JPS59206801A - Condensing device - Google Patents
Condensing deviceInfo
- Publication number
- JPS59206801A JPS59206801A JP58082137A JP8213783A JPS59206801A JP S59206801 A JPS59206801 A JP S59206801A JP 58082137 A JP58082137 A JP 58082137A JP 8213783 A JP8213783 A JP 8213783A JP S59206801 A JPS59206801 A JP S59206801A
- Authority
- JP
- Japan
- Prior art keywords
- prism
- light
- incident
- transparent
- angle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0004—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
- G02B19/0028—Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B19/00—Condensers, e.g. light collectors or similar non-imaging optics
- G02B19/0033—Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Elements Other Than Lenses (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、プリズムを用いた集光装置に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light condensing device using a prism.
プリズムを用いた集光装置としては、第1図(a)。FIG. 1(a) shows a light condensing device using a prism.
(b)に示す透明プリズムと、第2図に示すミラー付プ
リズムとがある。There are a transparent prism shown in (b) and a mirrored prism shown in FIG.
第1図(a)、 (b)は通常のくさび形をしたプリズ
ムを全反射を利用して集光装置としたものである。第1
図において、11は透明プリズム、11Cは受光面であ
る。入射角り、で透明プリズム11に入射した入射光F
は、透明プリズム110表面11aにおいて屈折され、
透明プリズム11内を直進し、透明プリズム11の裏面
11bにおいて全反射される。この全反射を透明プリズ
ム11の表面11aと裏面11bとで繰り返し、入射光
Fは透明プリズム11の終端部に設けられた受光面11
cに到達する。Figures 1(a) and 1(b) show an ordinary wedge-shaped prism used as a light condensing device by utilizing total internal reflection. 1st
In the figure, 11 is a transparent prism, and 11C is a light receiving surface. Incident light F that entered the transparent prism 11 at an incident angle of
is refracted at the surface 11a of the transparent prism 110,
The light travels straight through the transparent prism 11 and is totally reflected on the back surface 11b of the transparent prism 11. This total reflection is repeated on the front surface 11a and back surface 11b of the transparent prism 11, and the incident light F is reflected on the light receiving surface 11 provided at the end of the transparent prism 11.
reach c.
上記の構造の集光装置において入射光Fの最大許容角h
1malは、受光面11cと透明プリズム11の表面1
1aと尾垂直な面(子午面)内の入射光については解析
的に求めることができる。子午面に含まれない入射光(
斜め入射光)建ついての最大許容角は光線追跡法等によ
る複雑な計算が必要となるので、以下では子午面内の入
射光の許容角についてのみ考える。The maximum permissible angle h of the incident light F in the condensing device with the above structure
1mal is the light receiving surface 11c and the surface 1 of the transparent prism 11.
The incident light in a plane (meridional plane) perpendicular to 1a can be analytically determined. Incident light not included in the meridian plane (
Since the maximum permissible angle for oblique incident light requires complex calculations using ray tracing methods, etc., we will only consider the permissible angle for incident light in the meridian plane below.
第1図の透明プリズムの子午面内での最大許容入射角h
lIn□は
hlnn、x=:cosl(n (cos−’(−)十
α〕) ・・・・・・(りとなり、最大集光比′FL
m1 は
cos h
Rmax =sin m、x−・・・・・・・・・・・
・・・・・・・・・・(2)となる。ただし、nはプリ
ズムの屈折率、αは透明プリズムの頂角である。Maximum allowable angle of incidence h in the meridian plane of the transparent prism shown in Figure 1
lIn□ is hlnn, x=:cosl(n (cos-'(-)10α)) ......(The maximum condensing ratio 'FL
m1 is cos h Rmax = sin m, x-・・・・・・・・・・・・
・・・・・・・・・・・・(2) However, n is the refractive index of the prism, and α is the apex angle of the transparent prism.
また、第1図の集光装置においては、透明プリズム11
の裏面11bから入射する光F′も同様に受光面11c
に集光できる。この場合の最大許容入射角HIffla
Xは
HIIBHK =2 h Hma X−α ・・・・・
・・・・・・・・・・・・・ (3)となる。In addition, in the condensing device shown in FIG. 1, the transparent prism 11
Similarly, the light F' incident from the back surface 11b of the light receiving surface 11c
Light can be focused on. In this case, the maximum allowable angle of incidence HIffla
X is HIIBHK = 2 h Hma X-α...
・・・・・・・・・・・・・・・ (3)
次に第2図に示すミラー付プリズム集光器は、透明プリ
ズム21の裏面21bKjラー22を設置したものであ
る。入射角h1で透明プリズム210表面21aに入射
した光Fは、裏面のミラー22での鏡面反射と、表面2
1aでの全反射を繰り返し、受光面21cK達する。裏
面21bがミラー面であるため、裏面21bからの入射
光は集光できないが、表面21aからの入射光に対する
最大許容入射角h1mmKは、ミラー22のない場合よ
りも大きくなり、次式で与えられる。Next, the mirrored prism condenser shown in FIG. 2 is one in which a back surface 21bKj mirror 22 of a transparent prism 21 is installed. The light F incident on the surface 21a of the transparent prism 210 at an incident angle h1 undergoes specular reflection on the mirror 22 on the back surface and reflection on the surface 21a on the surface 210.
It repeats total reflection at 1a and reaches the light receiving surface 21cK. Since the back surface 21b is a mirror surface, the incident light from the back surface 21b cannot be focused, but the maximum allowable incident angle h1mmK for the incident light from the front surface 21a is larger than when there is no mirror 22, and is given by the following equation. .
いた集光器では許容角により集光比の上限が定まり、あ
まり大きな集光比がとれない。The upper limit of the condensing ratio is determined by the permissible angle of the condenser, and it is not possible to obtain a very large condensing ratio.
この発明は、そのような問題点を解決するためKなされ
たものであり、上記2種類のプリズムを用いた集光器を
、間隙を設けて複数個配置し、入射角に応じて集光作用
をする透明プリズムが自動的に切り替わることを特徴と
する。この結果、瞬時的な集光比は許容角に制限されず
、高い集光比を実現することができる。This invention was made in order to solve such problems, and a plurality of condensers using the above two types of prisms are arranged with a gap between them, and the condensing effect is adjusted according to the angle of incidence. It is characterized by the transparent prism that changes automatically. As a result, the instantaneous light collection ratio is not limited by the permissible angle, and a high light collection ratio can be achieved.
第 1 表 第3図はこの発明の一実施例を示す図である。Chapter 1 Table FIG. 3 is a diagram showing an embodiment of the present invention.
同図において、2個の透明プリズム31.32が重ねら
れ、透明プリズム31と透明プリズム32間KiJIM
βが設けられている。入射角o−h、で入射する光F1
は透明プリズム31内で全反射を繰り返し、受光面31
cに到達する。同様に1人射角り、〜h、で入射した入
射光F2は受光面32cに集光される。また、透明プリ
ズム32の裏面32bから入射する元本同様に入射角に
応じて各透明プリズム31,32のいずれかに集光され
る。In the same figure, two transparent prisms 31 and 32 are overlapped, and KiJIM is formed between the transparent prism 31 and the transparent prism 32.
β is provided. Light F1 incident at an incident angle o-h
is repeatedly totally reflected within the transparent prism 31, and the light-receiving surface 31
reach c. Similarly, the incident light F2 that is incident at an angle of incidence of one person, ~h, is focused on the light receiving surface 32c. Also, like the original light incident from the back surface 32b of the transparent prism 32, the light is focused on either of the transparent prisms 31 and 32 depending on the angle of incidence.
上記のように1透明プリズムを複数個多段に重ねた場合
、入射光Fはその入射角に応じて複数個の透明プリズム
の内いずれか1つの透明プリズム内で全反射を繰り返し
集光される。このように受光面が入射角に応じて自動的
に切−2替わる集光器は、太陽光を熱エネルギーとして
利用する場合k特に有効である。すなわち、太陽の位置
に応じていずれかの透明プリズム内で集中的に集光され
るため、高い温度の熱を高い効率で集熱することができ
る。この場合、重ね合わせる透明プリズムの数は適宜選
定できることは云うまでもない。When a plurality of transparent prisms are stacked in multiple stages as described above, the incident light F is repeatedly totally reflected and focused within any one of the plurality of transparent prisms depending on its angle of incidence. A concentrator in which the light-receiving surface is automatically switched in accordance with the incident angle is particularly effective when sunlight is used as thermal energy. That is, since light is concentrated in one of the transparent prisms depending on the position of the sun, high-temperature heat can be collected with high efficiency. In this case, it goes without saying that the number of transparent prisms to be superimposed can be selected as appropriate.
第4図はこの発明の他の実施例を示す図で、第3図に示
す実施例において最下段の透明プリズム32をミラー付
プリズム42としたもので、41は透明プリズムである
。最下段にミラー43があるため、この面からの入射光
は利用できないが、最上面からの入射光の最大許容角は
、第3図の実施例よりも大きくなる。すなわち、入射角
o−h。FIG. 4 is a diagram showing another embodiment of the present invention, in which the lowermost transparent prism 32 in the embodiment shown in FIG. 3 is replaced with a mirrored prism 42, and 41 is a transparent prism. Since the mirror 43 is located at the bottom stage, the incident light from this surface cannot be used, but the maximum permissible angle for the incident light from the top surface is larger than that of the embodiment shown in FIG. That is, the angle of incidence oh.
とり、〜haの入射光は、受光面41cに集光され、入
射角h1〜h、の入射光は受光面42cに集光される。The incident light at an angle of incidence h1 to h is focused on the light receiving surface 41c, and the incident light at an incident angle h1 to h is focused on the light receiving surface 42c.
また、最下段のミラー付プリズム42以外に集光する場
合は、ζラー面43cでの反射は1回以下であり、鏡面
反射に伴なう損失がかなり低減される。Further, when the light is focused on a part other than the mirror-equipped prism 42 at the lowest stage, the reflection on the ζ mirror surface 43c is less than one time, and the loss due to specular reflection is considerably reduced.
第5図はこの発明のさらに他の実施例を示す図である。FIG. 5 is a diagram showing still another embodiment of the present invention.
これは第3図に示した実施例において左右の間隙β、に
対し中間の1つの間隙β。を大きくしたものに相当する
。両側の透明プリズム51゜52.51’、52’の最
大許容角内の入射光は、各透明プリズム51,52,5
1’、52’で有効に集光し、それ以外の光は底面53
に透過して行くことを特徴としている。この実施例は、
太陽光の有効利用に適している。すなわち、透明プリズ
ム51゜52.51’、52’により集光された光は、
熱あるいは電気出力に変換して有効に利用し、それ以外
の光は底面から透過するので、採光、適度な暖房に利用
できる。このため、この実施例は窓、温室の壁面などの
建築材料としての利用に適している。In the embodiment shown in FIG. 3, this is the gap β between the left and right sides, and one gap β in the middle. It corresponds to a larger version of . The incident light within the maximum permissible angle of the transparent prisms 51°52.51' and 52' on both sides is
1' and 52' are effectively focused, and the other light is focused on the bottom surface 53.
It is characterized by its ability to pass through. This example is
Suitable for effective use of sunlight. That is, the light focused by the transparent prisms 51°52.51' and 52' is
It can be effectively used by converting it into heat or electrical output, and the rest of the light is transmitted through the bottom, so it can be used for daylighting and moderate heating. Therefore, this embodiment is suitable for use as a building material for windows, greenhouse walls, etc.
なお、以上の実施例において、透明プリズムの材料とし
ては、透明な屈折媒質であれば何でも利用可能であるが
、集光した光を熱として利用する場合には、耐熱性があ
り熱伝導率が小さく、熱対流が起こらず赤外光の吸収率
の高いものである必要がある。この条件を満足する材料
としては、たとえは、シリコーン樹脂材が挙げられる。In the above embodiments, any transparent refractive medium can be used as the material for the transparent prism, but if the focused light is to be used as heat, a material that has heat resistance and low thermal conductivity may be used. It needs to be small, prevent heat convection, and have a high absorption rate for infrared light. An example of a material that satisfies this condition is silicone resin material.
なお、赤外光の吸収率のよい材料であれば集熱面は高価
な選択吸収膜に加工する必要はなく、耐久性、低コスト
化の面で実用上大きな利点を有する。Note that if the material has a good absorption rate for infrared light, the heat collecting surface does not need to be processed into an expensive selective absorption film, and has great practical advantages in terms of durability and cost reduction.
以上詳細に説明したように、この発明は、一定範囲の入
射角を持った入射光を蚕反射あるいは鏡面反射を利用し
て受光面に導く透明プリズムを間隙を設けて複数個多段
に配置したので、簡単な構造で集光比の高い集光装置が
得られ、かつ従来は集光できない入射角の光も有効比利
用する構成がとれるので、実用上大きな利点を有する。As explained in detail above, the present invention uses a plurality of transparent prisms that guide incident light having a certain range of incidence angles to a light receiving surface by utilizing silk reflection or specular reflection, which are arranged in multiple stages with gaps. This has great practical advantages, since it is possible to obtain a condensing device with a high condensing ratio with a simple structure, and also to make use of the effective ratio of light at an incident angle that cannot be condensed conventionally.
第1図(a)は透明プリズムを用いた集光装置を示す概
略図、第1図(b)はその斜視図、第2図はミラー付プ
リズムを用いた集光装置の概略図、第3図、第4図、第
5図はこの発明の実施例をそれぞれ示す集光装置の概略
図である。
図中、11,21,31,32,41,42゜51.5
2,51’、52’は透明プリズム、22゜43はミラ
ーである。また、各サフィックスaは表面、同じくサフ
ィックスbは裏面、同じくサフ第1図
(a)
第2図FIG. 1(a) is a schematic diagram showing a condensing device using a transparent prism, FIG. 1(b) is a perspective view thereof, FIG. 2 is a schematic diagram of a condensing device using a prism with a mirror, and FIG. 4 and 5 are schematic diagrams of light condensing devices showing embodiments of the present invention, respectively. In the figure, 11, 21, 31, 32, 41, 42°51.5
2, 51', and 52' are transparent prisms, and 22°43 is a mirror. Also, each suffix a is on the front side, and the suffix b is on the back side.
Claims (1)
面反射を利用して受光面に導く透明プリズムを間隙を設
けて複数個多段に配置したことを特徴どする集光装置。A condensing device characterized by a plurality of transparent prisms arranged in multiple stages with gaps between them, which guide incident light having an incident angle within a certain range to a light-receiving surface using total reflection or specular reflection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58082137A JPS59206801A (en) | 1983-05-11 | 1983-05-11 | Condensing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58082137A JPS59206801A (en) | 1983-05-11 | 1983-05-11 | Condensing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59206801A true JPS59206801A (en) | 1984-11-22 |
JPH0423761B2 JPH0423761B2 (en) | 1992-04-23 |
Family
ID=13766027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58082137A Granted JPS59206801A (en) | 1983-05-11 | 1983-05-11 | Condensing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59206801A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007218540A (en) * | 2006-02-17 | 2007-08-30 | Nagaoka Univ Of Technology | Solar collector, and solar battery and solar heat collector using it |
JP2011059323A (en) * | 2009-09-09 | 2011-03-24 | Leiz Advanced Technology Corp | Condensing module and condensing unit using the same |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418762A (en) * | 1977-06-24 | 1979-02-13 | Unisearch Ltd | Radiation convergence and divergence device |
-
1983
- 1983-05-11 JP JP58082137A patent/JPS59206801A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418762A (en) * | 1977-06-24 | 1979-02-13 | Unisearch Ltd | Radiation convergence and divergence device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007218540A (en) * | 2006-02-17 | 2007-08-30 | Nagaoka Univ Of Technology | Solar collector, and solar battery and solar heat collector using it |
JP4639337B2 (en) * | 2006-02-17 | 2011-02-23 | 国立大学法人長岡技術科学大学 | Solar cell and solar collector |
JP2011059323A (en) * | 2009-09-09 | 2011-03-24 | Leiz Advanced Technology Corp | Condensing module and condensing unit using the same |
Also Published As
Publication number | Publication date |
---|---|
JPH0423761B2 (en) | 1992-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4130107A (en) | Solar concentrator with restricted exit angles | |
US7672549B2 (en) | Solar energy concentrator | |
CA2698284C (en) | Compact optics for concentration, aggregation and illumination of light energy | |
CA2816065C (en) | Compact optics for concentration and illumination systems | |
JP3174549B2 (en) | Photovoltaic power generation device, photovoltaic power generation module, and method of installing photovoltaic power generation system | |
US5288337A (en) | Photovoltaic module with specular reflector | |
US4892593A (en) | Solar trap | |
US4246042A (en) | Fixed solar energy concentrator | |
US6061181A (en) | Nontracking light converger | |
CA2564835A1 (en) | Concentrating solar collector | |
US4124017A (en) | Collimating solar radiation collector | |
SU1138055A3 (en) | Mirror concentrator of sun rays | |
JPS59206801A (en) | Condensing device | |
JP3185719B2 (en) | Solar concentrator | |
FR2357836A1 (en) | Solar energy collecting system - focusses sun's rays onto ducts contg. liquids of different boiling points | |
JPH1127968A (en) | Power generation system | |
JPH0326801B2 (en) | ||
CN102356345A (en) | Solar condensing device | |
US4133699A (en) | Shaped edge solar cell coverslide | |
US20200244217A1 (en) | Planar solar concentrator | |
RU2154244C1 (en) | Solar photoelectric module with concentrator | |
US4397302A (en) | Non-focusing solar energy concentrator | |
RU2134849C1 (en) | Solar photoelectric module with concentrator | |
JPH01291061A (en) | Optical collecting and thermal collecting device | |
RU2133927C1 (en) | Solar photoelectric module with concentrator |