JPS59204216A - Magnetic core - Google Patents

Magnetic core

Info

Publication number
JPS59204216A
JPS59204216A JP7866283A JP7866283A JPS59204216A JP S59204216 A JPS59204216 A JP S59204216A JP 7866283 A JP7866283 A JP 7866283A JP 7866283 A JP7866283 A JP 7866283A JP S59204216 A JPS59204216 A JP S59204216A
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
soft magnetic
fine wire
magnetic metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7866283A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
寛 島田
Takashi Hasegawa
隆 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP7866283A priority Critical patent/JPS59204216A/en
Publication of JPS59204216A publication Critical patent/JPS59204216A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To reduce eddy current loss of a magnetic core at a high-frequency region by a method wherein a fine wire consisting of a soft magnetic metal having 20 oersted or less of coercive force, and moreover having 0.01mm.<2> or less of the sectional area is wound round. CONSTITUTION:The fine wire 1 of a soft magnetic metal is wound round in a loop type to form a toroidal type magnetic core 2. An exciting winding 3 is wound around the magnetic core 2 by the desired number of turns, and moreover an output winding 4 is wound around by the desired number of turns as occasion demands. The fine wire 1 is made as to form a shape forming a magnetic path in bundled condition in relation to the exciting winding 3. As the manufacturing method of the fine wire of the soft magnetic metal, the desired soft magnetic metal is wrapt with a glass material, and after heated at the temperature of a melting point or more, wire drawing is performed to obtain the fine wire.

Description

【発明の詳細な説明】 この発明は、高周波域においても優れた磁気特性を示す
磁気コアに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic core that exhibits excellent magnetic properties even in a high frequency range.

磁気コアは、軟磁性材料が有する磁束の可飽和特性、非
直線性、磁束レベルの保持特性あるいは高透磁率特性等
の緒特性を利用したものである。
The magnetic core utilizes the characteristics of a soft magnetic material, such as saturable magnetic flux characteristics, nonlinearity, magnetic flux level retention characteristics, or high magnetic permeability characteristics.

この種の磁気コアの材料としては、一般に、トランス用
あるいはりアクタンス用等としてF a −8i合金あ
るいはp e −S i −A e合金等が、また磁気
増幅器における磁束制御素子用としてはFe −N1合
金等が用いられ、また近年においては液相急冷法等によ
り製造された非晶質合金の薄帯が使用され始めている。
Materials for this type of magnetic core are generally F a -8i alloy or p e -S i -A e alloy for transformers or actances, and Fe - S i -A e alloy for magnetic flux control elements in magnetic amplifiers. N1 alloy etc. are used, and in recent years, amorphous alloy ribbons manufactured by liquid phase quenching method etc. have begun to be used.

ところで、上記のような材料には、使用周波数が高くな
るにつれて渦電流損失が急激に増大するため、使用周波
数の上限があまり高くないという共通の問題があった。
By the way, the above-mentioned materials have a common problem that the upper limit of the usable frequency is not very high because the eddy current loss increases rapidly as the usable frequency becomes higher.

このような渦電流損失には、磁壁の移動に関わる微視的
なものと、スピン回転に関わる巨視的なものとがある。
Such eddy current losses include microscopic ones related to domain wall movement and macroscopic ones related to spin rotation.

この場合、前者に係わる渦m流損失を低減させるには、
磁化反転時に、できるだけ多数の磁壁の移動が起り、し
かも各磁壁の移naj辿度および移動距離が小となるよ
うにすることが有効であり、また後者に係わる渦電流損
失を低減するにGま、材料をできるだ2け落い膜状に形
成することが有効である。しかるに、薄帯状の材料を考
えた堵i合、この材料の膜厚をより薄く変化させたとし
ても、この材料が有する磁壁の数自体は変化することは
なく、むしろ得られる磁束の総数を減らさないためには
この薄帯状の材料の幅を広くする必要があるから、前記
磁壁の移動距離はかえって大きくなってしまう。したが
って、磁化反転が主として磁壁の移動に依存するような
磁気コア、例えば高角形性が要求される磁束制御素子用
等の磁気コアにおいては、上記のような理由により渦電
流損失の低減、すなわち高周波域における磁気特性の改
善は、極めて困(碓であった。
In this case, to reduce the vortex flow loss related to the former,
It is effective to cause as many domain walls to move as possible during magnetization reversal, and to minimize the displacement path and movement distance of each domain wall, and to reduce the eddy current loss associated with the latter It is effective to form the material in the form of a deciduous film as much as possible. However, when considering a thin strip-shaped material, even if the film thickness of this material is made thinner, the number of domain walls that this material has does not change, but rather the total number of magnetic flux obtained is reduced. In order to avoid this, it is necessary to widen the width of this ribbon-shaped material, and therefore the moving distance of the domain wall becomes larger. Therefore, in magnetic cores whose magnetization reversal mainly depends on the movement of domain walls, for example, magnetic cores for magnetic flux control elements that require high squareness, reduction of eddy current loss, that is, high frequency It has been extremely difficult to improve magnetic properties in this region.

この発明は、以上のような事情に鑑みてなされたもので
、その目的とするところは、高周波域における渦電流損
失を低減させて促れた高域磁気特性を有する磁気コアを
提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a magnetic core having high-frequency magnetic properties that are improved by reducing eddy current loss in the high-frequency range. be.

以下、この発明による磁気コアについて説明する。The magnetic core according to the present invention will be explained below.

この発明による磁気コアの基本原理は、磁性材料の基本
単位を微小面積の1iilll線とすることによって、
薄膜化するのと同等の渦電流低減効果を得ると共に、磁
壁数の増加および磁化反転時における磁壁の移動距離の
極小化が計れるようにしたことにある。すなわち、今、
所定膜厚の薄帯状の軟磁性材料と、前記膜厚と同等の断
面直径を有する細線状の欲磁性材料を前記薄帯の幅だけ
配列したものとを比較すると、前記薄帯状のものでは磁
壁の数が限られるのに対して、細線で構成したものは少
なくとも細線の数だけの磁壁を有することになる。さら
にこの場合、細線で構成したものは、磁壁の移動距離が
当該磁壁が存在する細線内に限られるから極めて小とな
り、磁束の高速反転が可能になる。例えばFe−8i合
金あるいは非晶T′j合金からなり厚さ20μm1幅5
 rnmの従来の薄’Mf状の軟磁性材料を考えると、
このような軟磁性材料において磁化反転時に生じる磁壁
の数は、数多くの実験結果から20枚以下であることが
知られている。これに対し、上記のものと等しい磁束を
得るために、20μm X 5朋なる有効断面積を有す
る軟磁性材料を直径20μmの細線状に形成しかつこれ
を必要本数束ねて構成すると、これによって得られる磁
壁の数は(20X5X103)÷(πX10’)≠32
0となり、16倍もの(心壁の数が得られることが解る
The basic principle of the magnetic core according to this invention is that the basic unit of the magnetic material is a 1iill line with a minute area.
The objective is to obtain an eddy current reduction effect equivalent to that achieved by thinning the film, and also to increase the number of domain walls and minimize the moving distance of the domain walls during magnetization reversal. That is, now,
Comparing a thin strip-shaped soft magnetic material with a predetermined film thickness and a thin wire-shaped magnetic material having a cross-sectional diameter equivalent to the film thickness arranged by the width of the thin strip, it is found that in the thin strip-shaped material, the domain wall In contrast, a structure made of thin wires has at least as many domain walls as there are thin wires. Furthermore, in this case, in the case of a structure made of thin wires, the movement distance of the domain wall is limited to the thin wire where the domain wall exists, so it becomes extremely small, and high-speed reversal of the magnetic flux becomes possible. For example, it is made of Fe-8i alloy or amorphous T'j alloy and has a thickness of 20 μm and a width of 5.
Considering the conventional thin Mf-like soft magnetic material of rnm,
It is known from numerous experimental results that the number of domain walls generated during magnetization reversal in such soft magnetic materials is 20 or less. On the other hand, in order to obtain a magnetic flux equal to that described above, if a soft magnetic material with an effective cross-sectional area of 20 μm x 5 is formed into a thin wire shape with a diameter of 20 μm and the required number of wires are bundled together, the obtained The number of domain walls is (20X5X103)÷(πX10')≠32
0, which means that the number of heart walls is 16 times larger.

上記の場合、細線の断面積GtQ、 Q 1 mTl!
以下、すなわら容易に形成し得る断面円形の細線の場合
、直径が112μm以下であることが望ましく、これ以
上の断面積(あるいは直径)を有するものであると磁化
反転時における磁壁の移動距離が大となって、充分な渦
電流損失の低減効果が得られなくなる。
In the above case, the cross-sectional area of the thin wire GtQ, Q 1 mTl!
In the following, in the case of a thin wire with a circular cross section that can be easily formed, it is desirable that the diameter is 112 μm or less, and if the cross-sectional area (or diameter) is larger than this, the movement distance of the domain wall during magnetization reversal will be becomes large, making it impossible to obtain a sufficient effect of reducing eddy current loss.

次に、この発明に適用される軟磁性金属について述べる
と、この軟磁性金属としては、細線に形成することが可
能であって、がっ抗磁力Hcが20エルステツド以下の
ものが望ましい。これは、一般に軟磁性材料としては、
飽和磁束密度Bsが高く、透磁率μが高く、比抵抗ρが
高く、抗磁力Haが低いことが望まれるが、高周波域に
おける損失を考慮した場合、特に抗磁力Hoが低いこと
が重要であるからである。したがって、上記のような軟
磁性金属としては、第1表のようなものが挙げられる。
Next, regarding the soft magnetic metal applied to the present invention, it is preferable that the soft magnetic metal can be formed into a thin wire and has a coercive magnetic force Hc of 20 oersted or less. This is generally the case for soft magnetic materials.
It is desirable that the saturation magnetic flux density Bs is high, the magnetic permeability μ is high, the specific resistance ρ is high, and the coercive force Ha is low, but when considering loss in the high frequency range, it is especially important that the coercive force Ho is low. It is from. Therefore, examples of the above-mentioned soft magnetic metals include those shown in Table 1.

第1表 次に、上記のような軟磁性金属の細線を用いて形成する
磁気コアの形態について説明する。この発明による磁気
コアとしては、例えば第1閏および第2図に示すように
、@磁性金属のR線lを、環i&に巻線してトロイダル
状の磁気コア2を形成することが考えられる。この磁気
コア2には、励磁導線3を所望巻数巻回し、また必要に
応じて出力導線4を所望巻数巻回して構成すればよい。
Table 1 Next, the form of the magnetic core formed using the soft magnetic metal thin wire as described above will be explained. As a magnetic core according to the present invention, for example, as shown in the first leap and FIG. . The magnetic core 2 may be configured by winding the excitation conducting wire 3 with a desired number of turns and, if necessary, by winding the output conducting wire 4 with a desired number of turns.

なお、これらの図において磁気コア2の断面形状は円形
となっているが、これは−例であって、他の形状例えば
方形等であってもよい。さらに、この発明による磁気コ
アの形態の他の例としては、まず、励磁溝#3(および
必要に応じて出力導線4を略等径でかつ同心円的に春砿
し、これら導線3(および導線4)に、軟磁性金属から
なる細線1を巻回して磁気コア2を形成することも考え
られる。ようは、励磁導線3(および出力導線4)に対
して、細線1が束ねられた状態で磁路を形成するような
形態にすればよい。なお、上記のような磁気コアには、
使用する軟磁性金属の選定および磁歪を除去するための
熱処理方法の適正化等によって、所望の透磁率、磁束レ
ベルの保持特性、可飽和特性および非直線性等を付与す
ることが可能である。
In addition, although the cross-sectional shape of the magnetic core 2 is circular in these figures, this is just an example, and other shapes such as a rectangular shape may be used. Furthermore, as another example of the form of the magnetic core according to the present invention, first, the excitation groove #3 (and, if necessary, the output conductor 4) are spring-drilled concentrically with approximately the same diameter, and these conductors 3 (and the conductor 4), it is also possible to form the magnetic core 2 by winding the thin wire 1 made of soft magnetic metal.In this case, the thin wire 1 is bundled around the excitation conductor 3 (and the output conductor 4). What is necessary is to form the magnetic core into a shape that forms a magnetic path.
By selecting the soft magnetic metal to be used and optimizing the heat treatment method for removing magnetostriction, it is possible to impart desired magnetic permeability, magnetic flux level retention characteristics, saturability characteristics, nonlinearity, etc.

さらに、この発明における軟磁性金属の細線の製造方法
としては、所望の軟磁性金属をガラス体で包み、これら
を融点以上の温度に加熱した後線引きして細線を得る所
謂テーラ−法、あるいは溶融された軟磁性金属をノズル
から冷却媒体中へ吹き込み細線を得る方法等の製造方法
が適用可能である。
Furthermore, as a method for producing a thin wire of soft magnetic metal in the present invention, a desired soft magnetic metal is wrapped in a glass body, heated to a temperature higher than the melting point, and then drawn to obtain a thin wire. A manufacturing method such as a method of blowing the soft magnetic metal into a cooling medium through a nozzle to obtain a thin wire can be applied.

以下、この発明の実権例を具体的に説明する。Hereinafter, practical examples of this invention will be explained in detail.

】ビずs   (Coo、Q4 −、  Feo、o 
 6  )75  (Sj−0−4%BO4)2 11
の組成を有する合金を石英ガラスで包み、1250’C
前後に加熱した後、糸状に引き出して、石英ガラスによ
って被覆された状p■の細線を得た。この細線の直径は
50±10μmであった。次いで、この細線を磁場中で
熱処理して磁歪を除去した後、前記石英ガラスの被覆を
取り失り、細線のみを得た。次に、第5図に示すように
、上記のようにして得られた細線1を、両端部に鍔部を
有する円筒状のボビン5(外径10m71Ls高さ5m
Vりに約1500回巻回して磁気コア2を作製17た。
] Bizus (Coo, Q4 -, Feo, o
6)75 (Sj-0-4%BO4)2 11
An alloy having the composition of is wrapped in quartz glass and heated to 1250'C.
After heating back and forth, it was drawn out into a thread to obtain a p-shaped thin wire covered with quartz glass. The diameter of this thin wire was 50±10 μm. Next, this thin wire was heat-treated in a magnetic field to remove magnetostriction, and then the quartz glass coating was removed, leaving only the thin wire. Next, as shown in FIG.
The magnetic core 2 was manufactured by winding the magnetic core 17 approximately 1,500 times around the V-circle.

そして、この磁気コア2に、第6図に示すように、励磁
導線3および出力導線4を巻回した。また、上記磁気コ
ア2と比較するために、前記ボビン5と同一形状のボビ
ン5′に、前記細線1と同一の組成からなりかつ双ロー
ル液相急冷法によって作製された厚さ20μm1幅5m
mの薄帯状のコア材料6を、200タ一ン巻回して、他
の磁気コア7を作製しく第7図参照)、この磁気コア7
にも前記磁気、コア2と同様に励磁導線および出力導線
を巻+111iJ L、た。
Then, as shown in FIG. 6, an excitation conducting wire 3 and an output conducting wire 4 were wound around this magnetic core 2. In addition, in order to compare with the magnetic core 2, a bobbin 5' having the same shape as the bobbin 5 was prepared with a thickness of 20 μm and a width of 5 m, which had the same composition as the thin wire 1 and was manufactured by a twin-roll liquid phase quenching method.
Another magnetic core 7 is prepared by winding a thin strip-shaped core material 6 of 200 mm (see FIG. 7).
Similarly to the magnetic core 2, the excitation conductor and output conductor were wound +111iJ L.

次に、上記各磁気コア2.7の各励磁導線に、これら磁
気コアを磁化反転させると共に一方の磁気飽和状態に到
達させるような磁場1(mを生じせしめる矩形状の電流
Inを流しく第8図参照)、この時出力導線に得られる
H1z流の波形がら、これら磁気コア2.7の各磁束が
90%反転するに要した時間、すなわちスイッチング時
間Tsを測定し第9図にプロットした。この第9図にお
いて、白丸でプロットした特性曲線は、磁気コア7、す
なわち薄帯;1.ぐのコア材6を用いた従来の磁気コア
のスイッチング特性を示し、一方、黒丸でプロットした
特性曲線は、磁気コア2、すなわち本発明の実施例であ
る磁気コアのスイッチング特性を示している。そして、
この図から明らかなように、この発明による磁気コア2
は従来の磁気コア7に比べて略10倍速いスイッチング
特性を(すなわち上限周波数が略10倍高い周波数特性
を)示した。
Next, a rectangular current In is applied to each excitation conductor of each of the magnetic cores 2.7 to generate a magnetic field 1 (m) that reverses the magnetization of these magnetic cores and causes them to reach one magnetic saturation state. At this time, from the waveform of the H1z flow obtained in the output conductor, the time required for each magnetic flux of these magnetic cores 2.7 to reverse 90%, that is, the switching time Ts, was measured and plotted in Figure 9. . In FIG. 9, the characteristic curve plotted with white circles corresponds to the magnetic core 7, that is, the ribbon; 2 shows the switching characteristics of a conventional magnetic core using the magnetic core material 6, while the characteristic curve plotted with black circles shows the switching characteristics of the magnetic core 2, that is, the magnetic core according to the embodiment of the present invention. and,
As is clear from this figure, the magnetic core 2 according to the present invention
exhibited switching characteristics that were approximately 10 times faster than the conventional magnetic core 7 (that is, frequency characteristics that had an upper limit frequency that was approximately 10 times higher).

以上の説明から明らかなように、この発明による磁気コ
アは、抗磁力Hcが20エルステツド以下のl1if′
磁性金属からなりかつ断面積が0.01−以下の細線を
巻線して深床したものであるから、従来の磁気コアに比
べて磁壁数が著るしく増加すると共に磁化反転時におけ
る磁壁の移動距離が短縮され、これによって高周波域に
おける渦電流損失が低減されて使用可能な上限周波数が
著るしく上昇する。
As is clear from the above description, the magnetic core according to the present invention has a coercive force Hc of 20 oersted or less.
Since it is made of magnetic metal and is wound with a deep bed of thin wire with a cross-sectional area of 0.01- or less, the number of domain walls increases significantly compared to conventional magnetic cores, and the number of domain walls increases when magnetization is reversed. The travel distance is shortened, which reduces eddy current loss in the high frequency range and significantly increases the usable upper limit frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による磁気コアの形態の一例を示す平
面図、第2図は第1図の■−■線に沿う断面図、第3図
はこの発明による磁気コアの形態の他の例を示す平面図
、第4図は第3図の■−■線に沿う断面図、第5図はこ
の発明の実師例による磁気コアの断面図、第6図は同磁
気コアの斜視図、第7図は前記実施例による磁気コアと
比較するために作製された他の磁気コアの断面図、第8
図は前記各磁気コアのスイッチング特性の測定方法を示
すための説明図、第9図はこの発明による磁気コアと他
の磁気コアとの各スイッチング特性を示す特性図である
。 1・・・・・細線、2・・・・・磁気コア。
Fig. 1 is a plan view showing an example of the form of the magnetic core according to the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is another example of the form of the magnetic core according to the invention. 4 is a sectional view taken along the line ■-■ in FIG. 3, FIG. 5 is a sectional view of a magnetic core according to a practical example of the present invention, and FIG. 6 is a perspective view of the same magnetic core. FIG. 7 is a cross-sectional view of another magnetic core manufactured for comparison with the magnetic core according to the above embodiment;
The figure is an explanatory diagram showing a method for measuring the switching characteristics of each of the magnetic cores, and FIG. 9 is a characteristic diagram showing the switching characteristics of the magnetic core according to the present invention and other magnetic cores. 1...Thin wire, 2...Magnetic core.

Claims (1)

【特許請求の範囲】[Claims] 抗磁力HCが20エルステツド以下の軟磁性金属からな
りかつ断面積が0.01−以下の細線を巻線して構成し
たことを特徴とする磁気コア。
1. A magnetic core comprising a thin wire wound with a soft magnetic metal having a coercive force HC of 20 Oersteds or less and a cross-sectional area of 0.01- or less.
JP7866283A 1983-05-04 1983-05-04 Magnetic core Pending JPS59204216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7866283A JPS59204216A (en) 1983-05-04 1983-05-04 Magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7866283A JPS59204216A (en) 1983-05-04 1983-05-04 Magnetic core

Publications (1)

Publication Number Publication Date
JPS59204216A true JPS59204216A (en) 1984-11-19

Family

ID=13668067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7866283A Pending JPS59204216A (en) 1983-05-04 1983-05-04 Magnetic core

Country Status (1)

Country Link
JP (1) JPS59204216A (en)

Similar Documents

Publication Publication Date Title
JPS5933183B2 (en) Low loss amorphous alloy
US5032947A (en) Method of improving magnetic devices by applying AC or pulsed current
JPS5841649B2 (en) wound iron core
JPS59202614A (en) Magnetic element
JPS59204216A (en) Magnetic core
JPH07254116A (en) Method of heat treatment for thin film magnetic head
US4769091A (en) Magnetic core
JPH0260753B2 (en)
JPS61261451A (en) Magnetic material and its production
JP2835127B2 (en) Magnetic core and manufacturing method thereof
KR20000068543A (en) coil
JPS6032313A (en) Magnetic core
JPS596504A (en) Wound core for high frequency
JP2859286B2 (en) Manufacturing method of ultra-microcrystalline magnetic alloy
JPS62167840A (en) Magnetic material and its manufacture
JPS6124211A (en) Magnetic core for polarized choke coil
JP2619243B2 (en) Heat treatment method for amorphous magnetic material
JPH0151540B2 (en)
JPS596508A (en) Switching power source
JPS61183453A (en) Manufacture of magnetic core of amorphous alloy
JPS62112310A (en) Manufacture of amorphous magnetic core
KR870000040B1 (en) Low-loss amorphus alloy
JPH04267314A (en) Wound magnetic core for saturable reactor production method
JPS59172215A (en) Toroidal core having superior frequency characteristic
JPS60154510A (en) Tape-wound magnet core for high frequency