JPH0568722B2 - - Google Patents

Info

Publication number
JPH0568722B2
JPH0568722B2 JP22587685A JP22587685A JPH0568722B2 JP H0568722 B2 JPH0568722 B2 JP H0568722B2 JP 22587685 A JP22587685 A JP 22587685A JP 22587685 A JP22587685 A JP 22587685A JP H0568722 B2 JPH0568722 B2 JP H0568722B2
Authority
JP
Japan
Prior art keywords
power
voltage
change
maximum power
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22587685A
Other languages
Japanese (ja)
Other versions
JPS6285312A (en
Inventor
Koichi Kaneko
Kyoshi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP22587685A priority Critical patent/JPS6285312A/en
Publication of JPS6285312A publication Critical patent/JPS6285312A/en
Publication of JPH0568722B2 publication Critical patent/JPH0568722B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、太陽電池などの電池電源からチヨツ
パやインバータ等で構成される電力変換装置を介
して最大電力を取り出すための電池電源の最大電
力制御方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to maximum power control of a battery power source, such as a solar cell, for extracting maximum power from a battery power source, such as a solar cell, through a power conversion device comprising a chopper, an inverter, etc. Regarding the method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、電池電源はチヨツパやインバータ等の電
力変換装置を介して独立負荷もしくは他の電源系
統に接続されて、所定の電力を供給する給電シス
テムに広く利用されつつある。この電池電源の代
表例である太陽電池は、日射量をパラメータとし
た場合、第3図に示すような電流−電圧特性(破
線)及び電流−電力特性(実線)をもつている。
同図において、日射量の増大に従つて電流も電力
も増大する傾向を示している。M1、M2、M3
最大電力点を示し、N1、N2、N3は最大電力時の
電圧、電流を与える点である。日射量によつて最
大電力の値は大幅に異るが最大電力を与える電圧
は日射量の大小に関係なくほぼ一定である。ま
た、電流がある所定値以上大きくなると電力は急
激に減少する特性を示す。太陽電池の場合、電池
電源の起電力発生原因は日射量であるので、前記
日射量の大小が起電力発生原因の変化と同義であ
る。
In recent years, battery power sources have been widely used in power supply systems that supply a predetermined amount of power by being connected to independent loads or other power supply systems via power conversion devices such as choppers and inverters. A solar cell, which is a typical example of this battery power source, has current-voltage characteristics (broken line) and current-power characteristics (solid line) as shown in FIG. 3, when solar radiation is used as a parameter.
The figure shows a tendency for current and power to increase as the amount of solar radiation increases. M 1 , M 2 , and M 3 indicate maximum power points, and N 1 , N 2 , and N 3 indicate points that give voltage and current at maximum power. The maximum power value varies greatly depending on the amount of solar radiation, but the voltage that provides the maximum power is almost constant regardless of the amount of solar radiation. Further, when the current increases beyond a certain predetermined value, the power shows a characteristic that the power decreases rapidly. In the case of a solar cell, the cause of electromotive force generation in a battery power source is the amount of solar radiation, so the magnitude of the amount of solar radiation is synonymous with a change in the cause of electromotive force generation.

このような特性を持つ太陽電池から電力を有効
に取り出すための電池電源の最大電力の制御の方
法には従来から主として2つの方法がある。
Conventionally, there are two main methods for controlling the maximum power of a battery power source in order to effectively extract power from a solar cell having such characteristics.

第1の方法は、最大出力点は日射量の変化に対
しほぼ定電圧特性を示すことを利用して、太陽電
池の出力電圧を定電圧に制御する方法である。し
かし、ある条件下で設定された電圧基準のままで
は、条件の変化、例えば電池温度の変化などがあ
ると第3図に示す電流の変動により電圧が大きく
変動する領域で制御することになる場合も生じ、
安定した制御が行えないという欠点がある。
The first method is to control the output voltage of the solar cell to a constant voltage by utilizing the fact that the maximum output point exhibits substantially constant voltage characteristics with respect to changes in solar radiation. However, if the voltage standard set under a certain condition remains unchanged, if the conditions change, such as a change in battery temperature, the voltage will fluctuate greatly due to the current fluctuation as shown in Figure 3. also occurred,
The disadvantage is that stable control cannot be performed.

第2の方法は、上記定電圧制御の欠点を補うべ
く、太陽電池の最大出力点を常に追従して行く制
御方法である。この制御方法は、太陽電池を相異
なる2点で動作させてその出力電力を比較しなが
ら電池の動作点が最大出力点になるように制御す
る方法である。
The second method is a control method that constantly follows the maximum output point of the solar cell in order to compensate for the drawbacks of the constant voltage control. This control method is a method in which a solar cell is operated at two different points and its output power is compared so that the operating point of the cell becomes the maximum output point.

第4図は、この第2の方法を適用して電池電源
から最大電力を取り出す装置の一例を示す。同図
において、太陽電池10の直流出力はインバータ
11により交流に変換されて連系リアクトル12
を介して電力系統13へ供給される。太陽電池1
0の出力電流、電圧は各々電流検出器21,22
で検出され、その検出値Is、VsはA/D変換器、
マイクロコンピユータ、D/A変換器等で構成さ
れる最大電力制御回路23に入力される。この最
大電力制御回路23は入力データの記憶機能、論
理演算機能、判断機能等を備え、後述するアルゴ
リズムに従つて電圧基準Vs*を演算しその値を出
力する。電圧基準Vs*は電圧検出値Vsと比較さ
れ、その偏差は誤差増幅器24により増幅されて
ゲート制御回路25に入力される。このゲート制
御回路25は誤差増幅器24からの前記偏差に応
じてこの偏差が零になるようにインバータ11の
ゲート位相を制御する。
FIG. 4 shows an example of a device applying this second method to extract maximum power from a battery power source. In the figure, the DC output of a solar cell 10 is converted into AC by an inverter 11, and the DC output is converted to AC by an inverter 11.
It is supplied to the power system 13 via. solar cell 1
The output current and voltage of 0 are current detectors 21 and 22, respectively.
The detected values Is and Vs are detected by the A/D converter,
The signal is input to a maximum power control circuit 23 that includes a microcomputer, a D/A converter, and the like. This maximum power control circuit 23 has an input data storage function, a logical calculation function, a judgment function, etc., and calculates a voltage reference Vs * according to an algorithm described later and outputs the value. The voltage reference Vs * is compared with the voltage detection value Vs, and the deviation thereof is amplified by the error amplifier 24 and input to the gate control circuit 25. This gate control circuit 25 controls the gate phase of the inverter 11 according to the deviation from the error amplifier 24 so that this deviation becomes zero.

ここで最大電力制御回路23の動作アルゴリズ
ムを第5図を参照して説明する。太陽電池は前述
したように一定の日射量、温度の下では同図に示
すような電流−電圧特性(破線)及び電流−電力
特性(実線)を有している。この太陽電池の動作
領域は、電流を増大させると電圧が比較的緩かに
減少する領域と大きく減少する領域とに区分する
ことができる。太陽電池を動作させる場合、常
時、最大電力点Mで動作させることが理想であ
る。このために本回路23は次のようなアルゴリ
ズムに従つて電圧基準Vs*を設定する。まず、設
定の初期においては、電圧基準Vs*を太陽電池の
電圧検出値Vs(零えば開放電圧)と同じに設定
し、所定のサンプリング周期で電圧基準Vs*を一
定の変化幅ΔVs*で減少させて行く。この間、電
力は図中矢印Aの方向に増加して行く。このまま
電圧基準Vs*の減少を続けると、やがて電力は最
大電力点Mを越え矢印Cのように減少を開始す
る。そこで、この電力の減少を検出して、今度は
電圧基準Vs*を一定幅で増加する方向へ移動させ
て行く。電圧基準Vs*を増加し続けると電力は矢
印Dのように増加するがやがて矢印Bのように減
少を開始する。そこでこの減少を検出して再び電
圧基準Vs*を減少させる方向へ変化させる。以上
の動作を繰り返することにより、電圧基準Vs*
最大電力点Mの近傍を往復することとなる。
Here, the operation algorithm of the maximum power control circuit 23 will be explained with reference to FIG. As described above, a solar cell has current-voltage characteristics (broken line) and current-power characteristics (solid line) as shown in the figure under constant solar radiation and temperature. The operating region of this solar cell can be divided into a region where the voltage decreases relatively slowly as the current increases and a region where the voltage decreases significantly. When operating a solar cell, it is ideal to always operate at the maximum power point M. For this purpose, the circuit 23 sets the voltage reference Vs * according to the following algorithm. First, in the initial setting, the voltage reference Vs * is set to be the same as the voltage detection value Vs of the solar cell (if it is zero, the open voltage) Let me go. During this time, the power increases in the direction of arrow A in the figure. If the voltage reference Vs * continues to decrease as it is, the power will eventually exceed the maximum power point M and start decreasing as shown by arrow C. Therefore, by detecting this decrease in power, the voltage reference Vs * is moved in the direction of increasing by a constant width. As the voltage reference Vs * continues to increase, the power increases as shown by arrow D, but eventually begins to decrease as shown by arrow B. Therefore, this decrease is detected and the voltage reference Vs * is changed again in the direction of decreasing. By repeating the above operation, the voltage reference Vs * will reciprocate in the vicinity of the maximum power point M.

しかしながら、上記のように電圧基準Vs*を一
定の変化幅ΔVs*で増減させることは、次の欠点
を有することになる。即ち、変化幅ΔVs*を小さ
な値にすれば最大電力点Mでの振れ幅が小さくな
り、最大電力制御の精度を高めることができる
が、日射量の急変等による特性の変動に対する追
従速度が遅くなつてしまう。また、変化幅ΔVs*
を大きな値にすれば追従速度は速められるが、最
大電力点Mでの振れ幅が大きくなり最大電力制御
の精度及び安定性が低下してしまう。
However, increasing or decreasing the voltage reference Vs * by a constant change width ΔVs * as described above has the following drawbacks. In other words, if the variation width ΔVs * is set to a small value, the variation width at the maximum power point M becomes smaller and the accuracy of maximum power control can be improved, but the tracking speed is slow for changes in characteristics due to sudden changes in solar radiation, etc. I get used to it. Also, the variation width ΔVs *
If the value of is set to a large value, the tracking speed can be increased, but the amplitude of fluctuation at the maximum power point M becomes large, and the accuracy and stability of the maximum power control decrease.

〔発明の目的〕[Purpose of the invention]

本発明は上記に鑑みなされたもので、上記第2
の最大電力制御方法において、電池電源の出力電
力をその最大電力に精度良くかつ安定に制御する
ことができるとともに、条件の変化等による電池
特性の変動に対しても速かに追従することが可能
な電池電源の出力電力制御方法を提供することを
目的とする。
The present invention has been made in view of the above, and the present invention has been made in view of the above.
With the maximum power control method, it is possible to accurately and stably control the output power of the battery power source to its maximum power, and it is also possible to quickly follow fluctuations in battery characteristics due to changes in conditions, etc. The purpose of the present invention is to provide a method for controlling the output power of a battery power source.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため、本発明は電力変換装
置へ与える電圧基準の変化幅を、この電圧基準の
変化により生じた電池電源の出力電力の変化量の
大小に応じて変更するようにしたものである。
In order to achieve the above object, the present invention changes the range of change in the voltage reference applied to the power converter according to the amount of change in the output power of the battery power source caused by the change in the voltage reference. be.

〔発明の実施例〕[Embodiments of the invention]

以下、第1,2図を参照し本発明に係る電池電
源の出力電圧制御方法の一実施例について説明す
る。
Hereinafter, an embodiment of the method for controlling the output voltage of a battery power source according to the present invention will be described with reference to FIGS. 1 and 2.

本実施例は第4図に示したものと同様の装置に
よつて第5図に示したものと同様の特性を持つ太
陽電池の出力電力を制御する場合において本発明
を適用した一実施例である。第1図は本実施例の
フローチヤートを示し、この処理は全て最大電力
制御回路23の内部でなされるものである。
This example is an example in which the present invention is applied to the case where the output power of a solar cell having characteristics similar to those shown in FIG. 5 is controlled by a device similar to that shown in FIG. 4. be. FIG. 1 shows a flowchart of this embodiment, and all of this processing is performed inside the maximum power control circuit 23.

第1図に示すように、最大電力制御の開始後ま
ず初期設定処理(ステツプ1)が行われる。この
処理では、電流検出器21及び電圧検出器22か
らの電流検出値Is及び電圧検出値Vsが読み込ま
れ、これらの値から現在の太陽電池10の出力電
力Psが演算される。また、電圧検出値Vsと同じ
値が電圧基準Vs*として初期設定されて誤差増幅
器24へ出力されるとともに、この電圧基準Vs*
を減少方向へ変化させるモードを示すフラグが立
てられる。
As shown in FIG. 1, initial setting processing (step 1) is performed after starting maximum power control. In this process, the current detection value Is and voltage detection value Vs from the current detector 21 and voltage detector 22 are read, and the current output power Ps of the solar cell 10 is calculated from these values. Further, the same value as the voltage detection value Vs is initially set as the voltage reference Vs * and output to the error amplifier 24, and this voltage reference Vs *
A flag is set to indicate a mode for changing the value in the decreasing direction.

この初期設定処理が完了した後は、所定のサン
プリング周期毎に繰り返される以下のルーチンが
開始される。
After this initial setting process is completed, the following routine is started which is repeated at every predetermined sampling period.

まず、旧データ記憶及び新データ読み込み処理
(ステツプ2)が行われる。この処理では、前サ
ンプリング時において読み込まれた電圧検出値
Vs′と演算された出力電力Ps′とが内部メモリに記
憶される。また、電流検出器21及び電圧検出器
22からの現在の電流検出値Is及び電圧検出値
Vsが読み込まれる。次に、電力演算処理(ステ
ツプ3)が行われ、ここでは先程読み込まれた現
在の電流検出値Is及び電圧検出値Vsに基づいて
現在の出力電力Psが演算される。
First, old data storage and new data reading processing (step 2) is performed. In this process, the voltage detection value read during previous sampling is
Vs' and the calculated output power Ps' are stored in the internal memory. Also, the current detected current value Is and voltage detected value from the current detector 21 and voltage detector 22
Vs is loaded. Next, a power calculation process (step 3) is performed, in which the current output power Ps is calculated based on the current detected value Is and the detected voltage value Vs that were read earlier.

次に電圧基準変化幅演算処理4が行われる。こ
の処理では、内部メモリから前サンプリング時の
出力電力Ps′が読み出され、この値と先程演算さ
れた現在の出力電力Psの値との差、つまり電力
変化量ΔPsが演算され、この電力変化量ΔPsに基
づいて電力基準Vs*が設定される。
Next, voltage reference change width calculation processing 4 is performed. In this process, the output power Ps′ at the previous sampling time is read from the internal memory, and the difference between this value and the value of the current output power Ps calculated earlier, that is, the power change amount ΔPs, is calculated, and the power change amount ΔPs is calculated. A power reference Vs * is set based on the amount ΔPs.

この変化幅Vs*は例えば第2図に示されるよう
な関係に従つて設定される。つまり、電力変化量
ΔPsの絶対値が所定値ΔP1より小さい場合には、
変化幅ΔVs*は電力変化量ΔPsに比例して設定さ
れる。また、前記絶対値が所定値ΔP1より大きい
場合には、変化幅ΔVs*は一定値±ΔVS1 *に設定
される。変化幅ΔVs*の正負については、電圧変
化量ΔPsの正負と同一に設定される。この場合、
変化幅ΔVs*の正は電圧基準Vs*の変化方向(増
加、減少)のモードがそのまま維持されることを
示し、負はこのモードの反転、つまり現在減少モ
ードであるならば増加モードへ切り換えられるこ
とを意味する。尚、以下の説明において単に変化
幅ΔVs*と言う場合にはその絶対値を指すことと
する。
This variation width Vs * is set, for example, according to the relationship shown in FIG. In other words, if the absolute value of the power change amount ΔPs is smaller than the predetermined value ΔP 1 ,
The change width ΔVs * is set in proportion to the power change amount ΔPs. Further, when the absolute value is larger than the predetermined value ΔP 1 , the variation width ΔVs * is set to a constant value ±ΔV S1 * . The sign of the change width ΔVs * is set to be the same as the sign of the voltage change amount ΔPs. in this case,
A positive change width ΔVs * indicates that the mode of change direction (increase, decrease) of the voltage reference Vs * is maintained as it is, and a negative value indicates that this mode is reversed, that is, if it is currently in a decreasing mode, it is switched to an increasing mode. It means that. In the following explanation, when we simply refer to the variation range ΔVs * , we mean its absolute value.

この電圧基準変化幅設定処理が終了すると、次
にモード判断処理(ステツプ5)が行われる。こ
こでは、前記フラグから現在減少モードにあるの
か増加モードにあるのかが判断されるとともに、
先程設定された変化幅ΔVs*の正負から現在のモ
ードをそのまま維持するか反転させるかが判断さ
れ、負の場合にはモードを反転させるべく前記フ
ラグの切り換えが行われる。このようにして、減
少モード又は増加モードのいずれかが決定される
と、次に電圧基準設定処理(ステツプ6)が行わ
れる。この処理では、前サンプリング時の電圧基
準Vs*′に先程設定された変化幅ΔVsが加算又は
減算されて新たな電圧基準Vs*が設定される。つ
まり、先程決定されたモードが減少モードならば
前回の電圧基準Vs*′に変化幅ΔVs*が減算され、
また、増加モードならば前回の電圧基準Vs*′に
変化幅ΔVs*が加算されて新たな電圧基準Vs*
設定される。このようにして設定された電圧基準
Vs*は誤差増幅器24へ出力される。
When this voltage reference change width setting process is completed, a mode determination process (step 5) is performed next. Here, it is determined from the flag whether the mode is currently decreasing or increasing, and
It is determined whether the current mode should be maintained or reversed based on the sign of the previously set change width ΔVs * , and if it is negative, the flag is switched to reverse the mode. Once either the decrease mode or the increase mode is determined in this way, the voltage reference setting process (step 6) is then performed. In this process, the previously set change width ΔVs is added to or subtracted from the voltage reference Vs * ' at the time of previous sampling, and a new voltage reference Vs * is set. In other words, if the mode determined earlier is the decreasing mode, the change width ΔVs * is subtracted from the previous voltage reference Vs * ′,
Furthermore, in the increase mode, the change width ΔVs * is added to the previous voltage reference Vs * ' to set a new voltage reference Vs * . Voltage standards set in this way
Vs * is output to the error amplifier 24.

以上のようなルーチンが繰り返されることによ
り、第5図に矢印A,Dで示すように、太陽電池
10の動作点はその出力電力Psが増加する方向
へ移動させられて行き、最終的には最大電力点M
を中心として左右に振れることになる。その際
に、この動作点の振れ幅を定める変化幅ΔVs*
前述したように電力変化量ΔPsが大きければ大き
く、電力変化量ΔPsが小さければ小さく設定され
るため、最大電力点Mの近傍における前記動作点
の振れ幅は極めて小さくなり、よつて最大電力を
精度良くかつ安定に得ることができることにな
る。また、日射量や電池温度の急変等によつて電
池特性が変化し、前記動作点が最大電力点Mから
大きくずれてしまつた場合には、電力変化量ΔP
が大きいので電圧基準Vs*の変化幅ΔVs*も大き
い値になり、前記動作点は速い応答速度で最大電
力点Mへ向うことになる。更に、日射量が少なく
なつて太陽電池10の動作が電圧基準Vs*の変化
に対して不安定な領域に入つた場合には、電力変
化量ΔPsが小さくなるため、電圧基準Vs*の変化
幅ΔVs*も小さくなつて電池電圧の変動が小さく
なりその安定化を図ることができる。
By repeating the above routine, the operating point of the solar cell 10 is moved in the direction of increasing its output power Ps, as shown by arrows A and D in FIG. Maximum power point M
It will swing left and right around the center. At this time, the variation width ΔVs * that determines the amplitude of the operating point is set to be large as the power variation ΔPs is large and small as the power variation ΔPs is small, as described above. The amplitude of the fluctuation of the operating point becomes extremely small, so that the maximum power can be obtained accurately and stably. In addition, if the battery characteristics change due to sudden changes in solar radiation or battery temperature, and the operating point deviates significantly from the maximum power point M, the amount of power change ΔP
is large, the variation width ΔVs * of the voltage reference Vs * also becomes a large value, and the operating point moves toward the maximum power point M with a fast response speed. Furthermore, when the amount of solar radiation decreases and the operation of the solar cell 10 enters a region where it is unstable with respect to changes in the voltage standard Vs * , the amount of power change ΔPs becomes small, so the width of change in the voltage standard Vs * decreases. ΔVs * is also reduced, and fluctuations in battery voltage are reduced, making it possible to stabilize the voltage.

尚、上記実施例では、第2図に示したように電
圧基準Vs*の変化幅ΔVs*を電力変化量ΔPsに比
例して変化させる方法を取り上げたが、これに準
ずる他の関数で変化させても同様の効果が得られ
ることは勿論である。また、本実施例では電池電
源に太陽電池を用いた場合を説明したが、同様の
特性を有する電源、例えば燃料電池などを用いて
も同様の効果を得ることができる。燃料の電池場
合、電池電源の起電力発生原因は、燃料(水素、
チタン、メタノール等)と燃焼剤(酸素又は空
気)との化学反応であり、この起電力発生原因の
変化は燃料及び燃焼剤の電気化学的な反応量の大
小や速度に起因している。
In the above embodiment, as shown in Fig. 2, the variation range ΔVs * of the voltage reference Vs * is varied in proportion to the power variation ΔPs, but it is also possible to vary it using another function similar to this. Of course, the same effect can be obtained even if Further, in this embodiment, a case has been described in which a solar cell is used as a battery power source, but similar effects can be obtained by using a power source with similar characteristics, such as a fuel cell. In the case of fuel cells, the cause of the electromotive force generated by the battery power source is the fuel (hydrogen,
This is a chemical reaction between a combustion agent (titanium, methanol, etc.) and a combustion agent (oxygen or air), and changes in the cause of this electromotive force are caused by the magnitude and speed of the electrochemical reaction amount of the fuel and combustion agent.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば電池電源
の出力電圧を変化させて行く電池の動作点を最大
電力点に一致させる際に、前記出力電圧の変化幅
を電力変化量に応じて変更するようにしているの
で、条件の急変等により上記動作点が最大電力点
から離れてしまつた場合には速い応答速度で上記
追従がなされるとともに、最大電力点近傍におい
ては精密な追従がなされるので安定かつ精度良く
最大電力を得ることが可能となる。
As explained above, according to the present invention, when changing the output voltage of the battery power source to make the operating point of the battery coincide with the maximum power point, the range of change in the output voltage is changed according to the amount of power change. Therefore, if the operating point moves away from the maximum power point due to a sudden change in conditions, the above tracking is performed at a fast response speed, and precise tracking is performed near the maximum power point. It becomes possible to obtain maximum power stably and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電池電源の最大電力制御
方法の一実施例を示すフローチヤート、第2図は
同実施例における電力変化量と電圧基準の変化幅
との関係を示す図、第3図は太陽電池の特性図、
第4図は太陽電池から最大電力を取り出す装置の
一例を示すブロツク線図、第5図は同装置による
最大電力制御の概要を説明するための太陽電池の
特性図である。 10……太陽電池、11……インバータ、12
……連系リアクトル、13……電力系統、21…
…電流検出器、22……電圧検出器、23……最
大電力制御回路、24……誤差増幅器、25……
ゲート制御回路。
FIG. 1 is a flowchart showing an embodiment of the maximum power control method for a battery power source according to the present invention, FIG. The figure shows the characteristics of a solar cell.
FIG. 4 is a block diagram showing an example of a device for extracting maximum power from a solar cell, and FIG. 5 is a characteristic diagram of a solar cell for explaining an outline of maximum power control by the device. 10...Solar cell, 11...Inverter, 12
... Grid interconnection reactor, 13... Power system, 21...
...Current detector, 22...Voltage detector, 23...Maximum power control circuit, 24...Error amplifier, 25...
Gate control circuit.

Claims (1)

【特許請求の範囲】 1 最大電力が得られるとき電圧が起電力発生原
因の変化に関係なく一定であり、かつ、電流が所
定値以上大きくなつたときに電力が急激に減少す
る特性を有する電池電源から電力変換装置を介し
て取り出される電力を最大電力に制御する方法に
おいて、 前記電力変換装置へ与える電圧基準を所定の変
化幅づつ変化させて行くことにより前記電池電源
の出力電圧を前記変化幅づつ変化させて行き、こ
の出力電圧の各値において前記電池電源の出力電
力を検出し、この出力電力の検出値の変化量が増
加方向であれば前記電力基準を変化させる方向を
そのまま維持し、逆に減少方向であれば前記変化
方向を反転させるとともに、前記変化量の大小に
応じて前記電圧基準の変化幅の大きさを変更する
ことを特徴とする電池電源の最大電力制御方法。
[Scope of Claims] 1. A battery having the characteristics that the voltage is constant regardless of changes in the cause of electromotive force generation when maximum power is obtained, and the power decreases rapidly when the current increases beyond a predetermined value. In a method of controlling the power taken out from a power source via a power conversion device to the maximum power, the output voltage of the battery power source is controlled to the maximum power by changing a voltage reference applied to the power conversion device by a predetermined change width. detecting the output power of the battery power supply at each value of the output voltage, and if the amount of change in the detected value of the output power is in an increasing direction, maintaining the direction in which the power reference is changed; On the other hand, if the change direction is in the decreasing direction, the change direction is reversed, and the change width of the voltage reference is changed depending on the magnitude of the change amount.
JP22587685A 1985-10-09 1985-10-09 Control method for maximum power of battery power source Granted JPS6285312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22587685A JPS6285312A (en) 1985-10-09 1985-10-09 Control method for maximum power of battery power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22587685A JPS6285312A (en) 1985-10-09 1985-10-09 Control method for maximum power of battery power source

Publications (2)

Publication Number Publication Date
JPS6285312A JPS6285312A (en) 1987-04-18
JPH0568722B2 true JPH0568722B2 (en) 1993-09-29

Family

ID=16836241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22587685A Granted JPS6285312A (en) 1985-10-09 1985-10-09 Control method for maximum power of battery power source

Country Status (1)

Country Link
JP (1) JPS6285312A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771096B2 (en) * 1993-06-11 1998-07-02 キヤノン株式会社 Power control device, power control method, and power generation device
JP2810630B2 (en) 1993-11-16 1998-10-15 キヤノン株式会社 Solar cell power control device, power control system, power control method, and voltage / current output characteristic measurement method
JP2804718B2 (en) * 1994-07-29 1998-09-30 三洋電機株式会社 Maximum power point tracking control method and apparatus for solar cell
JP3651972B2 (en) * 1995-07-26 2005-05-25 キヤノン株式会社 Control device for grid-connected inverter and photovoltaic power generation system using the same
JPH0962387A (en) * 1995-08-29 1997-03-07 Canon Inc Method and device for power control of battery power source and battery power source system
JP3382434B2 (en) * 1995-09-22 2003-03-04 キヤノン株式会社 Battery power supply voltage control device and voltage control method
JP3554116B2 (en) * 1996-09-06 2004-08-18 キヤノン株式会社 Power control device and solar power generation system using the same
EP1995656A1 (en) * 2007-05-23 2008-11-26 SMA Solar Technology AG Method for performance adjustment
TWI444809B (en) * 2010-03-31 2014-07-11 Hitachi Ltd Solar power generation system and control system
DE102011054939A1 (en) * 2011-10-28 2013-05-02 Sma Solar Technology Ag Tracking method and device for a voltage converter for a photovoltaic system
EP2722725B1 (en) * 2012-10-16 2017-05-24 Mitsubishi Electric R&D Centre Europe B.V. Device for tracking a maximum power point of a power source
JP2017103860A (en) * 2015-11-30 2017-06-08 オムロン株式会社 Non-contact power supply device
JP2017192243A (en) * 2016-04-15 2017-10-19 日立アプライアンス株式会社 Photovoltaic power generation system

Also Published As

Publication number Publication date
JPS6285312A (en) 1987-04-18

Similar Documents

Publication Publication Date Title
JP3516101B2 (en) Solar power generator
JP4457692B2 (en) Maximum power tracking control method and power conversion device
EP0653692B1 (en) Method and apparatus for controlling the power of a battery power source
JP3499941B2 (en) Solar power generator
JPH0568722B2 (en)
JP2000020150A (en) Solar power generation inverter device
US20040021445A1 (en) Power slope targeting for DC generators
US20070040539A1 (en) Method and apparatus for controlling power drawn from an energy converter
JPH0991051A (en) Voltage controller for battery power supply and its voltage controlling method
JPH08123561A (en) Method and device for maximum output following control for photovoltaic power generation system
US10845836B2 (en) Method for tracking control of maximum power point of solar cell and tracking device
JPH07168639A (en) Maximum electric power tracking method for solar power generation system
JPS61284065A (en) Fuel cell power generating system
JP2000261979A (en) Solar cell, capacitor power supply device and charging method
JPH09258838A (en) Maximum electric power control method for photovolatic power generation system
JP3484506B2 (en) Power control device and power generation system using the same
JPH0318911A (en) Output controller for power generating system of solar battery
JPH06230838A (en) Method for controlling variable speed inverter
JP2524135B2 (en) Inverter control system driven by solar cell
JPH071700B2 (en) Fuel cell power generation system
JPH0630032B2 (en) Maximum power control method for battery power
JP3567810B2 (en) Maximum power control method for solar cells
JPS6152719A (en) Power unit
JP2001060117A (en) Maximum power control method for solar battery
JPH0683465A (en) Maximum electric power control method for solar battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term