JPS59199118A - Method and device for working material to be worked in its width direction - Google Patents
Method and device for working material to be worked in its width directionInfo
- Publication number
- JPS59199118A JPS59199118A JP58074097A JP7409783A JPS59199118A JP S59199118 A JPS59199118 A JP S59199118A JP 58074097 A JP58074097 A JP 58074097A JP 7409783 A JP7409783 A JP 7409783A JP S59199118 A JPS59199118 A JP S59199118A
- Authority
- JP
- Japan
- Prior art keywords
- width direction
- rolling
- rolls
- workpiece
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/08—Bending rods, profiles, or tubes by passing between rollers or through a curved die
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Control Of Metal Rolling (AREA)
- Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は被加工材幅方向における塑性加工方法、即ち、
キャンバ曲げ及びキャンバ曲り矯正のための加工方法に
関する。[Detailed Description of the Invention] The present invention provides a method for plastic working in the width direction of a workpiece, that is,
The present invention relates to a processing method for camber bending and camber bend correction.
従来性われているキャンバ曲げ加工法は、以下に示す3
種類に大別することができる。The conventional camber bending methods are as follows:
It can be roughly divided into types.
(1)3本ロールによる曲げ加工。(1) Bending process using three rolls.
(2)片圧下による曲げ加工。(2) Bending by one-sided pressure.
(3)部分圧下による曲げ加工。(3) Bending by partial reduction.
しかしこれらの方法はいずれも、以下に述べるように加
工後の板厚が板幅方向で変動するという問題点を有して
いる。即ち、まず第1の方式は、材料の一万の側に第1
のロール、反対側に第2、第3のロールを配して材料両
側を拘束し、材料を第1のロール側に曲げ加工するもの
であるが、この方式は曲げの内側で1本のロール(第1
のロール)により成形時の荷重を受けるため、材料エツ
ジ部が部分的に増肉し、板幅方向の板厚のバラツキを生
じてしまう。このようなエツジ部の増肉は、板厚の20
%に達する場合もあシ、後工程で大きな障害となる。例
えばシールド工法用セグメントのリングリブ材は上記加
工による加工材を複数組み合せて溶接することにより製
造されるが、上記のようなエツジ部の形状不良があると
、寸法誤差を生じたり、溶接突合せ部に生ずる間隙を溶
接材料で埋める必要がある等の種々の問題を生じてしま
う。次に上記第2方式は、上下ロールによる圧延に際し
、両ロールを傾斜させることによシ、一方の側のロール
間隔を狭めて材料を圧延し、板幅方向で減肉された側を
外側にして曲りを生じさせるようにしたものであり、こ
の方式は例えばフィンチューブのフィンなどのように比
較的曲率の大きい加工に用いられている。また、上記第
3の方式は、板幅方向における一万の側のみを圧延する
ことによシ、この圧延された側を外側にして曲りを生じ
させるようにしたもので1)、比較的大きな曲率まで加
工が可能であるという利点を有している。しかしながら
、これら第2、第3の方式はいずれも、材料幅方向にお
ける板厚の変動差そのものを利用して板を曲げるもので
あるため、当然のこととして、加工後の板厚は板幅方向
で減肉化しfcシ段付きを生じたシして一様ではなく、
故に現実の用途に種々の制約を受けてしまう。However, all of these methods have the problem that the plate thickness after processing varies in the width direction of the plate, as described below. That is, in the first method, the first
roll, and a second and third roll on the opposite side to restrain both sides of the material and bend the material toward the first roll, but this method uses one roll on the inside of the bend. (1st
As the material is subjected to the load during forming by the rolls), the edge of the material partially thickens, resulting in variations in board thickness in the board width direction. This kind of thickening of the edge part is 20% of the plate thickness.
In some cases, this can be a major hindrance in subsequent processes. For example, ring rib materials for shield construction segments are manufactured by combining and welding multiple processed materials from the above processing, but if there is a shape defect in the edge part as described above, dimensional errors may occur or the welded butt parts may Various problems arise, such as the need to fill the resulting gap with welding material. Next, in the second method, when rolling with the upper and lower rolls, both rolls are tilted, thereby narrowing the roll interval on one side and rolling the material, so that the side with reduced thickness in the width direction of the plate is rolled. This method is used for machining relatively large curvatures, such as the fins of fin tubes. In addition, the third method described above is a method in which bending is caused by rolling only the 10,000 side in the width direction of the plate, with this rolled side facing outward. It has the advantage that it can be processed up to curvature. However, in both of these second and third methods, the plate is bent by utilizing the variation difference in plate thickness in the width direction of the material, so naturally the plate thickness after processing is the same in the width direction. Thickness was reduced due to the fc layer, which caused a step and was not uniform.
Therefore, it is subject to various restrictions in actual use.
また、特に上記(2)の方式では、幅広の板材を加工す
るような場合、板材エツジ部近傍のみの圧延となシ易く
、このためエツジ部に耳波が発生して加工後の形状不良
を生じさせる等の問題がある。In addition, especially in the method (2) above, when processing a wide plate, it is easy to roll only the vicinity of the edge of the plate, which can cause ear waves to occur at the edge and cause shape defects after processing. There are problems such as causing
本発明はこのような従来方式の欠点に鑑み創案されたも
ので、幅方向にひける板厚のバラツキを抑えつつ材料を
その幅方向で適切に塑性加工することができる方法を提
供せんとするものである。The present invention was devised in view of the shortcomings of the conventional methods, and it is an object of the present invention to provide a method that can appropriately plastically work a material in the width direction while suppressing variations in plate thickness in the width direction. It is.
このため不発明は、塑性状態におかれた材料がわずかな
応力の付加によって容易に変形するという事実に注目し
、ロール圧延と曲けとの組み合せによ9幅方向での塑性
加工を行うようにしたもので21、具体的には被加工材
をロール圧延するとともに、圧延ロール出側で被加工材
にその幅方向−側から押圧力を付与することにより、被
加工材をその幅方向で塑性加工するようにしたことをそ
の基本的特徴とする。また、このよう外方−法を好適に
実施するため、圧延ロールの入側及び出側に被加工材の
幅方向−側に当接すべき縦型ローラを設け、少なくとも
出側の縦型ローラを、被加工材幅方向移動可能に構成し
たことをその他の基本的特徴とする。For this reason, the invention focused on the fact that materials placed in a plastic state are easily deformed by the addition of a slight stress, and devised a method to perform plastic working in the width direction by a combination of roll rolling and bending. 21, specifically, by rolling the workpiece with rolls and applying a pressing force to the workpiece from the negative side in the width direction on the exit side of the rolling rolls, the workpiece is rolled in the width direction. Its basic feature is that it is plastically worked. In addition, in order to suitably carry out such a rolling method, vertical rollers are provided on the inlet and outlet sides of the rolling rolls to be in contact with the widthwise side of the workpiece, and at least the vertical rollers on the outlet side are provided. Another basic feature is that it is configured to be movable in the width direction of the workpiece.
前述したように、金属材料は塑性状態におかれた場合、
わずかな応力の付加によって容易に変形するものである
が、本発明はこのような性質を利用し、ロール圧延とと
もに該ロール出側において被加工材に側方からの力を加
えることによシ、ロールギャップ内にある被加工材の圧
延による長さの増加を幅方向で変化させ、材料にその幅
方向での塑性変形を生じさせるようにしたものでsb、
これによシ幅方向で板厚のバラツキを生じることなく幅
方向での塑性加工を行うことができる。As mentioned above, when a metal material is placed in a plastic state,
Although it is easily deformed by applying a slight stress, the present invention takes advantage of this property and applies a lateral force to the workpiece at the exit side of the rolls during roll rolling. The length increase due to rolling of the workpiece in the roll gap is changed in the width direction, causing plastic deformation in the material in the width direction.sb
As a result, plastic working can be performed in the width direction without causing variations in plate thickness in the width direction.
このような塑性加工は、所謂キャンパー曲げ加工に適用
できる他、キャンバ曲シを生じた材料の矯正にも適用で
きる。また、その加工は、板材の他、形銅等の条鋼材を
もその対象とすることができる。Such plastic working can be applied to so-called camber bending, and can also be applied to correcting materials with camber bending. Further, the processing can be applied to not only plate materials but also long steel materials such as shaped copper.
第1図は本発明の装置及びこれによる実施状況を概略的
に示すもので、(1〕は被加工材(板材)、(2)は圧
延ロール(平ロール)である。FIG. 1 schematically shows the apparatus of the present invention and the state of implementation thereof, in which (1) is a workpiece (plate material), and (2) is a rolling roll (flat roll).
圧延ロール(2ンの出側には被加工材の一側部を拘束し
て押圧力を付与すべき縦型ロール(3)が配設されてい
る。この縦型ロール(3)は被加工材の幅方向で移動す
ることによ多位置調整可能に構成さ九ている。また、圧
延ロール(2)の入側にも、上記縦型ロール(3)と同
じ側で被加工材−側を拘束すべき縦型ロール(4)が配
設され、上記出側の縦型ロール(3)による抑圧によっ
て被加工材の横ズレが生じないようこれを拘束するよう
になっている。このような装置によ扛ば、被加工材(1
)は圧延ロール(2)で圧延さnるとともに、入側で縦
型ロール(4)によシその一側を拘束されつつ出側で縦
型ロール(3)にその幅方向−側を拘束されて押圧力を
付与される。このような抑圧により、圧延ロール(2)
のロールギャップ内では上記押圧による応力と圧延によ
る応力とが複合され、前述したようにロールギャップ内
にある材料の圧延による長さの増加が幅方向で変化し、
被加工材(1)は幅方向で反縦型ローラ側に曲げられる
。A vertical roll (3) is installed on the exit side of the rolling roll (2) to restrain one side of the workpiece and apply a pressing force.This vertical roll (3) It is configured so that it can be adjusted in multiple positions by moving in the width direction of the material.Also, on the entry side of the rolling roll (2), there is a roll on the same side as the vertical roll (3) and on the workpiece material side. A vertical roll (4) is provided to restrain the workpiece so that the workpiece does not shift horizontally due to the pressure exerted by the vertical roll (3) on the exit side. If the machine is used, the workpiece material (1
) is rolled by the rolling rolls (2), and at the same time is restrained on one side by the vertical rolls (4) on the entry side, and on the negative side in the width direction by the vertical rolls (3) on the exit side. and a pressing force is applied. Due to such suppression, the rolling roll (2)
In the roll gap, the stress due to the above-mentioned pressing and the stress due to rolling are combined, and as mentioned above, the increase in length due to rolling of the material in the roll gap changes in the width direction,
The workpiece (1) is bent in the width direction toward the side opposite to the vertical roller.
そして、上記長さの増加の幅方向における差は、幅方向
の歪で吸収され、幅方向における板厚が一定に保たれる
。The difference in length increase in the width direction is absorbed by the strain in the width direction, and the plate thickness in the width direction is kept constant.
なお、上記装置をよシ具体的に説明すると、前記圧延ロ
ール(2)の入側及び出側には縦型ロール(3)及び(
4)とは反対側の被加工材側部を拘束するための縦型ロ
ール(5) (6)が配設されている。これらのR型ロ
ールは主として被加工材(1)のガイドロールとしての
役目を果すものであシ、縦型ロール(3)、(4)よシ
も圧延ロール(2)に近い位置に配設されている。!た
被加工材に押圧力を付与すべき出側の縦型ロール(3)
は図中鎖線で示すように複数連続的に設けるこ゛とが好
ましく、−これによシ加工を円滑に行わしめることがで
きる。まな、縦型ロール(3)に限らず、圧延ロール入
側の縦型ロール(4)や反対側における圧延ロール入側
及び出側の縦型ロール(5) (6)についても、これ
らを被加工材幅方向で位置調整可能に構成せしめること
が可能であり、これKよって被加工材の板幅、加工曲率
の程度、キャンバ曲げ又はキャンバ曲シ矯正の別等にか
かわらず、被加工材幅方向における汎用的な塑性加工が
可能となる。また第2図は圧延ロール出側におけるに1
型ロールによる加工状況を示すもので、縦型ロール(3
)及び(5)は溝付きロールで構成され、この構で被加
工材(1)のエラ:)を拘束するようにしている。なお
、この縦型ロールは平ロールで構成せしめることも可能
である。各縦型ロールは、その軸受部材(7)が位置調
整手段(8)に保持され、被加工材幅方向での位置調整
が可能となっている。In addition, to explain the above-mentioned apparatus more specifically, vertical rolls (3) and (
Vertical rolls (5) and (6) are provided for restraining the side of the workpiece opposite to 4). These R-shaped rolls mainly serve as guide rolls for the workpiece (1), and the vertical rolls (3) and (4) are also placed close to the rolling roll (2). has been done. ! Vertical roll on the exit side that should apply pressing force to the processed material (3)
It is preferable to provide a plurality of them consecutively, as shown by the chain lines in the figure, so that the machining can be carried out smoothly. However, not only the vertical roll (3) but also the vertical roll (4) on the rolling roll entry side and the vertical rolls (5) (6) on the rolling roll entry and exit sides on the opposite side are covered. It is possible to configure the position to be adjustable in the width direction of the workpiece, so that the width of the workpiece can be adjusted regardless of the width of the workpiece, the degree of processing curvature, whether camber bending or camber correction, etc. This makes it possible to perform general-purpose plastic working in different directions. Figure 2 also shows the
This shows the machining status using die rolls, with vertical rolls (3
) and (5) are composed of grooved rolls, and this structure restrains the gills : ) of the workpiece (1). Note that this vertical roll can also be configured as a flat roll. The bearing member (7) of each vertical roll is held by a position adjustment means (8), and the position can be adjusted in the width direction of the workpiece.
第3図0)ないしくハ)及び第4図(イ)ないしくハ)
は、それぞれ本発明法による加工板材の幅方向肉厚分布
を調べたもので、板厚(to) 2 tm、板幅(wo
) 20柵のアルミニウム押出材(3S−F)を供試材
とし、これを第1図及び第2図に示す本発明法によシ曲
げ加工したものである。こ゛のうち第3図(イ)ないし
くハ)は圧延ロールによる圧下率(red)を略一定に
して曲げ曲率(l/p)を変化させた場合、!た第4図
(イ)ないしくハ)は曲げ曲率(]/ρ)を略一定にし
て圧下率(red)を変化させた場合を示している。な
お、板幅は曲げの外側を零として表わしている。これら
の図が示すように、幅方向における肉厚の変化はいずれ
の場合もほとんどみられない。Figure 3 0) or c) and Figure 4 (a) or c)
are the results of investigating the thickness distribution in the width direction of plate materials processed by the method of the present invention, and the plate thickness (to) 2 tm and the plate width (wo
) A 20-bar aluminum extrusion material (3S-F) was used as a test material, and was bent by the method of the present invention shown in FIGS. 1 and 2. Of these, Fig. 3 (a) to c) shows the case where the rolling reduction ratio (red) by the rolling roll is kept approximately constant and the bending curvature (l/p) is changed! FIGS. 4(a) to 4(c) show the case where the bending curvature (]/ρ) is kept substantially constant and the rolling reduction ratio (red) is varied. Note that the plate width is expressed with the outside of the bend as zero. As these figures show, there is almost no change in wall thickness in the width direction in any case.
第3図(ハ)に示すように、曲率を大きくしていくと曲
げの外側(板幅方向位置= Omm )のほうが薄くな
っているが、この場合には最大でもlOμ程度の減肉に
過ぎない。なお、第4図(ロ)及び(ハ)で示す肉厚変
化は、一般の圧延におけると同様、圧下率の増大に伴っ
て生ずる板クラウンによるものである(第4図(イ)の
逆クラウン形状は、供試材の形状が極端な逆クラウンで
あったためである)。As shown in Figure 3 (c), as the curvature increases, the outside of the bend (position in the sheet width direction = Omm) becomes thinner, but in this case, the thickness is only reduced by about 10μ at most. do not have. Note that the wall thickness changes shown in Figures 4 (b) and (c) are due to the plate crown that occurs as the rolling reduction increases, as in general rolling (inverted crown in Figure 4 (a)). This is because the shape of the sample material was an extreme inverted crown).
また1本発明法は、上記したように圧延と横方向からの
抑圧による複合された応力によシ塑性変形を生せしめる
ため、わずかな曲げ力(押圧力)で材料を曲げることが
できる。Furthermore, in the method of the present invention, as described above, the material can be bent with a small bending force (pressing force) because the combined stress caused by rolling and lateral compression causes plastic deformation.
この曲げ力は単純に曲げ加工した場合の173〜1/4
で済み、その最大荷重は従来の3本ロール方式による加
工に収べl/6〜17/8程度になシ、このため本発明
法では、曲げに敬する大荷重に起因したエツジ部の変形
(増肉)が適切に抑えられる。第5図(i)及びい)は
、本発明法及び従来の3本ロール方式による曲げ加工法
によって、板厚22箇、板幅1305mの鋼材を、セグ
メントリングリブ材用に曲率lh3−1
= 0.3 X l Ovan にキャンバ曲げ加工
した際の、加工後の板材断面を示している。(イ)が本
発明法、(ロ)が従来法による場合で必シ、従来法によ
る板材はエツジ部に片側で1.5W前後の盛多上がルが
生じているのに対し、本発明法によるものでは、そのよ
うな盛p上が9はほとんどみられない。このようなエツ
ジ部の増肉防止効果により、セグメント製造における溶
接材料の10〜x5%程度の歩留向上、約10%程度の
作業能率の向上が期待できる。This bending force is 173 to 1/4 that of simple bending.
The maximum load that can be accommodated in conventional three-roll processing is about 1/6 to 17/8. Therefore, in the method of the present invention, the deformation of the edge portion due to the large load required for bending can be avoided. (meat increase) can be appropriately suppressed. Figures 5 (i) and 5) show that a steel material with a thickness of 22 pieces and a width of 1305 m is made into a segment ring rib material with a curvature lh3-1 = It shows a cross section of a plate material after camber bending to 0.3 X l Ovan. (a) is the method of the present invention, and (b) is the conventional method.In contrast to the conventional method, the plate material has a bulge of around 1.5W on one side at the edge, whereas the method of the present invention In the case of the law, such a height of 9 is rarely seen. Due to this effect of preventing thickening of the edge portion, it is expected that the yield of welding material in segment production will be improved by about 10 to 5%, and the work efficiency will be improved by about 10%.
また上記曲げ力は圧下率の増加に伴って低減する。第6
図は圧下率と縦型ロール(3)による曲げ力との関係の
一例を示すもので、板厚の異る2種類のアルミ押出材を
供試材として曲げ加工を行ったものである。このうちA
供試材は板厚(to)5m、板幅(WO) 20 w、
B供試材は板厚(to)2欄、板幅(WO) 20 t
anであシ、各供試材とも曲率(1/ρ)−1,14X
lO謹で曲げ加工したものである。同図からも明らかな
ように、曲率を一定にした場合、圧下率が大きいほうが
曲げ力が小さくて済んでいる。Further, the above bending force decreases as the reduction rate increases. 6th
The figure shows an example of the relationship between the rolling reduction and the bending force exerted by the vertical rolls (3), in which two types of aluminum extrusions with different thicknesses were bent as test materials. Of these, A
The sample material is plate thickness (to) 5m, plate width (WO) 20w,
B sample material has plate thickness (to) column 2 and plate width (WO) 20 t.
Curvature (1/ρ) -1,14X for each sample material
It was bent with care. As is clear from the figure, when the curvature is kept constant, the larger the reduction ratio, the smaller the bending force.
本発明法においては、曲げ曲率は圧下量、板幅、強度等
に関係なく縦型ロール(3)の横方向での進出位置、即
ち圧延ロール軸線方向での位置によ少決まるものであシ
、このため上記したような変動要因があっても上記ロー
ル位置の設定によ)、常に所望の曲げ曲率を得ることが
できる。従来の片圧下による曲げ加工方式では左右の圧
下バランスによシ曲率を大きく変えることができるもの
の、圧下バランスの問題から所定の曲率を安定して得る
ことが難しいのに対し、本発明方式では上述したように
所定の曲率を安定して得ることができる。第7図及び第
8図はそれぞれアルミ押出材による供試材を用い、圧下
率と曲げ曲率との関係、及び縦型ロール位置(縦型ロー
ル(3)が押圧力を与えないで被加工材に当接している
位置からの圧延ロール軸線方向に沿った距離)と曲げ曲
率との関係をそれぞれ示しており、これによれば、圧下
率の大小にかかわらず曲率ト定(1/ρ=1.14XI
Ow )となっているのに対し、縦型ロール(3)が
横方向で占める位置により、被加工材の曲げ曲率が決定
されることが判る。また第9図は、本発明法の曲げ曲率
誤差の頻度分布を3本ロール方式による曲げ加工法のそ
れと比較して示したものであり、第10図に示すように
、板厚22震、板幅130wnの鋼材を、セグメントリ
ングリプ材用に曲率l/ρ=0.3XlOrtun
にキャンバ曲げ加工した際の、加工後の曲げ誤差δを以
下のようにして求めたものである。In the method of the present invention, the bending curvature is determined to a large extent by the advancing position of the vertical roll (3) in the lateral direction, that is, the position in the rolling roll axis direction, regardless of the rolling reduction amount, sheet width, strength, etc. Therefore, even if there are the above-mentioned fluctuation factors, the desired bending curvature can always be obtained by setting the roll position. In the conventional bending method using one side reduction, the curvature can be changed greatly depending on the balance of the reduction on the left and right sides, but it is difficult to stably obtain a predetermined curvature due to the problem of the reduction balance, whereas the method of the present invention As described above, a predetermined curvature can be stably obtained. Figures 7 and 8 show the relationship between rolling reduction and bending curvature, and the vertical roll position (vertical roll (3) does not apply pressing force to the workpiece) using test materials made of extruded aluminum material. The relationship between the bending curvature and the distance along the axis of the rolling roll from the position in contact with the roll is shown, and according to this, the curvature is constant (1/ρ=1 .14XI
It can be seen that the bending curvature of the workpiece is determined by the position occupied by the vertical roll (3) in the lateral direction. Figure 9 shows the frequency distribution of bending curvature errors in the method of the present invention in comparison with that in the three-roll bending method. A steel material with a width of 130wn has a curvature of l/ρ=0.3XlOrtun for segment ring lip material.
The bending error δ after camber bending was determined as follows.
δ”’h−h。δ”’h-h.
bO:目標曲勺量
h:実測曲多量
図中(イ)は本発明法、(ロ)は従来法による場合をそ
れぞれ示すものでメ乏が、従来法に較べ本発明法では安
定した加工がなされていることが判る。bO: Target amount of curvature h: Actual amount of curvature In the figure, (a) shows the method of the present invention, and (b) shows the case of the conventional method. I can see what is being done.
また、本発明法はその加工形態が基本的に平圧地と曲け
であるため、従来の片圧下による曲げ加工方式のように
圧下バランスを取る必要がなく、この点からも所望の曲
げ曲率を安定して得ることができる。In addition, since the method of the present invention basically involves flat pressure and bending, there is no need to balance the reduction unlike the conventional bending method using one-side reduction, and from this point of view, it is possible to achieve the desired bending curvature. can be obtained stably.
以上のような塑性加工は所謂キャンバ曲りを生じた材料
を矯正する場合でも全く同様でアリ、キャンバ曲夛を生
じている被加工材は、その曲夛の内側方向から縦型ロー
ルにより押圧され、真直ぐに矯正される。本発明法をこ
のようなキャンバ白シ矯正に利用することは次のような
理由から極めて有用である。即ち通常ロール成形品(成
形形鋼、電縫管等)は、ホットコイルを巻きほぐして素
板とするが、熱間圧延板はコイルの先5後端部にキャン
バ曲りのあることが多く、またコイル中央部でも若干の
キャンバ曲りが存在している。素板にこのようなキャン
バ曲夛があると、ロール成形時に左右のバランスが崩れ
製品形状精度が低下してしまうという問題があり、仮に
サイドロール等によシカを加え、板中心をミル中央に押
し付けたとしても、製品にねじれを生じたり、板端部に
損傷を生じたシしてしまう。従って、上記成形前にキャ
ンバ曲夛を矯正すること7バ必要になるが、従来の片圧
下方式や30一ル方式では、前述した板幅方向での板厚
のバラツキを生じるという問題だけでなく、キャンバ曲
シ量を測定し、この曲シ量に見合った矯正量を決定し、
この量だけ矯正するという困難且つ繁雑な操作を行う必
要があシ、またこのキャンバ白シの測定に大掛りな設備
が必要となる。これに対し本発明では縦型ロールの位置
だけで曲り量が決定されるため、素板が真直ぐになるよ
う縦型ロール位置を決定するだけでよく、面倒なキャン
バ曲シ量の測定や曲げ量の決定等の必要なくキャンバ曲
夛矯正が容易に可能となる。The above-mentioned plastic working is exactly the same even when straightening a material that has so-called camber bending, and the workpiece that has camber bending is pressed by vertical rolls from the inside of the bend. straightened out. Utilizing the method of the present invention to correct such camber white spots is extremely useful for the following reasons. In other words, normally roll-formed products (formed shaped steel, electric resistance welded pipes, etc.) are made by unwinding hot coils to form blank sheets, but hot-rolled sheets often have camber bends at the leading and trailing ends of the coil. There is also some camber bending in the center of the coil. If there is such a camber curve in the raw board, there is a problem that the left and right balance will be lost during roll forming and the precision of the product shape will decrease. Even if it is pressed, the product may be twisted or the edge of the plate may be damaged. Therefore, it is necessary to correct the camber curvature before the above-mentioned forming, but with the conventional one-side reduction method or 30-1 method, not only the problem of uneven thickness in the width direction as described above occurs, but also , measure the amount of camber curvature, determine the amount of correction commensurate with this amount of curvature,
It is necessary to perform a difficult and complicated operation to correct this amount, and large-scale equipment is required to measure this camber whitening. On the other hand, in the present invention, the amount of bending is determined only by the position of the vertical rolls, so it is only necessary to determine the position of the vertical rolls so that the blank sheet is straight. This makes it possible to easily correct camber distortion without the need to determine.
以上のようなキャンバ曲げ、及びキャンバ曲夛矯正は、
他にスパイラル鋼管のキャンバ曲り矯正、形鋼のキャン
バ加工、テーパ肉厚板の製造(片圧延と同時に真直ぐに
する曲げ加工を加える)等、種々の用途に適用可能であ
る。The above-mentioned camber bending and camber correction are
In addition, it can be applied to a variety of other uses, such as straightening the camber of spiral steel pipes, camber processing of shaped steel, and manufacturing of tapered thick plates (adding straightening bending at the same time as one-piece rolling).
以上述べた本発明によれば、被加工材の幅方向での塑性
加工を圧延と曲げとの組み合せにより行うため、エツジ
部の増肉や板幅方向での板厚のバラツキを生ずることな
くしかも所望の加工状態に安定して加工することができ
、このため板材や形鋼等の条鋼材のキャンバ曲げ加工や
キャ/バ曲シ矯正を適切に行うことができ、またこのよ
うな方法を圧延ロールとその出側の縦型ロールという比
較的簡単な装置によシ実施し得るものであるから、工業
的利用価値の高い発明であるということができる。According to the present invention described above, since the plastic working in the width direction of the workpiece is performed by a combination of rolling and bending, there is no increase in thickness at the edges or variation in the thickness in the width direction of the sheet. It is possible to stably process the desired processing state, and therefore it is possible to appropriately perform camber bending and cabling correction of long steel products such as plates and shaped steel. Since it can be carried out using a relatively simple device consisting of a roll and a vertical roll on the exit side thereof, it can be said that the invention has high industrial utility value.
第1図及び第2図は本発明装置及びこれによる加工法を
概略的に示すもので、第1図は全体説明図、第2図は出
側縦型ロールによる加工状況を示す説明図である。第3
図及び第4図は、本発明法による加工板材の板幅方向に
おける肉厚分布を示すもので、第3図G)ないしく口)
は圧下率略一定で曲率を変化させた場合の肉厚分布、第
4図(イ)ないしくハ)は曲率略一定で圧下率を変化さ
せ7’C場合の肉厚分布を示している。第5図ef)は
本発明法による加工後の板断面形状を、また第5図(ロ
)は従来の3本ロール方式による加工後の板断面形状を
示すものである。第6図は本発明法における圧下率と曲
げ力との関係を示すものである。第7図は本発明法にお
ける曲げ曲率と圧下率との関係を示すものである。第8
図は本発明法における縦ロール位置と曲げ曲率との関係
を示すものである。第9回頭は本発明法における曲げ曲
率誤差の頻度分布、第9図(ロ)は従来の3本ロール方
式における曲げ曲率誤差の頻度分布を示すものである。
第10図は第9図において示される曲9量の決定法を示
す説明図である。
図において、(1)は被加工材、(2)は圧延ロール、
(3)は縦型ロールを各示す。
特許出願人 日本鋼管株式会社
発明者 三 原 豊
同 戸 澤 康 郵代
理人弁理士 吉 原 省 三第3図
漱桶7鴫置(mm)
本幅方淘榔(mm)
蓼@方向は(mm)
第4図
賑稿力前装置(mm)
ゑ暢方鼾装置(mm)Fig. 1 and Fig. 2 schematically show the apparatus of the present invention and the processing method using the same, Fig. 1 is an overall explanatory view, and Fig. 2 is an explanatory view showing the processing situation using vertical rolls on the exit side. . Third
Figures 3 and 4 show the wall thickness distribution in the width direction of the plate material processed by the method of the present invention, and Figure 3 G) or Figure 4)
4 shows the wall thickness distribution when the rolling reduction rate is approximately constant and the curvature is changed, and FIGS. FIG. 5(f) shows the cross-sectional shape of the plate after processing by the method of the present invention, and FIG. 5(b) shows the cross-sectional shape of the plate after processing by the conventional three-roll method. FIG. 6 shows the relationship between rolling reduction and bending force in the method of the present invention. FIG. 7 shows the relationship between bending curvature and rolling reduction in the method of the present invention. 8th
The figure shows the relationship between the vertical roll position and the bending curvature in the method of the present invention. The ninth figure shows the frequency distribution of bending curvature errors in the method of the present invention, and FIG. 9 (b) shows the frequency distribution of bending curvature errors in the conventional three-roll method. FIG. 10 is an explanatory diagram showing a method for determining the amount of nine pieces of music shown in FIG. 9. In the figure, (1) is the workpiece, (2) is the rolling roll,
(3) shows each vertical roll. Patent applicant: Nippon Kokan Co., Ltd. Inventor: Toyodo Mihara Yasushi Tozawa Postal agent: Sho Yoshihara ) Fig. 4 Drafting force front device (mm) Enobu front snoring device (mm)
Claims (2)
圧延ロール出側で被加工材にその幅方向−側から押圧力
を付与することによシ、被加工材をその幅方向で塑性加
工することを特徴とする被加工材幅方向における塑性加
工方法。(1) While rolling the workpiece material multiple times using rolling rolls,
A method of plastic working in the width direction of a workpiece, characterized in that the workpiece is plastically worked in the width direction by applying a pressing force to the workpiece from the negative side of the workpiece on the exit side of the rolling rolls. .
に当接すべき縦型ローラを設けるとともに、少くとも上
記出側のM型ローラを、被加工材幅方向での位置調整可
能に構成したことを特徴とする被加工材幅方向における
加工装置。(2) Vertical rollers to be in contact with the widthwise side of the corrugated material are provided on the inlet and outlet sides of the rolling rolls, and at least the M-type roller on the outlet side is positioned at a position in the width direction of the workpiece. A processing device in the width direction of a workpiece, characterized in that it is configured to be adjustable.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58074097A JPS59199118A (en) | 1983-04-28 | 1983-04-28 | Method and device for working material to be worked in its width direction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58074097A JPS59199118A (en) | 1983-04-28 | 1983-04-28 | Method and device for working material to be worked in its width direction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59199118A true JPS59199118A (en) | 1984-11-12 |
JPH0215282B2 JPH0215282B2 (en) | 1990-04-11 |
Family
ID=13537337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58074097A Granted JPS59199118A (en) | 1983-04-28 | 1983-04-28 | Method and device for working material to be worked in its width direction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59199118A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03126581U (en) * | 1990-04-06 | 1991-12-19 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5072852A (en) * | 1973-10-31 | 1975-06-16 | ||
JPS5739018A (en) * | 1980-08-22 | 1982-03-04 | Nippon Steel Corp | Rolling method for controlling plane camber of rolled material in rolling mill line including vertical rolling stand |
-
1983
- 1983-04-28 JP JP58074097A patent/JPS59199118A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5072852A (en) * | 1973-10-31 | 1975-06-16 | ||
JPS5739018A (en) * | 1980-08-22 | 1982-03-04 | Nippon Steel Corp | Rolling method for controlling plane camber of rolled material in rolling mill line including vertical rolling stand |
Also Published As
Publication number | Publication date |
---|---|
JPH0215282B2 (en) | 1990-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6339946B1 (en) | Pipe forming apparatus and method | |
US4945743A (en) | Apparatus for manufacturing electric welded pipes under hot conditions | |
JPS59199118A (en) | Method and device for working material to be worked in its width direction | |
JPH06198337A (en) | Method for correction welded steel tube | |
US5005395A (en) | Method of manufacturing electric welded pipes under hot conditions | |
US3270543A (en) | Machine for flattening and curling of metal strip | |
JP3332217B2 (en) | Pipe forming method with bending roll | |
JP2738280B2 (en) | Manufacturing method of external constant parallel flange channel steel | |
JP2010023115A (en) | Method for straightening t-shaped steel and straightening facility | |
JPH01181901A (en) | Method for hot rolling metal stock | |
JP3332216B2 (en) | Pipe forming apparatus and forming method using bending roll | |
JP3990761B2 (en) | Manufacturing method of welded pipe with excellent roundness | |
US2442850A (en) | Method of and apparatus for making flat metal tubes | |
JPS6064702A (en) | Manufacture of shape bar | |
JP3358654B2 (en) | Pipe forming method with bending roll | |
JPS61115685A (en) | Manufacture of seam welded steel tube | |
EP0133245B1 (en) | A method for forming an electric resistance welded steel pipe | |
JP2006068754A (en) | Method for straightening cross section of bar having special shaped cross section | |
JPH0261854B2 (en) | ||
RU2062152C1 (en) | Strip metal straightening method | |
JP6252454B2 (en) | Manufacturing method of high-strength thick-walled ERW steel pipe | |
JP2024147166A (en) | Roller correction method and metal plate manufacturing method | |
JP2001105032A (en) | Device and method for pipe forming by bending roll and pipe | |
JP3328392B2 (en) | Welded pipe forming method | |
RU2164186C2 (en) | Method for profiling equal-flange channel bars |