1 is an explanatory diagram of a protection operation in a protection stop method for a fuel cell power generator according to an embodiment of the present invention.

【図2】実施例になる保護停止方法を示すシステム構成
FIG. 2 is a system configuration diagram showing a protection stop method according to an embodiment.

【図3】この発明の異なる実施例になる燃料電池発電装
置の保護停止方法を示すシステム構成図
FIG. 3 is a system configuration diagram showing a protection stop method for a fuel cell power generator according to a different embodiment of the present invention.

【図4】異なる実施例になる保護停止方法における保護
動作の説明図
FIG. 4 is an explanatory diagram of a protection operation in a protection stop method according to another embodiment.

【図5】燃料電池発電装置の一般的なシステム構成図FIG. 5 is a general system configuration diagram of a fuel cell power generator.

【図6】燃料電池発電装置の従来の保護停止方法におけ
る保護動作の説明図
FIG. 6 is an explanatory diagram of a protection operation in a conventional protection stop method for a fuel cell power generator.

【符号の説明】 1 燃料電池スタック 1i セル区間 2 燃料処理装置 3 空気供給装置 4 電力変換装置 5 制御装置 9s 負荷変化指令 10 計画I−V特性曲線 11 判定曲線 20 計画I−V特性曲線 21 判定曲線 22 電圧検出器 23 判断部 32 平均値演算部 33 電圧低下の演算部 34 判断部 35 保護レベル設定器 Vs セル区間電圧(指令値) Is 出力電流(指令値) Vp 保護レベル設定値 ΔV 電圧低下幅(判定電圧) Vave 検出電圧の平均値 Vf セル区間電圧(セル区間1f の検出値) Vkf セル区間1f の補正電圧 ΔVj 電圧降下幅(判定電圧)[Explanation of Codes] 1 fuel cell stack 1i cell section 2 fuel processor 3 air supply device 4 power converter 5 controller 9s load change command 10 planned IV characteristic curve 11 judgment curve 20 planned IV characteristic curve 21 judgment Curve 22 Voltage detector 23 Judgment part 32 Average value calculation part 33 Voltage drop calculation part 34 Judgment part 35 Protection level setter Vs Cell section voltage (command value) Is Output current (command value) Vp Protection level set value ΔV Voltage drop Width (judgment voltage) Vave Average value of detection voltage Vf Cell section voltage (detection value of cell section 1f) Vkf Correction voltage of cell section 1f ΔVj Voltage drop width (judgment voltage)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】単位セルの積層体からなる燃料電池スタッ
クと、この燃料電池スタックに燃料ガスを供給する燃料
処理装置、および空気供給装置と、前記燃料電池スタッ
クの出力直流電力を負荷電力に変換して出力する電力変
換装置と、前記各部を連系制御する制御装置とを含む燃
料電池発電装置において、負荷上昇指令時に生ずるガス
不足状態を前記燃料電池スタックの出力電圧の低下によ
り検出して保護停止する方法であって、前記燃料電池ス
タックの出力電圧を複数単位セルをセル区間として複数
のセル区間について検出し、検出電圧の最低値が負荷電
力の大きさに係わりなく一定電圧低下したとき保護停止
することを特徴とする燃料電池発電装置の保護停止方
法。
1. A fuel cell stack comprising a stack of unit cells, a fuel processing device for supplying a fuel gas to the fuel cell stack, an air supply device, and output DC power of the fuel cell stack converted to load power. In a fuel cell power generation device including a power conversion device that outputs the power and a control device that interconnects controls the above-mentioned respective parts, a gas shortage state that occurs at the time of a load increase command is detected and protected by a decrease in the output voltage of the fuel cell stack. A method of stopping, wherein the output voltage of the fuel cell stack is detected for a plurality of cell sections using a plurality of unit cells as cell sections, and protection is performed when the minimum value of the detected voltage drops by a constant voltage regardless of the magnitude of load power. A method of protecting and stopping a fuel cell power generator, which is characterized by stopping.
【請求項2】セル区間の計画I−V特性曲線を一定電圧
低い側に平行移動した曲線を電圧低下の判定曲線とし、
所定の指令電力値に対する検出電圧の最低値が、判定曲
線上の指令電力値に対応する電圧値まで低下したとき、
セル区間電圧の最低値が一定電圧低下したものと判定し
て保護停止することを特徴とする請求項1記載の燃料電
池発電装置の保護停止方法。
2. A curve obtained by translating a planned IV characteristic curve in a cell section to a lower side of a constant voltage is used as a determination curve of voltage drop,
When the minimum value of the detected voltage for the predetermined command power value has dropped to the voltage value corresponding to the command power value on the judgment curve,
The protection stop method for a fuel cell power generator according to claim 1, wherein the protection stop is performed by determining that the minimum value of the cell section voltage has decreased by a constant voltage.
【請求項3】複数のセル区間の検出電圧の平均値、およ
びこの平均値と各検出電圧との差電圧を求め、得られた
差電圧とセル区間毎に定まる補正電圧との和の最大値が
一定電圧を越えたとき、セル区間電圧の最低値が一定電
圧低下したものと判定して保護停止することを特徴とす
る請求項1記載の燃料電池発電装置の保護停止方法。
3. An average value of detection voltages in a plurality of cell sections and a difference voltage between the average value and each detection voltage is obtained, and a maximum value of a sum of the obtained difference voltage and a correction voltage determined for each cell section. Is above a certain voltage, it is judged that the minimum value of the cell section voltage has dropped by a certain voltage, and the protection is stopped, and the protection stopping method of the fuel cell power generator according to claim 1.
JP50A 1993-02-16 1993-02-16 Protection/suspension method for fuel cell power plant Pending JPH06243882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50A JPH06243882A (en) 1993-02-16 1993-02-16 Protection/suspension method for fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50A JPH06243882A (en) 1993-02-16 1993-02-16 Protection/suspension method for fuel cell power plant

Publications (1)

Publication Number Publication Date
JPH06243882A true JPH06243882A (en) 1994-09-02

Family

ID=12177699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50A Pending JPH06243882A (en) 1993-02-16 1993-02-16 Protection/suspension method for fuel cell power plant

Country Status (1)

Country Link
JP (1) JPH06243882A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918363A1 (en) * 1997-11-20 1999-05-26 Siemens Aktiengesellschaft Method and device for monitoring a selected group of fuel cells of a high temperature fuel cell stack
WO2004051773A2 (en) * 2002-12-03 2004-06-17 Hydrogenics Corporation Method and apparatus for monitoring fuel cell voltages
JP2004311333A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Device for controlling power generation amount of fuel cell
EP1505676A1 (en) * 2002-05-10 2005-02-09 Honda Giken Kogyo Kabushiki Kaisha Method for detecting undersupply of fuel gas and method for controlling fuel cell
US7285344B2 (en) 2002-07-30 2007-10-23 Denso Corporation Fuel cell control system
JP2008300076A (en) * 2007-05-29 2008-12-11 Toshiba Fuel Cell Power Systems Corp Fuel cell control device
US7582376B2 (en) 2004-09-29 2009-09-01 Kabushiki Kaisha Toshiba Proton conductive polymer and fuel cell using the same
JP2011216337A (en) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd Fuel battery power generating device, and method of monitoring fuel battery
CN102468511A (en) * 2010-11-03 2012-05-23 财团法人工业技术研究院 Fuel cell system
WO2013099287A1 (en) 2011-12-28 2013-07-04 パナソニック株式会社 Fuel cell system and method for operating same
US8846259B2 (en) 2009-03-30 2014-09-30 Honda Motor Co., Ltd. Method of controlling output of fuel cell system and vehicle with fuel cell system
CN108682880A (en) * 2018-05-31 2018-10-19 天津中德应用技术大学 Proton exchange membrane h2 fuel cell stack output protecting device and its control method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273702A (en) * 1997-11-20 1999-10-08 Siemens Ag Monitoring method and monitoring device for layered product of fuel cell
EP0918363A1 (en) * 1997-11-20 1999-05-26 Siemens Aktiengesellschaft Method and device for monitoring a selected group of fuel cells of a high temperature fuel cell stack
US7527882B2 (en) 2002-05-10 2009-05-05 Honda Giken Kogyo Kabushiki Kaisha Method for detecting undersupply of fuel gas and method for controlling fuel cell
EP1505676A1 (en) * 2002-05-10 2005-02-09 Honda Giken Kogyo Kabushiki Kaisha Method for detecting undersupply of fuel gas and method for controlling fuel cell
EP1505676A4 (en) * 2002-05-10 2009-11-04 Honda Motor Co Ltd Method for detecting undersupply of fuel gas and method for controlling fuel cell
US7285344B2 (en) 2002-07-30 2007-10-23 Denso Corporation Fuel cell control system
WO2004051773A2 (en) * 2002-12-03 2004-06-17 Hydrogenics Corporation Method and apparatus for monitoring fuel cell voltages
WO2004051773A3 (en) * 2002-12-03 2004-08-26 Hydrogenics Corp Method and apparatus for monitoring fuel cell voltages
US7148654B2 (en) 2002-12-03 2006-12-12 Hydrogenics Corporation Method and apparatus for monitoring fuel cell voltages
JP2004311333A (en) * 2003-04-10 2004-11-04 Nissan Motor Co Ltd Device for controlling power generation amount of fuel cell
US7564211B2 (en) 2003-04-10 2009-07-21 Nissan Motor Co., Ltd. Electric power generation control system and electric power generation control method for fuel cell
US7582376B2 (en) 2004-09-29 2009-09-01 Kabushiki Kaisha Toshiba Proton conductive polymer and fuel cell using the same
JP2008300076A (en) * 2007-05-29 2008-12-11 Toshiba Fuel Cell Power Systems Corp Fuel cell control device
US8846259B2 (en) 2009-03-30 2014-09-30 Honda Motor Co., Ltd. Method of controlling output of fuel cell system and vehicle with fuel cell system
JP2011216337A (en) * 2010-03-31 2011-10-27 Eneos Celltech Co Ltd Fuel battery power generating device, and method of monitoring fuel battery
CN102468511A (en) * 2010-11-03 2012-05-23 财团法人工业技术研究院 Fuel cell system
WO2013099287A1 (en) 2011-12-28 2013-07-04 パナソニック株式会社 Fuel cell system and method for operating same
CN108682880A (en) * 2018-05-31 2018-10-19 天津中德应用技术大学 Proton exchange membrane h2 fuel cell stack output protecting device and its control method
CN108682880B (en) * 2018-05-31 2023-04-18 天津中德应用技术大学 Output protection device of proton exchange membrane hydrogen fuel cell stack and control method thereof

Similar Documents

Publication Publication Date Title
EP0689275B1 (en) Apparatus and method for controlling a charging voltage of a battery based on battery temperature
US7087332B2 (en) Power slope targeting for DC generators
EP0947905B1 (en) Solar power generating device
JPH06243882A (en) Protection/suspension method for fuel cell power plant
US7432691B2 (en) Method and apparatus for controlling power drawn from an energy converter
KR100817137B1 (en) The switching method which and uses this with the power conversion device of the distributed generation
JPH08315841A (en) Output control device of fuel cell power generation device
JPH0991051A (en) Voltage controller for battery power supply and its voltage controlling method
SE514664C2 (en) Compensator for reactive power in an electric power supply system
JPH0568722B2 (en)
JP3493644B2 (en) Maximum power tracking method for photovoltaic system
JPS63181015A (en) Control system for maximum output of photovoltaic power generator
JPH02291668A (en) Control device of fuel cell power generation system
JPS61284065A (en) Fuel cell power generating system
JP3893603B2 (en) Protection control device when battery performance deteriorates
JPH08308104A (en) Decentralized power supply system and its controlling method
JPH06275296A (en) Fuel cell power generating device
JPH08213038A (en) Control method of fuel cell power generation device
JPH0831439A (en) Fuel cell power generation plant
KR102517893B1 (en) Thermoelectric generation device
JPH04281340A (en) Battery charge controller
JPS57196323A (en) Power-factor controlling system of overvoltage suppressing device for reactive power compensating power converter
JP7080644B2 (en) Charge control device and charge control method
JPH0261227B2 (en)
Thacker Thermal runaway prevention by control of float voltage as a function of a battery temperature