JPS5920612B2 - Optical fiber manufacturing method - Google Patents

Optical fiber manufacturing method

Info

Publication number
JPS5920612B2
JPS5920612B2 JP6175080A JP6175080A JPS5920612B2 JP S5920612 B2 JPS5920612 B2 JP S5920612B2 JP 6175080 A JP6175080 A JP 6175080A JP 6175080 A JP6175080 A JP 6175080A JP S5920612 B2 JPS5920612 B2 JP S5920612B2
Authority
JP
Japan
Prior art keywords
glass tube
glass
external pressure
internal pressure
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6175080A
Other languages
Japanese (ja)
Other versions
JPS56125234A (en
Inventor
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6175080A priority Critical patent/JPS5920612B2/en
Publication of JPS56125234A publication Critical patent/JPS56125234A/en
Publication of JPS5920612B2 publication Critical patent/JPS5920612B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、内壁面にガラス膜を堆積させたガラス管に外
圧を加えながら加熱溶着する光ファイバの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber in which a glass tube having a glass film deposited on its inner wall is heat-welded while applying external pressure.

光ファイバに関する研究はこの数年の間に急速に発展し
、数dB/kmの超低損失の試作成功例が次々に発表さ
れる段階に入つてきた。
Research on optical fibers has developed rapidly over the past few years, and we have reached the stage where successful prototypes with ultra-low losses of several dB/km are being announced one after another.

これら低損失光ファイバは、気相化学反応によつて合成
した石英ガラス及び屈折率制御用の金属酸化物の少なく
とも1種を少量ドープした石英ガラス材料で構成したも
のが主流を占めている。第1図は従来の気相化学反応法
を利用した光ファイバ製造方法のプロセスの一例を示す
These low-loss optical fibers are mainly composed of quartz glass synthesized by a gas phase chemical reaction and a quartz glass material doped with a small amount of at least one metal oxide for controlling the refractive index. FIG. 1 shows an example of a process for manufacturing an optical fiber using a conventional gas phase chemical reaction method.

同図aは、ガラス管3(通常、石英管、パイコール等を
用いる)をガラス施盤1にチャックにより取り付けて矢
印5(または反対方向)に回転させながら、矢印2の方
向からガラス膜形成用ソースを導入し、加熱源4(同図
では酸水素バーナを用いる)を矢印7(またはT’)の
方向に移動させてガラス管3の内壁面に光ファイバのコ
ア材となるガラス膜を堆積させるプロセスである。
In the same figure, a glass tube 3 (usually made of quartz tube, Pycor, etc.) is attached to the glass processing plate 1 with a chuck, and while rotating it in the direction of arrow 5 (or the opposite direction), a source for forming a glass film is applied from the direction of arrow 2. is introduced, and the heating source 4 (an oxyhydrogen burner is used in the figure) is moved in the direction of arrow 7 (or T') to deposit a glass film that will become the core material of the optical fiber on the inner wall surface of the glass tube 3. It's a process.

同図bは、ガラス膜6を堆積させたガラス管3を加熱源
4で加熱しながらガラス管3の内面が密着するように溶
着して、2層(あるいは多層)のガラス構造から成る円
形棒の光ファイパラリブオーム(以下、プリフオームと
略記する)8にするプロセスである。
Figure b shows a circular bar made of a two-layer (or multi-layer) glass structure made by welding a glass tube 3 on which a glass film 6 has been deposited while heating it with a heating source 4 so that the inner surfaces of the glass tube 3 are in close contact with each other. This is the process of converting the optical fiber into a parallel ohm (hereinafter abbreviated as preform) 8.

また、同図Cは得られたプリフオーム8を加熱炉10に
一定速度で送り込み、加熱、溶融しながら延伸し、細径
の光ファイバ9にするプロセスを示す。しかし、本発明
者が同図bに示すプリフオームの製造プロセスについて
理論的及び実験的検討を行なつた結果、次のような欠点
があることが明らかになつた。
Further, FIG. 3C shows a process in which the obtained preform 8 is fed into a heating furnace 10 at a constant speed, heated and melted while being drawn, thereby forming an optical fiber 9 with a small diameter. However, as a result of theoretical and experimental studies conducted by the present inventor on the manufacturing process of the preform shown in FIG.

まず同図bにおいて、軸の周りを一定の回転角速度ωで
回転しているガラス管3の外表面から酸水素バーナの火
炎が一様に吹きつけられている場合の、ガラス管3のモ
デルを第2図aの状態とする。
First, in Figure b, a model of the glass tube 3 is shown in which the flame of the oxyhydrogen burner is uniformly blown from the outer surface of the glass tube 3, which is rotating around its axis at a constant rotational angular velocity ω. The state is as shown in Fig. 2a.

すなわち、ガラス管3は酸水素バーナの吹きつけにより
外側表面から一様な流動温度に加熱されながら、外圧P
を一様に加えられ半径方向に圧縮溶着され、第2図bに
示すプリフオームとすることができる。また、酸水素バ
ーナの火炎の吹きつけにより外圧Pが一様に作用してい
るので、ガラス管の変形はその軸に対称であり、かつ、
その軸方向には変化しないものとする。更に、ガラス管
の内壁面に堆積されたガラス膜の組成はガラス管の組成
とほぼ同じであるとし、その膜厚はガラス管の肉厚に含
めて考える。このように仮定すると、溶着時における第
2図C(7)Bd面に作用する半径応力σ,、およびA
d面とCd面に作用する円周応力σ1は次式で示される
That is, the glass tube 3 is heated from the outside surface to a uniform flow temperature by the blowing from the oxyhydrogen burner, while being exposed to the external pressure P.
can be uniformly applied and radially compression welded to form the preform shown in FIG. 2b. In addition, since the external pressure P acts uniformly due to the flame spray of the oxyhydrogen burner, the deformation of the glass tube is symmetrical about its axis, and
It is assumed that there is no change in the axial direction. Furthermore, it is assumed that the composition of the glass film deposited on the inner wall surface of the glass tube is almost the same as the composition of the glass tube, and the thickness of the film is considered to be included in the wall thickness of the glass tube. Assuming this, the radial stress σ, which acts on the Bd surface in Figure 2 C (7) during welding, and A
The circumferential stress σ1 acting on the d-plane and the Cd-plane is expressed by the following equation.

(1)式において、σ,及びσ,の右辺の第1項を第2
項よりも十分に大きくとればガラス管3に圧縮応力が作
用するから、外圧Pを大きくすることによりガラス管3
は圧縮溶着されてプリフオーム8が作られる。
In equation (1), the first term on the right side of σ and σ is
If the external pressure P is sufficiently larger than P, compressive stress will act on the glass tube 3. Therefore, by increasing the external pressure P, the glass tube 3
are compression welded to form a preform 8.

この場合のガラス管3からプリフオーム8への成形の速
さはガラスの粘度及び弾性定数により定まり、次式で示
される。ここで、 S:変形量 ところが、(1)式より溶着時にガラス管3の外径部分
及び内径部分に作用する円周応力σ,と半径応用σ,は
次式で示される。
In this case, the speed of forming the glass tube 3 into the preform 8 is determined by the viscosity and elastic constant of the glass, and is expressed by the following equation. Here, S: amount of deformation However, from equation (1), the circumferential stress σ, which acts on the outer diameter portion and inner diameter portion of the glass tube 3 during welding, and the radius applied σ, are expressed by the following equation.

(3)式より理解できるようにプリフオームのコア径と
外径を惰円にするにはガラス管3の軸に対称な外圧P及
び遠心力が作用するように構成することが必要十分な条
件である。
As can be understood from equation (3), in order to make the core diameter and outer diameter of the preform into an inertia circle, it is necessary and sufficient to configure the glass tube 3 so that symmetrical external pressure P and centrifugal force act on its axis. be.

しかしながら、このような外圧による溶着方法では、(
3)式に示されるようにガラス管の内径部分には遠心力
による円周応力σ1しか作用していないので、この遠心
力による円周応力σ1がわずかに非対称になるとコア径
が惰円化してしまう欠点がある。
However, in such a welding method using external pressure, (
3) As shown in the formula, only the circumferential stress σ1 due to centrifugal force acts on the inner diameter of the glass tube, so if the circumferential stress σ1 due to centrifugal force becomes slightly asymmetrical, the core diameter becomes circular. There is a drawback.

これを確認するために行なつた種々の実験によれば、回
転角速度ω、外圧P1酸水素バーナの移動速度等のパラ
メータのわずかな変化に対して、×200%)は数%以
下で真円に近いにもかかわらず、コア径の惰円率は4〜
30%の範囲で敏感に変動するという結果が得られた。
According to various experiments conducted to confirm this, for slight changes in parameters such as the rotational angular velocity ω and the moving speed of the external pressure P1 oxyhydrogen burner, ×200%) becomes a perfect circle within a few percent. Despite being close to , the inertia of the core diameter is 4~
The result was that it fluctuated sensitively within a range of 30%.

このような結果になつたのは、第1図aのガラス膜形成
プロセスにおいて、ガラス管3を1500゜C前後の温
度で数時間加熱するためグラス管3に変形及び軸ずれが
必ず発生するためである。
The reason for this result is that in the glass film forming process shown in Figure 1a, the glass tube 3 is heated at a temperature of around 1500°C for several hours, which inevitably causes deformation and misalignment of the glass tube 3. It is.

このため、溶着プロセスの前段階で既にガラス管3に不
完全性が発生しているので、仮に回転角速度ωを遅くし
て円周応力σtを小さくしても、外径は真円に近づくが
コア径を真円に近づけるのは非常に困難であつた。この
ように従来の外圧を利用する溶着方法では、不安定で再
現性に劣る欠点があり、しかもプリフオーム全長にわた
つて2%以下のコア惰円率を得ることは不可能であつた
For this reason, imperfections have already occurred in the glass tube 3 before the welding process, so even if the rotational angular velocity ω is slowed down and the circumferential stress σt is reduced, the outer diameter will approach a perfect circle. It was extremely difficult to make the core diameter close to a perfect circle. As described above, the conventional welding method using external pressure has the disadvantage of being unstable and having poor reproducibility, and furthermore, it has been impossible to obtain a core inertia of 2% or less over the entire length of the preform.

本発明の目的は、上述した欠点を解消し、真円なコア径
及び外径を有するブリフオームを製造でき、特に溶着前
のガラス管が惰円化していても真・・円なコア径及び外
径を有するプリフオームを製造できる光フアイバの製造
方法を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks, to manufacture a brifohm having a perfectly circular core diameter and an outer diameter, and in particular, even if the glass tube before welding is rounded, the present invention has a perfectly circular core diameter and an outer diameter. An object of the present invention is to provide a method for manufacturing an optical fiber that can manufacture a preform having a diameter.

本発明は、ガラス管の内壁面にガラス膜を堆積させた後
一端を密封し、他端から管内にガスを導入すると共に、
管外から外圧を加えながら加熱、溶着させて光ファーハ
ブリブオームとするにあたり、溶融したガラス管に圧縮
応力が働くように外圧と内圧を選択することを特徴とす
るものである。
In the present invention, after a glass film is deposited on the inner wall surface of a glass tube, one end is sealed, and a gas is introduced into the tube from the other end.
When heating and welding the optical fiber hub rib ohm while applying external pressure from outside the tube, the external pressure and internal pressure are selected so that compressive stress is applied to the molten glass tube.

以下、実施例に基き本発明を詳細に説明する。本例では
、加熱源からの外圧だけでなくガラス膜を堆積したガラ
ス管内にガスを送入して内圧を加え加熱溶着する構成と
する。第3図はガラス膜を堆積したガラス管内に圧力P
iのガスを加えながら一様な圧力Pの酸水素バーナで加
熱溶着する場合のガラス管の横断面のモデル図である。
この場合に、溶融したガラス管に作用する円周応力σt
半径応力σrについて種々の解析を行なつた結果、本発
明者は次式で示されることを見出した。(4)式から理
解できるようにガラス管に外圧Pと内圧Piを共に加え
る条件下でも、σt及びσrが負の値となり溶着時のガ
ラス管に圧縮応力を作用〕させることは可能である。本
発明者は種々の解析の結果、圧縮応力を作用させる条件
は次式で示されることを見出した。ここで、(5)式は
ガラス管の回転に伴なう遠心応力よりもガスによる外圧
と内圧に基く応力を大きくすることを意味し、(6)式
はガラス管に加えるガスによる外圧と内圧に基く応力が
正の値となるようにする条件である。
Hereinafter, the present invention will be explained in detail based on Examples. In this example, the structure is such that not only external pressure from a heat source is applied, but also internal pressure is applied by supplying gas into the glass tube on which the glass film is deposited to perform heat welding. Figure 3 shows the pressure P inside the glass tube with the glass film deposited.
FIG. 3 is a model diagram of a cross section of a glass tube when heat welding is performed using an oxyhydrogen burner at a uniform pressure P while adding gas of i.
In this case, the circumferential stress σt acting on the molten glass tube
As a result of various analyzes regarding the radial stress σr, the present inventor found that it is expressed by the following equation. As can be understood from equation (4), even under conditions where both external pressure P and internal pressure Pi are applied to the glass tube, σt and σr become negative values, and compressive stress can be applied to the glass tube during welding. As a result of various analyses, the inventor found that the conditions for applying compressive stress are expressed by the following equation. Here, equation (5) means that the stress based on the external pressure and internal pressure caused by the gas is made larger than the centrifugal stress caused by the rotation of the glass tube, and equation (6) means that the stress based on the external pressure and internal pressure caused by the gas applied to the glass tube is increased. This is a condition that ensures that the stress based on is a positive value.

即ち、ガラス管の回転に伴なう遠心応力よりもガラス管
に加えるガスにより生ずる外圧と内圧に基く応力が大き
くなる条件下において(6)式を満足するように外圧P
と内圧P1を適切に選択すれば溶融ガラス管に圧縮応力
が作用し、真円なコア径及び外径を有するプリフオーム
を製造することが可能になる。以下、本発明による光フ
アイバの製造方法の実施例について説明する。
That is, under conditions where the stress based on the external pressure and internal pressure caused by the gas applied to the glass tube is greater than the centrifugal stress accompanying the rotation of the glass tube, the external pressure P is adjusted to satisfy equation (6).
By appropriately selecting the internal pressure P1 and the internal pressure P1, compressive stress acts on the molten glass tube, making it possible to manufacture a preform having a perfectly circular core diameter and outer diameter. Examples of the method for manufacturing an optical fiber according to the present invention will be described below.

第4図は、実測結果によるブリフオームのコア径楕円率
と主軸回転数との関係を示す。
FIG. 4 shows the relationship between the core diameter ellipticity of the BRIFORM and the spindle rotation speed based on actual measurement results.

同図は、ガラス旋盤の主軸回転数すなわち回転角速度の
低下は式(5)および(6)を満足する方向にあり、こ
れによつて真円のコア径を有するプリフオームが得られ
ることを示している。
The figure shows that the main shaft rotational speed of the glass lathe, that is, the rotational angular velocity, decreases in a direction that satisfies equations (5) and (6), and that a preform with a perfectly circular core diameter is thereby obtained. There is.

この実測結果は、第5図(主軸回転数が10〜60rp
1の場合)および第6図(主軸回転数がOの場合)の装
置によつて得たものである。なお、第5図の1aと1b
は駆動装置(図示せず)により矢印5のように回転され
るガラス管3の支持装置、第6図の18,18aおよび
18bはガラス管を垂直に保持するための支持装置であ
る。また第6図ではガラス管を回転させないため、加熱
源4としてリング状の酸水素バーナを用い、ガラス管3
が均一に加熱されるようにする。以下に実測時の条件を
述べる。
This actual measurement result is shown in Figure 5 (main shaft rotation speed is 10 to 60 rpm).
1) and the apparatus shown in FIG. 6 (when the spindle rotational speed is O). In addition, 1a and 1b in Fig. 5
Reference numeral 18, 18a and 18b in FIG. 6 are supporting devices for holding the glass tube vertically. Reference numeral 18, 18a and 18b in FIG. In addition, in FIG. 6, since the glass tube is not rotated, a ring-shaped oxyhydrogen burner is used as the heating source 4, and the glass tube 3 is
ensure that it is heated evenly. The conditions during actual measurement are described below.

まず前記第1図aの装置において、ガラス管3としては
外径141』肉厚111の石英ガラス管を用い、それぞ
れ液状のSiCl4およびPOCl3を通して各成分の
蒸気が混入された酸素ガスならびに酸素ガスのみをそれ
ぞれ120cc/Mi!tおよび80cc/Mi!tな
らびに400CC/Mi!Lの流量で矢印2の方向に送
り込む。次いで、酸水素バーナ4により約1,10『C
(光パイロメータでの実測値)の温度で反応させて約6
0μmの厚さのホスフオシリケートガラスよりなるガラ
ス膜6を形成させる。このようにして、コア材となるガ
ラス膜を内面に形成したガラス管3を第5図または第6
図の装置に取付け、管内に酸素ガスを圧入すると共に酸
水素バーナ4で加熱し溶着させる。
First, in the apparatus shown in FIG. 1a, a quartz glass tube with an outer diameter of 141" and a wall thickness of 111" is used as the glass tube 3, and oxygen gas and oxygen gas mixed with the vapors of each component through liquid SiCl4 and POCl3, respectively, are used. 120cc/Mi each! t and 80cc/Mi! t and 400CC/Mi! Feed in the direction of arrow 2 at a flow rate of L. Next, the oxyhydrogen burner 4 is used to heat the
(Actual value measured using an optical pyrometer)
A glass film 6 made of phosphoosilicate glass with a thickness of 0 μm is formed. In this way, the glass tube 3 with the glass film forming the core material formed on the inner surface is shown in FIG. 5 or 6.
It is attached to the apparatus shown in the figure, and while oxygen gas is pressurized into the tube, it is heated with an oxyhydrogen burner 4 to weld.

この場合、酸素ガスはボンベ11より減圧弁12を通じ
て供給し、その圧力は圧力計13で監視し、その流量は
550CC/7!U!t1圧力は0.2kg/dとした
。溶着の操作は、まず、溶着前にガラス管3の先端15
を密封し、酸素ガスをブロー管14を通じてガラス管3
内に導入する。ここで、酸水素バーナ4をガラス管3の
密封端15側の支持台1b,18bよりわずか内側の部
分16の付近から0.61!Tm/Secの速度で7′
方向へ移動させ、酸水素バーナ4がガラス管の開口端側
の支持台1a,18aの部分17付近まできたとき14
5m1/SeCの高速度で逆に矢印7方向に移動させる
。次で酸水素バーナ4を0.2m11/Secの速度で
再び7′方向へ移動させ、17付近にきたときはガラス
管の溶着された部分は完全に円形の棒状となり、プリフ
オーム8が得られた。なお酸水素バーナ4による加熱部
分の温度は1,600水C〜1,650℃であつた。第
7図は、プリフオームのコア径楕円率とガラス管内への
酸素ガス導入量との関係の実測結果を示す。前記第4図
は、内圧Piを一定とし回転角速度ωを変えた場合であ
つたが、第7図は逆に回転角速度ωを一定とし、ガラス
管内へ送入する酸素ガスの導入量によつて内圧Piを変
えたものである。第7図は内圧Piの増大、すなわち、
ガスによる外圧と内圧に基く応力が大きくなり、(5)
及び(6)式を満足させることにより、真円のコア径を
有するプリフオームが得られることを示しており、明ら
かに本発明の効果が実証されている。なお同図において
、危険領域とあるのは酸素ガスの導入量が過大となつて
ガラス管が破壊するおそれが生じる。第8図は、第7図
の場合と同様に回転角速度ωを一定とし、ガラス管内へ
導入する酸素ガスの圧力によつて内圧Piを変えた場合
である。
In this case, oxygen gas is supplied from a cylinder 11 through a pressure reducing valve 12, its pressure is monitored with a pressure gauge 13, and its flow rate is 550 CC/7! U! The t1 pressure was 0.2 kg/d. The welding operation begins with the tip 15 of the glass tube 3 before welding.
is sealed and oxygen gas is passed through the glass tube 3 through the blow tube 14.
to be introduced within. Here, the oxyhydrogen burner 4 is moved from the vicinity of the portion 16 on the side of the sealed end 15 of the glass tube 3 slightly inside the support bases 1b, 18b by 0.61! 7' at a speed of Tm/Sec
When the oxyhydrogen burner 4 reaches the vicinity of the portion 17 of the support bases 1a, 18a on the open end side of the glass tube,
It is moved in the opposite direction of arrow 7 at a high speed of 5 m1/SeC. Next, the oxyhydrogen burner 4 was moved again in the 7' direction at a speed of 0.2 m11/Sec, and when it reached around 17, the welded part of the glass tube became a completely circular bar shape, and preform 8 was obtained. . The temperature of the portion heated by the oxyhydrogen burner 4 was 1,600 to 1,650°C. FIG. 7 shows the results of actual measurement of the relationship between the core diameter ellipticity of the preform and the amount of oxygen gas introduced into the glass tube. 4 shows the case where the internal pressure Pi is kept constant and the rotational angular velocity ω is changed, but in FIG. 7, the rotational angular velocity ω is kept constant and the amount of oxygen gas introduced into the glass tube is changed. The internal pressure Pi is changed. FIG. 7 shows the increase in internal pressure Pi, that is,
The stress based on the external pressure and internal pressure due to the gas increases, (5)
It is shown that a preform having a perfectly circular core diameter can be obtained by satisfying formula (6), and the effects of the present invention are clearly demonstrated. In the same figure, the dangerous area is where the amount of oxygen gas introduced is excessive and there is a risk that the glass tube will break. FIG. 8 shows a case where the rotational angular velocity ω is kept constant as in the case of FIG. 7, and the internal pressure Pi is varied depending on the pressure of oxygen gas introduced into the glass tube.

この場合も内圧P1の増大、すなわち、式(5)及び(
6)を満足させることにより真円のコア径を有するプリ
フオームが得られることを示している。ただし同図にお
いて、酸素ガス圧力が1.5k9/d以上になると逆に
コア径が楕円化しているが、これは内圧P1と外圧Pの
値が接近してきたため、内圧Piがガラス管を膨脹させ
るようになづτきたことによる。この現像は単に内圧を
増大させるだけでは十分でなく、内圧の増大に応じて外
圧を大きくすること、即ち、(6)式を満足するように
内圧と外圧を選択すべきことを意味するものである。第
9図は各外径楕円率に対するガラス管およびプリフオー
ムの位置、ならびにコア径楕円率とプリフオームの位置
との関係を示した一例である。
In this case as well, the internal pressure P1 increases, that is, equations (5) and (
It is shown that by satisfying 6), a preform having a perfectly circular core diameter can be obtained. However, in the same figure, when the oxygen gas pressure exceeds 1.5k9/d, the core diameter becomes elliptical, but this is because the values of internal pressure P1 and external pressure P are approaching each other, and internal pressure Pi expands the glass tube. This is due to the fact that I came to Nazutau. For this development, it is not enough to simply increase the internal pressure; it also means that the external pressure should be increased in accordance with the increase in internal pressure, that is, the internal pressure and external pressure should be selected so as to satisfy equation (6). be. FIG. 9 is an example showing the position of the glass tube and preform for each outer diameter ellipticity, and the relationship between the core diameter ellipticity and the preform position.

すなわち、同図aは溶着前のガラス管の外径楕円率およ
び溶着後のプリフオームの外径楕円率とそれぞれの位置
との関係、同図bはプリフオームのコア径楕円率と位置
との関係を示す。ただし、この場合は酸水素バーナの移
動速度ならびにガラス管内へ導入する酸素ガス量とガス
圧力は第4図の場合と同じであり、主軸回転数は10r
p1の場合の一例を示す。上記の各実施例において、プ
リフオームのコア径および外径楕円率は、ともに溶着前
のガラス管の外径楕円率よりも改善されている。
That is, Figure a shows the relationship between the outer diameter ellipticity of the glass tube before welding and the outer diameter ellipticity of the preform after welding, and the respective positions, and Figure b shows the relationship between the preform core diameter ellipticity and position. show. However, in this case, the moving speed of the oxyhydrogen burner, the amount of oxygen gas introduced into the glass tube, and the gas pressure are the same as in the case of Fig. 4, and the main shaft rotation speed is 10 r.
An example of p1 is shown. In each of the above examples, the core diameter and outer diameter ellipticity of the preform are both improved than the outer diameter ellipticity of the glass tube before welding.

これは式(5)および式(6)を満足している場合で、
明らかに本発明の効果が立証されている。これに対し、
第10図aは第9図の条件において、ガラス管へ導入す
る酸素ガス圧力のみを0.2k9/iから1.9k9/
(V7lに変えて内圧P1と外圧Pを接近させた場合の
結果である。
This is the case when formulas (5) and (6) are satisfied,
The effectiveness of the present invention is clearly proven. On the other hand,
Figure 10a shows that under the conditions of Figure 9, only the oxygen gas pressure introduced into the glass tube is changed from 0.2k9/i to 1.9k9/i.
(This is the result when the internal pressure P1 and external pressure P are made closer to each other by changing to V7l.

この場合は第9図のような改善効果はなく、逆に溶着後
のプリフオームのコア径および外径楕円率ともに溶着前
のガラス管の外径楕円率よりも悪くなつていることがわ
かる。これからしても、単に内圧Piを大きくするだけ
でなく(6)式を満足するように内圧Plと外圧Pを選
択すべきことは明らかである。以上述べた結果はいずれ
も単なる一例にすぎず、本発明はこの実施例にこだわる
ものではない。その一例として、石英ガラス管の内壁面
に形成させたガラス膜は、B2O3、GeO2、TiO
2などの金属酸化物をドープした石英ガラス膜でもよい
。また、金属酸化物は1種類のみでなく多種類であつて
もさしつかえない。さらに、ドープ量はO〜25モル%
まで変えても、本発明の効果は得られている。以上の説
明かられかるように、本発明はガラス管を酸水素バーナ
で加熱して溶着する際に、ガラス管内に加える圧力を前
記(5)式及び(6)式を満足するように選ぶことを特
徴とするもので、その結果、真円のプリフオームを再現
性よく得ることができ、特に溶着前から楕円化している
ガラス管を用いても真円のコア径及び外径を有する光フ
ァーハブリブオームを作製することが可能になる。
In this case, there is no improvement effect as shown in FIG. 9, and on the contrary, it can be seen that both the core diameter and the outer diameter ellipticity of the preform after welding are worse than the outer diameter ellipticity of the glass tube before welding. From this point on, it is clear that the internal pressure Pl and the external pressure P should be selected not only to simply increase the internal pressure Pi but also to satisfy equation (6). The results described above are merely examples, and the present invention is not limited to these examples. As an example, the glass film formed on the inner wall surface of a quartz glass tube contains B2O3, GeO2, TiO
A quartz glass film doped with a metal oxide such as 2 may also be used. Further, the number of metal oxides may be not only one, but many types. Furthermore, the doping amount is O~25 mol%
The effects of the present invention can still be obtained even if the following changes are made. As can be seen from the above description, the present invention is to select the pressure applied inside the glass tube so as to satisfy the above equations (5) and (6) when heating and welding the glass tube with an oxyhydrogen burner. As a result, a perfectly circular preform can be obtained with good reproducibility, and in particular, an optical fur hub that has a perfectly circular core diameter and outer diameter even when using a glass tube that is oval before welding. It becomes possible to create rib ohms.

このように、本発明は工業的な量産に適しており、品質
のすぐれた光フアイバ伝送路を構成する上で極めて有利
なものである。
As described above, the present invention is suitable for industrial mass production and is extremely advantageous in constructing a high-quality optical fiber transmission line.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−cは従来の光フアイバ製造方法のプロセスを
示す説明図、第2図a−cは従来の溶着プロセスを解析
するための溶着のモデル図、第3図は本発明の溶着プロ
セスを解析するための溶着のモデル図、第4図、第7図
、第8図、第9図および第10図は本発明の効果を実験
的に示した特性図、第5図第6図は本発明の効果を実験
的に実証するために用いた溶着装置の各一例の構成を示
す説明図である。 3:ガラス管、4:加熱源、6:ガラス膜、8:プリフ
オーム、9:光フアイバ、10:加熱炉。
Figures 1 a-c are explanatory diagrams showing the process of the conventional optical fiber manufacturing method, Figures 2 a-c are welding model diagrams for analyzing the conventional welding process, and Figure 3 is the welding process of the present invention. Fig. 4, Fig. 7, Fig. 8, Fig. 9, and Fig. 10 are characteristic diagrams experimentally showing the effects of the present invention. FIG. 3 is an explanatory diagram showing the configuration of each example of a welding device used to experimentally demonstrate the effects of the present invention. 3: glass tube, 4: heating source, 6: glass membrane, 8: preform, 9: optical fiber, 10: heating furnace.

Claims (1)

【特許請求の範囲】 1 ガラス管の内壁面にガラス膜を堆積したのち一端を
密封し、他端から管内にガスを導入すると共に、管外か
ら外圧を加えながら加熱溶着させて光ファイバプリフオ
ームとするに際し、前記ガラス管の回転に伴なう遠心応
力よりもガラス管に加えられる前記外圧と内圧に基く圧
縮応力が大きくなる条件下において、P>−(P−Pi
)/(r_2^2−r_1^2)r_1^2(1−[2
_2r^2/r^2])ここに、P:ガラス管に加わる
外圧Pi:ガラス管の内圧 2r_1:ガラス管の内径 2r_2:ガラス管の外径 r:ガラス管の中心軸から半径方向の 距離 を満足するように外圧Pと内圧Piとを選択することを
特徴とする光ファイバの製造方法。
[Scope of Claims] 1. After depositing a glass film on the inner wall surface of a glass tube, one end is sealed, gas is introduced into the tube from the other end, and external pressure is applied from outside the tube while heat welding is performed to form an optical fiber preform. Under the condition that the compressive stress based on the external pressure and internal pressure applied to the glass tube is larger than the centrifugal stress accompanying the rotation of the glass tube,
)/(r_2^2-r_1^2)r_1^2(1-[2
_2r^2/r^2]) Here, P: External pressure applied to the glass tube Pi: Internal pressure of the glass tube 2r_1: Inner diameter of the glass tube 2r_2: Outer diameter of the glass tube r: Distance in the radial direction from the central axis of the glass tube A method for manufacturing an optical fiber, characterized in that an external pressure P and an internal pressure Pi are selected so as to satisfy the following.
JP6175080A 1980-05-12 1980-05-12 Optical fiber manufacturing method Expired JPS5920612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6175080A JPS5920612B2 (en) 1980-05-12 1980-05-12 Optical fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6175080A JPS5920612B2 (en) 1980-05-12 1980-05-12 Optical fiber manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12331475A Division JPS5248329A (en) 1975-10-15 1975-10-15 Method for preparation of optical fibers

Publications (2)

Publication Number Publication Date
JPS56125234A JPS56125234A (en) 1981-10-01
JPS5920612B2 true JPS5920612B2 (en) 1984-05-14

Family

ID=13180145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6175080A Expired JPS5920612B2 (en) 1980-05-12 1980-05-12 Optical fiber manufacturing method

Country Status (1)

Country Link
JP (1) JPS5920612B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050103057A1 (en) * 2002-09-03 2005-05-19 Byung-Yoon Kang Method for making optical fiber preform having ultimately low pmd through improvement of ovality

Also Published As

Publication number Publication date
JPS56125234A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
CA1157654A (en) Method of producing optical fibers
US6519974B1 (en) Method for fabricating an optical fiber by simultaneous preform fusing and fiber drawing
JP2002501871A (en) Method and apparatus for manufacturing optical fiber preform
CA2488087A1 (en) Glass tube processing method, apparatus and glass tube
US7437893B2 (en) Method for producing optical glass
JPH0232221B2 (en)
GB2043623A (en) Process for the production of glass fibres
JPS5920612B2 (en) Optical fiber manufacturing method
US4298364A (en) Method of making optical fibers having improved core roundness
JP4359183B2 (en) Correction method of ellipticity of optical fiber preform
US6718801B1 (en) MCVD/PCVD method for making a preform with movement of a furnace
JPS6036344A (en) Manufacture of optical fiber
JPH01138147A (en) Production of single-mode optical fiber preform
WO2007054961A2 (en) Optical fiber preform having large size soot porous body and its method of preparation
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPS5839780B2 (en) Hikari Life Preform No Seizouhouhou
KR100345356B1 (en) manufacturing method of quartz glass preform for optical fiber
JP2585286B2 (en) Manufacturing method of optical fiber and preform for optical fiber
JPS5924741B2 (en) Manufacturing method of optical fiber base material
JPS59141436A (en) Manufacture of optical fiber preform
JP3020920B2 (en) Method for producing glass preform for optical fiber
JP3066962B2 (en) Method and apparatus for stretching glass base material
JP4215943B2 (en) Manufacturing method of optical fiber
JP2003321238A (en) Method and apparatus for producing optical fiber preform
JPS6311534A (en) Production of jacket pipe for drawing optical fiber