JPS59204877A - Manufacture of hologram - Google Patents

Manufacture of hologram

Info

Publication number
JPS59204877A
JPS59204877A JP8037683A JP8037683A JPS59204877A JP S59204877 A JPS59204877 A JP S59204877A JP 8037683 A JP8037683 A JP 8037683A JP 8037683 A JP8037683 A JP 8037683A JP S59204877 A JPS59204877 A JP S59204877A
Authority
JP
Japan
Prior art keywords
film
diffraction grating
layer
organic polymer
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8037683A
Other languages
Japanese (ja)
Inventor
Yuzo Ono
小野 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8037683A priority Critical patent/JPS59204877A/en
Publication of JPS59204877A publication Critical patent/JPS59204877A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Holo Graphy (AREA)

Abstract

PURPOSE:To form a grating having a deep groove in the direction vertical to a substrate on the surface layer of an organic polymer film by providing in order a specified organic polymer film, a metallic layer, and a photoresist film on the substrate to form the photoresist film in the shape of a relief type diffraction grating, and thereafter, executing successively an etching. CONSTITUTION:An organic polymer film 2 is coated to a substrate 1, subsequently, the film 2 is coated with a metallic layer 3 whose oxygen ion etching speed is lower than that of the film 2, and next, a photoresist film 4 whose argon etching speed is lower than that of the layer 3 is coated to the layer 3. This coated film 4 is formed to diffraction grating of the relief type, the layer 3 is ion-etched by an argon beam by using this diffraction grating as a mask, a diffraction grating having a rectangular section is formed on the layer 3, subsequently, the film 2 is ion-etched by an oxygen ion beam by using this diffraction grating having a rectangular section, as a mask, and the diffraction grating having a rectangular section is formed on the surface layer of the film 2. Next, after removing the layer 3, an ion etching is executed from the direction roughly vertical to the base plate. In this way, hologram of a good quality having a deep groove is manufactured, and high diffraction efficiency is obtained.

Description

【発明の詳細な説明】 この発明は、ホログラムの製造方法に関し、特に元ビー
ムを走査するために使用されるこの種のホログラムの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hologram, and more particularly to a method for manufacturing a hologram of this type used for scanning an original beam.

ホログラムは、これを光学累子として用いる種種の応用
、例えばホログラフィックスキャナやホログラフィック
レンズ、分波器などがある。このうち、ホログラフィッ
クスキャナは既にバーコード読取装置として商用されて
いるが、これをレーサビームプリンタなどの元スキャナ
として使用するには走査線が湾曲せず直線走査ができる
必要がある。
Holograms have a variety of applications in which they are used as optical components, such as holographic scanners, holographic lenses, and splitters. Among these, holographic scanners are already commercially available as barcode reading devices, but in order to use them as original scanners for laser beam printers and the like, they must be able to scan straight lines without curves.

このための最も、有望な方法として格子周期が波長程度
の単純信子ホログラムをディスク円周に配列して用いる
と、特定の光学配置で直線走査線が得られることが知ら
れている。この直線走査用ホログラムにとって好しG)
こと/は、高い回折効率が理論上予測されていることで
ある。すなわちホログラフィック格子と同様な正弦波状
の格子断面を持つ格子は格子周期が波長程度で、格子周
期の1.5〜2倍程度の溝の深さを持たせれば、ブラッ
ゲ格子として90%以上の回折効率を持つことが知られ
ている。例えは第1図に、格子周期が波長に等しい格子
について格子溝の深さに対する回折効率の計算結果を示
すが、溝深さが格子周期の1.75倍の時、最大回折効
率96%が得られる。このような高い回折効率の格子が
従来得られなかったのは、波長程度の格子周期のホログ
ラフィック格子では、ホトレジストに干渉縞を記録する
という手法では1格子周期を越えるような深さの格子を
形成することが困難で、良質のホログラフィック格子を
広い面積にわたり製作できなかったためである。
It is known that the most promising method for this purpose is to use simple beam holograms whose grating period is on the order of the wavelength and arranged around the circumference of the disk, whereby a straight scanning line can be obtained with a specific optical arrangement. Good for this linear scanning hologramG)
The point is that high diffraction efficiency is theoretically predicted. In other words, a grating with a sinusoidal grating cross section similar to a holographic grating has a grating period on the order of the wavelength, and if the groove depth is about 1.5 to 2 times the grating period, it can be used as a Bragge grating by more than 90%. It is known to have diffraction efficiency. For example, Figure 1 shows the calculation results of the diffraction efficiency versus the depth of the grating grooves for a grating whose grating period is equal to the wavelength. When the groove depth is 1.75 times the grating period, the maximum diffraction efficiency is 96%. can get. The reason why gratings with such high diffraction efficiency could not be obtained in the past is that with holographic gratings that have a grating period on the order of the wavelength, it is not possible to create a grating with a depth exceeding one grating period using the method of recording interference fringes on photoresist. This is because it is difficult to form, and a high-quality holographic grating cannot be manufactured over a wide area.

この発明の目的は、ホログラフィックな手法だけでは形
成できない溝の深い格子の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a grating with deep grooves that cannot be formed using holographic techniques alone.

この発明のホログラムの製造方法は、基板に有機高分子
膜を塗布する工程と、塗布された前記有機高分子膜に前
記有機高分子膜よりも酸素イオンエツチング速度の遅い
金属層をコートする工程と、前記金属層(こ前記金属層
よりも不ルゴンイオンエッチング速度の遅いホトレジス
ト膜を塗布する工程と、塗布されたホトレジスト膜をレ
リーフ型の回折格子に形成する工程と、前記回折格子を
マスクとして、アルゴンイオンビームで前記金属層をイ
オンエツチングして、金属層に矩形断面の回折格子を形
成する工程と、前記矩形断面の回折格子をマスクとして
1敵素イオンビームで前記有機高分子膜をイオンエツチ
ングして、有機高分子膜の表層に矩形断面の回折格子を
形成する工程と前記金属層を除去した後、基板に対して
ほぼ垂直方向からイオンエツチングする工程とを含むこ
とを特徴とするホログラムの製造方法である。
The method for manufacturing a hologram of the present invention includes a step of applying an organic polymer film to a substrate, and a step of coating the applied organic polymer film with a metal layer whose oxygen ion etching rate is slower than that of the organic polymer film. , a step of applying a photoresist film having a lower irgon ion etching rate than the metal layer, a step of forming the applied photoresist film into a relief-type diffraction grating, and using the diffraction grating as a mask, A step of ion etching the metal layer with an argon ion beam to form a diffraction grating with a rectangular cross section on the metal layer, and ion etching the organic polymer film with a single nitrogen beam using the diffraction grating with a rectangular cross section as a mask. and forming a diffraction grating with a rectangular cross section on the surface layer of an organic polymer film, and after removing the metal layer, performing ion etching from a direction substantially perpendicular to the substrate. This is the manufacturing method.

次に図面を参照して、この発明の詳細な説明するO 第2図から第7図までは、この発明の一実施例を1工程
の順に説明するための断面図である。第2図は1基板1
に有機高分子膜2を塗布した後、その上に金属層3をコ
ートし、さらにその上にホトレジスト4を塗布した状態
を示す断面図である。
Next, the present invention will be described in detail with reference to the drawings. FIGS. 2 to 7 are cross-sectional views for explaining one embodiment of the present invention in the order of one process. Figure 2 shows 1 board 1
FIG. 2 is a cross-sectional view showing a state in which an organic polymer film 2 is coated on the substrate, a metal layer 3 is coated thereon, and a photoresist 4 is further coated thereon.

基板としてはカラス板及びアクリル板を用いた。A glass board and an acrylic board were used as the substrate.

有機高分子膜としては、種々実験した結果、イオンエツ
チング速度の早いソマール工業製の電子線し′シスト8
EL−NタイプAを用いた。−IL−NタイプAはメタ
クリル酸グリシジルとアクリル酸エチルの共重合体であ
る。基板にはスピナーで回転塗布した。
As an organic polymer film, as a result of various experiments, we used Somar Kogyo's electron beam etchant Cyst 8, which has a high ion etching speed.
EL-N type A was used. -IL-N Type A is a copolymer of glycidyl methacrylate and ethyl acrylate. The coating was applied to the substrate using a spinner.

塗布厚は約1.5μmである。その後、ガラス基板の時
は、80”Cで30分間焼きしめを行なった。アクリル
基板の時は50℃で6θ分間焼きしめを行なった。次に
、電子線レジス)M2の表面に電子線レジスト膜2より
も酸素イオンエツチング速度の遅い金属として金(Au
)3を約1000オングストロームの厚さスパッタリン
グでコートシタ。続いて金3の表面にホトレジスト膜4
を塗布した。ホトレジストとしてはシラプレー社製AZ
−1350Vヲ[用し、スピナーで回転塗布した。焼き
しめは、電子線レジストと同じ条件で行なった。塗布厚
は、0.3μm〜0.5μmとした・ 次に、ホトレジスト膜にレリーフ格子を形成するために
、He−Cdレーザを光源とする干渉計で干渉縞をホト
レジスト膜に露光し、現像液で現像した。第3図は現像
後の状態を示す断面図である。
The coating thickness is approximately 1.5 μm. After that, in the case of a glass substrate, baking was performed at 80"C for 30 minutes. In the case of an acrylic substrate, baking was carried out for 6θ minutes at 50"C.Next, electron beam resist was applied to the surface of M2 (electron beam resist). Gold (Au) is a metal whose oxygen ion etching rate is slower than that of film 2.
)3 by sputtering to a thickness of approximately 1000 angstroms. Next, a photoresist film 4 is applied to the surface of the gold 3.
was applied. As a photoresist, AZ manufactured by Silapray Co., Ltd.
-1350V was used, and spin coating was performed using a spinner. Baking was performed under the same conditions as for electron beam resist. The coating thickness was 0.3 μm to 0.5 μm.Next, in order to form a relief grating on the photoresist film, interference fringes were exposed to the photoresist film using an interferometer using a He-Cd laser as a light source, and a developer was applied. It was developed with FIG. 3 is a sectional view showing the state after development.

レーザ干渉計を用いる力)わりに乳剤マス々を用いて密
着焼付によっても第3図に示すようなレリーフ格子を形
成できる。次に、第3図に示すような試料をイオンエツ
チング装置を用いて、アルゴンイオンビームでイ詞ツェ
ッチングした。イオンエツチング条件はアルゴンガス圧
xo−’トール、加速電圧500Vとした。ホトレジス
トAZ−1350Jのイオンエツチング速度は1mA/
crjのアルゴンイオンに対し、300λ/分であるの
に対し、金は、約1000ν分であった。
Alternatively, a relief grating as shown in FIG. 3 can be formed by contact printing using emulsion masses (using a laser interferometer). Next, the sample shown in FIG. 3 was etched with an argon ion beam using an ion etching apparatus. The ion etching conditions were an argon gas pressure xo-'torr and an acceleration voltage of 500V. The ion etching rate of photoresist AZ-1350J is 1 mA/
For crj argon ion, it was 300λ/min, whereas for gold it was about 1000νmin.

このエツチング速度の差を利用することでS@4図に示
すように、レリーフ格子4をマスクとして金属3にほぼ
矩形断面の格子を製作できる。次に第4図の金属3の格
子をマスクとして、電子線レジスト#2をrR:Aイオ
ンビームでイオンエツチングした。イオンエツチング条
件は、酸素ガス圧2XlO−4トール、加速電圧5oo
vとした。金のイオンエツチング速度は1 mA/ci
AO) 酸Zイオンに対して約1000オングストロー
ム/分であるのに対し、電子線レジスト5EL−L”J
−Aは、5330 オンゲス1−0−ム/分、ホトレジ
ストAZ−1350Jは300(。
By utilizing this difference in etching speed, as shown in Figure S@4, a grating with a substantially rectangular cross section can be fabricated on the metal 3 using the relief grating 4 as a mask. Next, using the metal 3 grid shown in FIG. 4 as a mask, electron beam resist #2 was ion-etched with an rR:A ion beam. The ion etching conditions were an oxygen gas pressure of 2XlO-4 Torr and an acceleration voltage of 5oo.
v. Gold ion etching rate is 1 mA/ci
AO) About 1000 angstroms/min for acid Z ions, whereas for electron beam resist 5EL-L”J
-A is 5330 mm/min, photoresist AZ-1350J is 300 mm/min.

オングストローム7分であった。との工〜チング速度の
差を利用することで、蕗5図に示すように電子線レジス
ト層2にほは矩形断面の格子を製作できる。金属3C+
表面には、ホトレジスト4が残っているが、次の金の除
去工程で金を溶かすことで除去できる。金の除去には、
ヨウ化力!J (KI)とヨウ素(1)の飽和溶液で金
を溶解することで行なった。
The distance was 7 angstroms. By making use of the difference in etching speed, a lattice with a rectangular cross section can be produced in the electron beam resist layer 2, as shown in Figure 5. Metal 3C+
Although photoresist 4 remains on the surface, it can be removed by melting the gold in the next gold removal step. To remove gold,
Iodide power! This was done by dissolving gold in a saturated solution of J (KI) and iodine (1).

第6図は、金を除去した後の断面図を示す。次に第6図
に示す矩形4・b子を基板面にほぼ垂直な方向からアル
ゴン4万ン又は酸系イオンでイオンエツチングすると、
格子自身がイオンビームでエツチングされ第7図に示す
ような断面形状が正弦波状の格子が得られる。この時イ
オンエツチング時間が短いと矩形格子の一部が伐るので
イオンエツチング時間の制御が重要である。
FIG. 6 shows a cross-sectional view after the gold has been removed. Next, when the rectangle 4.b shown in FIG. 6 is ion-etched with 40,000 ions of argon or acidic ions from a direction almost perpendicular to the substrate surface,
The grating itself is etched with an ion beam to obtain a grating having a sinusoidal cross-sectional shape as shown in FIG. At this time, if the ion etching time is short, part of the rectangular lattice will be cut off, so it is important to control the ion etching time.

本実施例では、有機高分子膜として8FiL−Nタイプ
Aを用いた場合を説明したが、本方法番こ適1−る他の
有機高分子膜材料としては、5EL−NタイプAと同じ
様な電子線レジストBBR−9、又は、メタクリの2つ
のメチル基をCJi6よびCHtCF’a  で置換し
た重合体(111子線レジストC0P)、又itポIJ
メチルメタアクリレート(PMMA )、又はポリビニ
ルアルコール(PVA)、又はポリビニルホルマール(
PVF)、又は、ボリア セp−ル( POM)力fア
ル。
In this example, a case was explained in which 8FiL-N type A was used as the organic polymer film, but other organic polymer film materials suitable for this method may be similar to 5EL-N type A. electron beam resist BBR-9, or a polymer in which two methyl groups of methacrylic acid are substituted with CJi6 and CHtCF'a (111 electron beam resist C0P), or itpo IJ
Methyl methacrylate (PMMA), or polyvinyl alcohol (PVA), or polyvinyl formal (
PVF) or POM force.

これらは、いずれも金(人U)よりも、酸素イオンエツ
チング速度が早いので、本方法で探し1溝のホログラム
を製造できる。
Since both of these materials have a faster oxygen ion etching speed than gold (U), a hologram with one groove can be manufactured using this method.

以上述べた様に本発明により、深む1溝σ)良質σ〕ホ
ログラムが製造でき、高い回折効率が得られる。
As described above, according to the present invention, a deep one-groove σ) high quality σ] hologram can be manufactured and a high diffraction efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、格子溝の深さに対する回折効率O〕計算結果
を示す図、第2図から第7図は、本発明を工程の順に示
す断面図である。 図において、 lは基板、 2は有機高分子膜、3は金属膜、4はホト
レジストを各々表わす。 第 7 擾 溝5袋さ/格J同期
FIG. 1 is a diagram showing calculation results of the diffraction efficiency O with respect to the depth of grating grooves, and FIGS. 2 to 7 are cross-sectional views showing the present invention in the order of steps. In the figure, l represents a substrate, 2 represents an organic polymer film, 3 represents a metal film, and 4 represents a photoresist. No. 7 5 bags in the groove / Kaku J synchronization

Claims (1)

【特許請求の範囲】[Claims] l 基板に′;4f5機高分子膜を堅布する工程と、塗
布された前記有機高分子膜に前記有機高分子膜よりも酸
素イオンエツチング速度の遅い金属層をコートする工程
と、前記金PISNに前記金属層よりもアルゴンイオン
エツチング速度の遅いホトレジスト膜を塗布する工程と
、塗布されたホトレジスト膜をレリーフ屋の回折格子に
形成する工程と、前記回折格子をマスクとして、アルコ
ンイオンビームで前記金属層をイオンエツチングして、
金属層に矩形断面の回折格子を形成する工程と、前記矩
形断面の回折格子をマスクとして、rR累イオンビーム
で前記有機高分子膜をイオンエツチングして、有機高分
子膜の表層に矩形−1面の回折格子を形成する工程と、
前記金属層を除去した後、基板に対してほぼ垂直方向か
らイオンエツチングするニー程とを含むことを特徴とす
るホログラムの製造方法。
1. A step of adhering a 4F5 polymer film on the substrate, a step of coating the applied organic polymer film with a metal layer having a slower oxygen ion etching rate than the organic polymer film, and a step of coating the gold PISN. a step of applying a photoresist film having a slower argon ion etching rate than the metal layer; a step of forming the applied photoresist film into a relief shop's diffraction grating; and using the diffraction grating as a mask, the metal layer is etched with an alcone ion beam. Ion-etch the layer,
A step of forming a diffraction grating with a rectangular cross section on the metal layer, and using the diffraction grating with the rectangular cross section as a mask, ion etching the organic polymer film with an rR complex ion beam to form a rectangle-1 on the surface layer of the organic polymer film. forming a surface diffraction grating;
A method for manufacturing a hologram, comprising: after removing the metal layer, performing ion etching in a direction substantially perpendicular to the substrate.
JP8037683A 1983-05-09 1983-05-09 Manufacture of hologram Pending JPS59204877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8037683A JPS59204877A (en) 1983-05-09 1983-05-09 Manufacture of hologram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8037683A JPS59204877A (en) 1983-05-09 1983-05-09 Manufacture of hologram

Publications (1)

Publication Number Publication Date
JPS59204877A true JPS59204877A (en) 1984-11-20

Family

ID=13716556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8037683A Pending JPS59204877A (en) 1983-05-09 1983-05-09 Manufacture of hologram

Country Status (1)

Country Link
JP (1) JPS59204877A (en)

Similar Documents

Publication Publication Date Title
US5919607A (en) Photo-encoded selective etching for glass based microtechnology applications
Däschner et al. Fabrication of diffractive optical elements using a single optical exposure with a gray level mask
EP0110184B1 (en) Process for fabricating integrated optics
JP2005004068A (en) Method of forming slant rugged pattern and substrate having rugged pattern
JPH0435726B2 (en)
JPS6033504A (en) Production of blazed grating
US3883353A (en) Splicing optical fibers
US4842405A (en) Process for producing a grating on an optical fiber
JPS6033501A (en) Production of blazed grating
JPS59204877A (en) Manufacture of hologram
US4087281A (en) Method of producing optical image on chromium or aluminum film with high-energy light beam
JPH06174907A (en) Production of metallic grating
JPS5947282B2 (en) Manufacturing method of Esieret lattice
JPS59161031A (en) Method of producing thin film cover unit used in projector for forming image on photosensitive wafer
GB2079536A (en) Process for producing an optical network
JP3029524B2 (en) Manufacturing method of diffraction grating
JPS59116602A (en) Production of chirped-grating
JPS6033502A (en) Production of blazed grating
JPH0374362B2 (en)
JP2506967B2 (en) Optical disc master manufacturing method
JPS6033503A (en) Production of blazed grating
JPH0456284B2 (en)
JPS60146282A (en) Manufacture of hologram
JPS5983111A (en) Preparation of optical integrated circuit
JP2942825B1 (en) Method of manufacturing optical integrated circuit having out-of-plane branch mirror