JPS59204441A - Bearing - Google Patents

Bearing

Info

Publication number
JPS59204441A
JPS59204441A JP7758683A JP7758683A JPS59204441A JP S59204441 A JPS59204441 A JP S59204441A JP 7758683 A JP7758683 A JP 7758683A JP 7758683 A JP7758683 A JP 7758683A JP S59204441 A JPS59204441 A JP S59204441A
Authority
JP
Japan
Prior art keywords
bearing
rotor
motor
rotating
thrust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7758683A
Other languages
Japanese (ja)
Inventor
Masaki Nakaoka
正喜 中岡
Shinji Goto
信治 後藤
Teruo Komatsu
小松 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7758683A priority Critical patent/JPS59204441A/en
Publication of JPS59204441A publication Critical patent/JPS59204441A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/02Sliding-contact bearings
    • F16C25/04Sliding-contact bearings self-adjusting
    • F16C25/045Sliding-contact bearings self-adjusting with magnetic means to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments
    • F16C2370/20Optical, e.g. movable lenses or mirrors; Spectacles
    • F16C2370/22Polygon mirror

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To increase the stability in the thrust direction of a bearing by relatively displacing previously a stator and a rotor of a motor in a rotor axial direction, and generating a magnetic force in a direction for eliminating the displacement when the rotor is rotated. CONSTITUTION:An armature 4 is displaced in a direction for separating from a thrust retainer 8 at a distance (d) from the longitudinal center of the armature 4 to the longitudinal center of a permanent magnet 5. The magnet 5 is circumferentially magnetized, and a magnetic force is operated in a direction for setting the distance (d) to zero on a sleeve 3 having the magnet 5 and a polygonal mirror 7. Accordingly, a force for axially restricting a rotary member which floats during the operation is operated on the member.

Description

【発明の詳細な説明】 この発明(−4:、高速モータに用いるに適した動圧軸
受、とくにそのスラスト安定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention (-4) relates to a dynamic pressure bearing suitable for use in a high-speed motor, and particularly to a thrust stabilizer thereof.

各種高速回転を要する機器においては回転駆動装置たる
モータの軸受に、たとえばボールベアリングなどを用い
ることは従来から周知であるが、近時、レーザビームプ
リンタ用のスキャナ、ビデオ、ディスクなどの駆動モー
タの軸受には、さらに高速安定性、長寿命、高い横倒n
精度、低回転ムラをもとめて、エア、オイルなどを用い
た動圧軸受が利用さ九るようになって米ている。
It has long been well known that ball bearings, for example, are used in the bearings of motors, which are rotary drive devices, in various types of equipment that require high-speed rotation. Bearings also feature high-speed stability, long life, and high overturning characteristics.
In order to improve accuracy and reduce unevenness in low rotation, dynamic pressure bearings using air, oil, etc. are increasingly being used.

動圧軸受にlは勿論種々な構成のものが提案さnており
、以下に小形モータに好適なものについて略示すると、 第1図、第2図(d前述のようなレーザビームプリンタ
などに使用するスキャナ機構のポリゴンミラーの回転に
用いるモータの構成を略示するものであるが、もちろん
このようなものに限定ざnる趣旨ではない。
Of course, various configurations of hydrodynamic bearings have been proposed, and the ones suitable for small motors are outlined below: Figures 1 and 2 (d) Although the configuration of the motor used to rotate the polygon mirror of the scanner mechanism used is schematically shown, it is of course not intended to be limited to this type of motor.

第1図において、ケーシング1円には、ステータ4が固
定さnており、その内部に、回転軸2とこnに固着した
ロータたる永久出方5が配されており、前記回転軸2は
ケーシング1の図示上方に突出し、この部分にはポリゴ
ンミラー7が取着してあり、該ミラー7はカバー6によ
って被覆ざnでいる。
In FIG. 1, a stator 4 is fixed to one casing, and a permanent rotor 5 fixed to the rotating shaft 2 is disposed inside the stator 4, and the rotating shaft 2 is fixed to the casing. A polygon mirror 7 is attached to this part of the polygon mirror 7, which is covered by a cover 6.

回転軸2は、ケーシングに形成さf′した軸受部1aお
よび軸受部材1bvC軸支さ九でおり、かつ軸受部1a
および軸受部材1bに対向する外周面にはヘリンボーン
溝2a、2bが形成さ九ており、この部分が軸2の回転
時においてラジアル方向の動圧軸受を構成している。
The rotating shaft 2 has a bearing part 1a formed in the casing and a bearing member 1bvC, and is supported by the bearing part 1a.
Herringbone grooves 2a and 2b are formed on the outer peripheral surface facing the bearing member 1b, and these portions constitute a dynamic pressure bearing in the radial direction when the shaft 2 rotates.

図示のように、図示上方の軸受部分1b、2bの上面段
部には軸受部材1Cが配されており、その下面、前記上
面段部と対向する側にId半径方向に多数の条溝を形成
してあり、回転時にはこの部分が動圧軸受として作用1
〜、軸2を図示上方に若干変位させてスラス)k担持す
る。
As shown in the figure, a bearing member 1C is disposed on the upper step of the bearing portions 1b and 2b in the upper part of the figure, and a large number of grooves are formed in the radial direction of the lower surface of the bearing member 1C on the side facing the upper step. During rotation, this part acts as a hydrodynamic bearing1.
~, the shaft 2 is slightly displaced upward in the figure to support the thrust) k.

第2図は、ポリゴンミラ・−駆動用モータの他の構成を
略示するものであるが、その構成において前記第1図々
示のものと対応する部分にfd同一の符号を付してあり
、七ノ1らの部分についての説明は省略する。このもの
にあっては、ロータ5はスリーブ6に取着してあり、ケ
ーシング1に固着した軸2に前記スリーブ6が遊訣して
おり、ポリゴンミラー7は前記スリーブ6に固定しであ
る。さらにスリーブの図示上端に(はスラスト受は部材
8が取りつけてあって、このスラスト受は部材8が軸2
の上端に当接して、スリーブ、ロータ5、ポリゴンミラ
ー7等のウェイトラ支持している。
FIG. 2 schematically shows another configuration of the polygon mirror drive motor, in which parts corresponding to those shown in FIG. , Nanano 1, etc. will be omitted. In this device, a rotor 5 is attached to a sleeve 6, the sleeve 6 is loosely attached to a shaft 2 fixed to a casing 1, and a polygon mirror 7 is fixed to the sleeve 6. Furthermore, a member 8 is attached to the upper end of the sleeve (indicated as a thrust receiver).
The sleeve, rotor 5, polygon mirror 7, etc. are supported by the weight roller in contact with the upper end of the sleeve.

回転時には、ヘリンボーン溝2Cの存在によって形成さ
九る渾体用によってスリーブ6が軸2と接触−)すすに
回転するとともに、スラスト受は部拐8によって生ずる
軸方向流体圧によって、軸方向にも回転部分が浮上する
During rotation, the sleeve 6 contacts the shaft 2 due to the presence of the herringbone groove 2C, and the thrust bearing also rotates in the axial direction due to the axial fluid pressure generated by the part 8. The rotating part floats up.

なお第1図、第2図における符号9は磁界の変化を得る
ためのホール素子、符号10はロータ5の下側バランサ
5a表面Oでもうけた白黒ノくターンから回転数を検知
するセンサであって、ホール素子9の信号変化によって
ステータのコイル電流を切換え、センサ10 K J:
るタック信号をフィードバックして定回転全維持するも
のとする。
Note that in FIGS. 1 and 2, reference numeral 9 is a Hall element for obtaining changes in the magnetic field, and reference numeral 10 is a sensor that detects the rotation speed from the black and white notches formed on the surface O of the lower balancer 5a of the rotor 5. Then, the stator coil current is switched according to the signal change of the Hall element 9, and the sensor 10 KJ:
The tack signal is fed back to maintain a constant rotation.

以上説明したよりなモータは、軸と軸受の位置調整が不
要で、全体としてボールベアリング?用いたものよVも
さらに小型化が可能であり、回転部分を軽くできる等の
利点があり、前述のような画像形成装置などに用いるの
に好適ではあるが、同時に第1図、第2図から明らかな
ように、回転部分が少なくとも一方向にフリーとなって
いるので、たとえば横型で使用するとスラスト方向に(
d不安定となりやすく、また縦型で使用する場合でも、
スラスト方向の振動に対してそのスラスト負荷容量を大
きくする必要があり、溝形状、回転数の選択範囲がぜ捷
くなる欠点をまめかわなかった。
The smooth motor described above does not require position adjustment of the shaft and bearings, and the entire motor has ball bearings. The type of V used can also be made smaller and has the advantage of making the rotating parts lighter, making it suitable for use in image forming apparatuses as described above. As is clear from the figure, the rotating part is free in at least one direction, so when used horizontally, for example, the rotating part is free in the thrust direction (
dEasy to become unstable, and even when used vertically,
It is necessary to increase the thrust load capacity against vibrations in the thrust direction, and the selection range of groove shape and rotation speed is difficult to overcome.

本発明は以上のような事態にかんがみてなさnだもので
あって、高速回転機器に用いる回転、駆動装置の動圧軸
受において、そのステータとロータとの相対位置関係全
偏倚させることによって、軸受作動時に軸受の固定部材
に対して回転部材が変位浮上する方向と反対方向に力を
発生させることによってスラスト方向の負荷剛性を大な
らしめることによって軸方向安定性の大きい軸受孕提供
することを目的とするものである。
The present invention has been made in view of the above-mentioned situation, and is a dynamic pressure bearing for a rotating or driving device used in high-speed rotating equipment. The purpose is to provide a bearing with high axial stability by increasing the load rigidity in the thrust direction by generating force in the direction opposite to the direction in which the rotating member is displaced and floated relative to the fixed member of the bearing during operation. That is.

以下本発明を、レーザプリンタのスキャナ、複写機など
に用いる、ポリゴンミラーを高速回転させるために垂直
配置の動圧軸受?使用するモータのロータ側に取りつけ
てなる回転多面鏡装置について第3図によって説明する
Hereinafter, the present invention will be described as a vertically arranged dynamic pressure bearing for rotating a polygon mirror at high speed, which is used in laser printer scanners, copying machines, etc. The rotating polygon mirror device attached to the rotor side of the motor to be used will be explained with reference to FIG.

なお第6図々示の動圧軸受は、条溝全形成した固定軸に
回転スリーブを配し、軸とスリーブの重畳部分はぼ全体
((亘って軸受作用を奏するような 5− タイプのものを垂直配置で使用しているけ7Lども、こ
のタイプでスリーブ1111 k固定し、軸側を回転部
材と構成した軸を回転自在とし、その両端近傍に固定配
置の支持部拐を配するとともに、前記回転軸と前記支持
部材の対向面を動圧軸受に形成1〜た構成のものにも本
発明ケ適用できることはもちろんである。
The hydrodynamic bearing shown in Fig. 6 has a rotating sleeve arranged on a fixed shaft with grooves formed in its entirety, and the overlapping portion of the shaft and sleeve is approximately the entire (5-type) in which the bearing function is exerted over the entire area. For those who are using the 7L in a vertical arrangement, this type has a fixed sleeve 1111k, a rotatable shaft with a rotating member on the shaft side, and fixed support parts near both ends of the shaft. Of course, the present invention can also be applied to configurations in which the opposing surfaces of the rotating shaft and the supporting member are formed as dynamic pressure bearings.

図i+nは前述の回転多面、鏡装置の側断面図であって
Figures i+n are side sectional views of the aforementioned rotating polygon mirror device.

有底のケーシング1の底部中央には外周面に条溝を刻設
した軸2が固設してあり、ケーシング内周面に(はステ
ータたる電機子コイル4が配設しである。軸1にId、
こnと微小間隙を維持してスリーブ6が囲繞配置さn1
該スリ一ブ頂部にはスラスト受は部材8が固着してあっ
て、とのスラスト受は部拐が軸1の端面に載ってスリー
ブ6を支持している。スリーブ6には、前記電機子コイ
ル4に対向する位置にロータたる永久磁石5が取着きn
、ざらにその頂部には多面境7が固定しである。ケーシ
ング1にはカバー6が被冠してあって、上述の軸受部分
その他のすべて密封している。
At the center of the bottom of the bottomed casing 1, a shaft 2 with grooves carved on its outer circumferential surface is fixedly installed, and on the inner circumferential surface of the casing (an armature coil 4 serving as a stator is disposed). Id,
The sleeve 6 is arranged around the n1 while maintaining a minute gap n1.
A thrust bearing member 8 is fixed to the top of the sleeve, and a portion of the thrust bearing rests on the end face of the shaft 1 to support the sleeve 6. A permanent magnet 5 serving as a rotor is attached to the sleeve 6 at a position facing the armature coil 4.
, and a multifaceted border 7 is fixed on the top of it. The casing 1 is covered with a cover 6, which seals the above-mentioned bearing portion and all other parts.

= 6− このような構成のモータにおいて、図示のものにおいて
は、永久磁石5の長手方向中心に対して、電機子4の長
平方向中心が距離dだけ、スラスト受は部材8から離n
る方向に偏倚しである。磁石5は円周着磁ざnているの
で、このように偏倚配置とすることによって、永久磁石
5を含むスリーブ6、多面鏡7には距離(1,fゼロに
する方向、即ち図示下方に磁力が作用することになる。
= 6- In the motor having such a configuration, in the illustrated one, the longitudinal center of the armature 4 is a distance d from the longitudinal center of the permanent magnet 5, and the thrust receiver is spaced n from the member 8.
It is biased in the direction of Since the magnet 5 is magnetized in a circumferential direction, by arranging it in a biased manner, the sleeve 6 containing the permanent magnet 5 and the polygon mirror 7 have a distance (1, in the direction where f is zero, that is, in the downward direction in the figure). Magnetic force will come into play.

この)]の大きさは図示の構成において、夕”h径25
φの磁石の表向磁束1200G、 dが5 mrnのと
き約20 Q gとなり、スリーブ6、永久磁石5、多
面鏡7を含む回転部の1瞳がおよそ300gであること
からみて相当大きい重量を付加したのと同様な状態とな
る。
In the configuration shown in the figure, the size of the
When the surface magnetic flux of the magnet of φ is 1200 G and d is 5 mrn, it becomes about 20 Q g, and considering that one pupil of the rotating part including the sleeve 6, permanent magnet 5, and polygon mirror 7 is about 300 g, the weight is quite large. It will be in the same state as when it was added.

このように構成することによって、モータ、駆動時にお
けるスラスト受は部拐8の軸端面からの浮上量が減少す
ることは勿論であるが、浮十量が太きい程よいというも
のでに゛なく、浮上状態が確保さflればむしろ少ない
方が好適であり、前記の磁力の作用によって軸方向の負
荷剛性が増大し、当該方向の安定性を増すことになる。
With this configuration, it goes without saying that the amount of floating of the thrust receiver from the shaft end surface of the part 8 during driving of the motor is reduced, but the larger the amount of floating, the better. As long as the floating state is ensured, it is preferable to have less fl, and the action of the magnetic force increases the load rigidity in the axial direction, thereby increasing the stability in that direction.

々おこの場合、スラスト受は部月8にはスIJ −ブ他
の回転部の軍歌のほかに、前述の磁力(でよる力が軸1
の端面・−\の圧接力としてかかることになるが、この
ことは、たとえばスラスト受は部材に硬質クロムメッキ
を施こしたり、該部材自体をセラミックなどの耐磨耗性
の大きい材質にかえることによって、あるいはこの回転
多面鏡装置?含む装置自体が不作動のときも、モータの
み全回転させつづけるなどの手段によって耐久性の維持
は町4目である。
In this case, in addition to the military song of the other rotating parts, the thrust receiver is placed on the shaft 1 by the magnetic force (as described above).
This will be applied as a pressure contact force on the end face of the Or by this rotating polygon device? It is very important to maintain durability by keeping the motor running at full speed even when the device itself is not operating.

以上軸受を垂直配置とした実施例について説明したが、
軸受を水平ないしはこnに近い方向に配置した場合にお
いても回転部分の軸方向の安定性同士に寄与し得るもの
であることは容易に理解できるところであろう。
The embodiment in which the bearing is arranged vertically has been described above.
It is easy to understand that even when the bearing is arranged horizontally or in a direction close to this direction, it can contribute to the axial stability of the rotating part.

また前述の偏倚量dの値全かえることによって、モータ
の性能に関係なく、スラスト方向に作用する力を調整す
ることが可能である。
Furthermore, by completely changing the value of the aforementioned deflection amount d, it is possible to adjust the force acting in the thrust direction regardless of the performance of the motor.

さらに本発明は、ロータをステータの外側に配したアウ
ターロータモータ、さらに同定側が円周着磁の磁石、回
転側が電機子コイルからなるブラシモータにも適用する
ことができ、ステータコイルとヒステリシスリングから
なる交流ヒステリシスモータにも、通電時にステータが
磁石と同様に作用するので適用し得ることは自明であろ
う。
Furthermore, the present invention can be applied to an outer rotor motor in which the rotor is arranged outside the stator, and also to a brush motor in which the identification side is made up of a circumferentially magnetized magnet and the rotating side is made up of an armature coil. It is obvious that the present invention can also be applied to an AC hysteresis motor, since the stator acts in the same way as a magnet when energized.

なお第6図に符号9で示す部分は、モータの回転を検知
制御するためのホール素子、センザ等全包括的に示すも
のであって、いつばんにこnらの部Iはケーシングの底
部近傍に配置するのが普通であるが、図示のものは、ス
テータ4が下方に位置しておジ、ロータ側をむやみに上
昇しないので、ステータ上方のスペースに装着すること
が容易であり、このように構成することによって、モー
タの組立て時あるいは修理のさいにロータ側部材によっ
てホール素子などが損傷することを阻止することができ
る。
The part indicated by reference numeral 9 in Fig. 6 is a comprehensive representation of the Hall element, sensor, etc. for detecting and controlling the rotation of the motor, and these parts I are located near the bottom of the casing. However, in the case shown in the figure, the stator 4 is located below and the rotor side is not raised unnecessarily, so it is easy to install it in the space above the stator. By configuring this, it is possible to prevent the Hall element and the like from being damaged by the rotor side member during assembly or repair of the motor.

以上説明したように、本発明は、動圧軸受を使用(〜、
この軸受の回転部材側にロータを、固定部材側にステー
タを夫々配してなるモータにおいて、9− 該モーフ作動時に、前記軸受の回転部材が固定部拐に対
して変位離隔する方向と反対方向に磁力が作用するよう
に、ロータに対するステータの長手方向相対位置を偏倚
させてなるものであるから、作動中浮上する回転部材に
はこ′nを軸線方向に拘束する力が働き、これによって
軸受のスラスト方向負荷剛性が大となり、軸受のスラス
ト方向の安ンピ性ケ増大させる効果があり、とくにプリ
ンタ等のスキャナ、ビデオ、ディスクなどの振fLヲ減
殺するので良質の画像を得るに資するところが大きい。
As explained above, the present invention uses dynamic pressure bearings (~,
In this motor having a rotor on the rotating member side of the bearing and a stator on the fixed member side, 9- a direction opposite to the direction in which the rotating member of the bearing is displaced and separated from the fixed part when the morph is activated; Since the relative position of the stator in the longitudinal direction with respect to the rotor is biased so that magnetic force acts on the bearing, a force acts on the rotating member floating during operation to restrain it in the axial direction. This increases the load rigidity in the thrust direction of the bearing, which has the effect of increasing the stability of the bearing in the thrust direction.In particular, it reduces the vibration fL of printers, scanners, videos, discs, etc., which greatly contributes to obtaining high-quality images. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は公知の動圧軸受を用いたモータを使用
する回転多面鏡装置の断面図、第6図は本発明の実施例
たる回転多面鏡装置の断面図である。 1・・・ケーシング、  2・・・軸、  6・・・ス
リーブ、4゛パステータ(電機子コイル)、  5・・
・ロータ(永久磁石)、  6・・・カバー、  7・
・ポリゴンミ7−18・・・スラスト受は部材、  9
・・・制御手段−10= @1i!1 □・ 1113t”1 1N     − 2
1 and 2 are sectional views of a rotating polygon mirror device using a motor using a known dynamic pressure bearing, and FIG. 6 is a sectional view of a rotating polygon mirror device according to an embodiment of the present invention. 1...Casing, 2...Shaft, 6...Sleeve, 4゛Passator (armature coil), 5...
・Rotor (permanent magnet), 6...Cover, 7.
・Polygon Mi7-18...Thrust receiver is a member, 9
...control means-10 = @1i! 1 □・1113t"1 1N - 2

Claims (1)

【特許請求の範囲】[Claims] モータのステータとロータとを、そのロータ軸線方向に
相対的に予め変位させておき、ロータ回転時に、こnに
前記変位全解消する方向に磁力を作用させるようにした
軸受。
A bearing in which a stator and a rotor of a motor are preliminarily displaced relative to each other in the rotor axis direction, and when the rotor rotates, a magnetic force is applied in a direction to completely eliminate the displacement.
JP7758683A 1983-05-04 1983-05-04 Bearing Pending JPS59204441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7758683A JPS59204441A (en) 1983-05-04 1983-05-04 Bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7758683A JPS59204441A (en) 1983-05-04 1983-05-04 Bearing

Publications (1)

Publication Number Publication Date
JPS59204441A true JPS59204441A (en) 1984-11-19

Family

ID=13638075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7758683A Pending JPS59204441A (en) 1983-05-04 1983-05-04 Bearing

Country Status (1)

Country Link
JP (1) JPS59204441A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294409A (en) * 1985-06-21 1986-12-25 Copal Electron Co Ltd Bearing for optical deflector
JPS62131736A (en) * 1985-12-03 1987-06-15 Ntn Toyo Bearing Co Ltd Motor spindle
JPH01279116A (en) * 1988-03-12 1989-11-09 Kernforschungsanlage Juelich Gmbh Magnetic bearing to which permanent magnet receiving holding power in axial direction is mounted
JPH0294921U (en) * 1989-01-17 1990-07-27
EP0392500A2 (en) * 1989-04-12 1990-10-17 Ebara Corporation Spindle motor
EP0964500A2 (en) * 1998-06-09 1999-12-15 Fanuc Ltd Pneumatic bearing motor
KR20020045670A (en) * 2000-12-09 2002-06-20 이형도 Spindle motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294409A (en) * 1985-06-21 1986-12-25 Copal Electron Co Ltd Bearing for optical deflector
JPH0638136B2 (en) * 1985-06-21 1994-05-18 コパル電子株式会社 Optical deflector bearing
JPS62131736A (en) * 1985-12-03 1987-06-15 Ntn Toyo Bearing Co Ltd Motor spindle
JPH01279116A (en) * 1988-03-12 1989-11-09 Kernforschungsanlage Juelich Gmbh Magnetic bearing to which permanent magnet receiving holding power in axial direction is mounted
JPH0294921U (en) * 1989-01-17 1990-07-27
EP0392500A2 (en) * 1989-04-12 1990-10-17 Ebara Corporation Spindle motor
EP0964500A2 (en) * 1998-06-09 1999-12-15 Fanuc Ltd Pneumatic bearing motor
EP0964500A3 (en) * 1998-06-09 2002-02-13 Fanuc Ltd Pneumatic bearing motor
KR20020045670A (en) * 2000-12-09 2002-06-20 이형도 Spindle motor

Similar Documents

Publication Publication Date Title
US5574322A (en) Motor, a printer having such a motor and a disk drive system having such a motor
US6340854B1 (en) Scanner motor
KR100679581B1 (en) Spindle motor
JP2001286116A (en) Noncontact drive motor
US4958098A (en) Rotary device
JPS59204441A (en) Bearing
US6933642B2 (en) Hydrodynamic gas bearing
JPH0819229A (en) Motor
JP2637096B2 (en) Air magnetic bearing type optical deflector
JPH0353853B2 (en)
JP3240637B2 (en) Bearing device
JPS5932336A (en) Rotary prime mover
JPH034022A (en) Dynamic pressure bearing structure for motor
JP3858557B2 (en) Optical deflector
JPH05332354A (en) Bearing structure and scanner motor
JPS62131736A (en) Motor spindle
KR20020046895A (en) A magnetic bearing and a motor using the magnetic bearing
KR100207987B1 (en) Hemispherical bearing system using magnetic material
KR100233010B1 (en) Bearing system using magnetic material
JPH1031188A (en) Polygon scanner
JPH071347B2 (en) Air / magnetic bearing type optical deflector
JPS6271916A (en) Air/magnetic bearing type optical deflector
JPH05172141A (en) Bearing device
JPH05209622A (en) Bearing device
JP2000184653A (en) Motor with hydrodynamic air bearing