JPS59198340A - Evaluation of cavitation between cylinder liner and piston of internal combustion engine - Google Patents
Evaluation of cavitation between cylinder liner and piston of internal combustion engineInfo
- Publication number
- JPS59198340A JPS59198340A JP7474583A JP7474583A JPS59198340A JP S59198340 A JPS59198340 A JP S59198340A JP 7474583 A JP7474583 A JP 7474583A JP 7474583 A JP7474583 A JP 7474583A JP S59198340 A JPS59198340 A JP S59198340A
- Authority
- JP
- Japan
- Prior art keywords
- cavitation
- cylinder liner
- bypass filter
- piston
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/22—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
- G01L23/221—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/22—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
- G01L23/221—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
- G01L23/222—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines using piezoelectric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L23/00—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
- G01L23/22—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
- G01L23/221—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
- G01L23/225—Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Engines (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、内燃機関のシリンダライナとピストンとの相
互間におけるキャビテーションの評価法に関し、特に直
接実機についてキャビテーションの強度を求めることが
できるようにした方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for evaluating cavitation between a cylinder liner and a piston of an internal combustion engine, and particularly to a method that allows the intensity of cavitation to be directly determined in an actual engine.
一般に液冷内燃機関においては、シリンダライナとその
内部のピストンとが、第1図(縦断面図)に示すような
構造になっており、図中の符号1はピストン、2はシリ
ンダライナ、3は冷却水通路、4はシリンダブロック、
5はコンロッドを示している。Generally, in a liquid-cooled internal combustion engine, a cylinder liner and a piston inside the cylinder liner have a structure as shown in FIG. 1 (longitudinal cross-sectional view). is the cooling water passage, 4 is the cylinder block,
5 indicates a connecting rod.
ピストン1はシリンダライナ2内をコンロッド5と共に
上下に滑動するが、ピストンlとシリンダライナ2との
間には若干の隙間があるために、同時に水平方向にも移
動し、回転もするので5ピストンlとシリンダライナ2
との間で衝突が起こシ、シリンダライナ2が振動するよ
うKなる。この振動が大きいと、シリンダライナ2の周
囲にキャビチルジョンが発生し、シリンダライナ2等に
キャビテーションエロージョ/が発生して、シリンダラ
イナ2の亀裂や機関性能の低下を招くようになる。Piston 1 slides up and down inside cylinder liner 2 together with connecting rod 5, but since there is a slight gap between piston 1 and cylinder liner 2, it also moves horizontally and rotates at the same time, so piston 5 l and cylinder liner 2
A collision occurs between the cylinder liner 2 and the cylinder liner 2, causing it to vibrate. If this vibration is large, cavitation occurs around the cylinder liner 2, cavitation erosion occurs in the cylinder liner 2, etc., which leads to cracks in the cylinder liner 2 and deterioration of engine performance.
そこで、このキャビテーションの現象についての簡単な
検知判定法が望まれるが、従来は耐久試験によりキャビ
テーションの強度を求めて評価する方法がとられており
、実際にエンジンを長時間運転して、キャビテーション
エロージョン発生の程度を確認することが行なわれてい
る。Therefore, a simple detection and judgment method for this cavitation phenomenon is desired, but conventionally, the strength of cavitation has been determined and evaluated through durability tests. The extent of the outbreak is being confirmed.
しかしながら、上述のごとき従来の方法では、長時間の
耐久運転を必要とするので、多額の費用がかかり5捷だ
所要時間も長くなるという問題点がある。However, the conventional method as described above requires long-term durable operation, resulting in a large amount of cost and a long time required for five rounds.
本発明は、これらの問題点の解決をはかろうとするもの
で、長時間の耐久試験を必要とせずに、内燃機関の実機
について、そのシリンダラ・rすとピストンとの相互間
におけるキャビテーションの評価を行なえるようにした
方法を提供することを目的とする。The present invention aims to solve these problems, and evaluates the cavitation between the cylinder and piston of an actual internal combustion engine without the need for long-term durability tests. The purpose is to provide a method that allows you to do this.
このため本発明のキャビテーション評価法は。For this reason, the cavitation evaluation method of the present invention.
内燃機関において、そのシリンダブロックに内装された
シリンダライナと同シリンダライナ内のピストンとの相
互間に生じるキャビテーションを評価すべく、上記シリ
ンダブロックの壁部に高周波振動検出体を装着し、同高
周波振動検出体の出力信号を、遮断周波数250〜30
0KH2以上で且つ減衰特性35〜40 ab10ct
以上の特性を有するバイパスフィルタに通して、その低
周被成□分を遮断し、上記バイパスフィルタを通過した
上記出力信号を、あらかじめ実験で求めておいた上記出
力信号に対する評価値と比較して、上記キャビテーショ
ンの強度を求めることを特徴としている。In an internal combustion engine, in order to evaluate the cavitation that occurs between the cylinder liner inside the cylinder block and the piston inside the cylinder liner, a high-frequency vibration detector is attached to the wall of the cylinder block. The output signal of the detection object is set to a cutoff frequency of 250 to 30
0KH2 or more and damping characteristics 35-40 ab10ct
Pass it through a bypass filter having the above characteristics to cut off its low-frequency components, and compare the output signal that has passed through the bypass filter with the evaluation value for the output signal determined in advance by experiment. , is characterized in that the intensity of the cavitation is determined.
以下、図面により本発明の一実施例としての内燃機関の
シリンダライナとピストンとの相互間におけるキャビテ
ーション評価法について説明すると、第2図はそのシリ
ンダライナとピストンとの相互間におけるキャビテーシ
ョン評価システムを示す系統図、第3図はその実験例を
示すグラフであシ、第2図中、第1図と同じ符号はほぼ
同様の部分を示す。Hereinafter, a method for evaluating cavitation between a cylinder liner and a piston of an internal combustion engine as an embodiment of the present invention will be explained with reference to the drawings. FIG. 2 shows a system for evaluating cavitation between a cylinder liner and a piston. The system diagram, FIG. 3, is a graph showing an experimental example. In FIG. 2, the same reference numerals as in FIG. 1 indicate almost the same parts.
第2図に示すように、液冷内燃機関において、そのシリ
ンダブロック4にシリンダライナ2が内装されており、
このシリンダライナ2とその内部のピストン1との相互
間の隙間6に生じるキャビテーションを評価できるよう
に、シリンダブロック4の外壁部4aに、高周波振動検
出体としての圧電素子lOが直接装着されている。々お
、圧電素子10の固有振動数はIMH2程度を有してい
る。As shown in FIG. 2, in a liquid-cooled internal combustion engine, a cylinder liner 2 is installed inside the cylinder block 4.
A piezoelectric element 1O as a high-frequency vibration detector is directly attached to the outer wall 4a of the cylinder block 4 so that cavitation occurring in the gap 6 between the cylinder liner 2 and the piston 1 therein can be evaluated. . Furthermore, the natural frequency of the piezoelectric element 10 is about IMH2.
この高周波振動検出体としての圧電素子lOは、バイパ
スフィルタ11に接続されておシ、サラにバイパスフィ
ルタ11は増幅器12に接続されている。The piezoelectric element IO serving as a high-frequency vibration detector is connected to a bypass filter 11, and the bypass filter 11 is in turn connected to an amplifier 12.
バイパスフィルタ11は、圧電素子lOで検出された振
動のうち高い周波数の成分だけを通過させるためのフィ
ルタであって、このバイパスフィルタ11としては、そ
の遮断周波数が250〜300KH2以上で、且つその
減衰特性が35〜40 db10ct以上の特性を有す
るものが用いられる。The bypass filter 11 is a filter for passing only high frequency components of the vibrations detected by the piezoelectric element 10, and the bypass filter 11 is designed to have a cutoff frequency of 250 to 300 KH2 or higher, and to reduce its attenuation. A material having a characteristic of 35 to 40 db10ct or more is used.
さらに増幅器12としては、圧電素子10およびバイパ
スフィルタ11の周波数特性に適合するように、その周
波数範囲がIMH2以上のものを用いるようにする。Further, as the amplifier 12, an amplifier whose frequency range is IMH2 or more is used so as to match the frequency characteristics of the piezoelectric element 10 and the bypass filter 11.
そして、増幅器12を介して伝達された出力信号とあら
かじめ実験で求めておいた上述の出力信号に対する評価
値との比較が行なわれるのである。なお、第2図中の符
号3は冷却水通路、5はコンロッドを示す。Then, a comparison is made between the output signal transmitted via the amplifier 12 and the evaluation value for the above-mentioned output signal, which has been determined in advance through experiments. In addition, the reference numeral 3 in FIG. 2 indicates a cooling water passage, and the reference numeral 5 indicates a connecting rod.
本発明の内燃機関のシリンダライナとピストンとの相互
間におけるキャビテーション評価法は、上述のごとく行
なわれるので、内燃機関の作動時のシリンダライナ2と
ピストン1との相互間の隙間6にキャビテーションが発
生すると、その衝撃力により超音波が発生し=シリンダ
ブロック4へ伝わる。The cavitation evaluation method between the cylinder liner and piston of an internal combustion engine according to the present invention is performed as described above, so that cavitation occurs in the gap 6 between the cylinder liner 2 and the piston 1 during operation of the internal combustion engine. Then, ultrasonic waves are generated by the impact force and transmitted to the cylinder block 4.
そして、この超音波はシリンダブロック4内を弾性波と
して伝わり、さらに振動検出体としての圧電素子10に
伝わることになるが、シリンダブロック4に伝わる弾性
波には、機関の燃焼や機関部品の衝突により発生する機
械的振動が含まれている。This ultrasonic wave is transmitted as an elastic wave within the cylinder block 4, and is further transmitted to the piezoelectric element 10 as a vibration detector. Contains mechanical vibrations caused by
しかしながら、キャビテーションから発生する超音波の
現象は衝撃的であるため非常に高い周波数成分まで存在
することになり、一方機械的振動は150〜200K)
IZという低周波域となっている。However, since the ultrasonic phenomenon generated from cavitation is impulsive, it has extremely high frequency components, whereas mechanical vibrations (150-200K)
It has a low frequency range called IZ.
そこで、超音波と機械的振動とを受信する圧電素子10
は、受信した信号をバイパスフィルタ11に出力し、そ
の信号はバイパスフィルタ11により周波数3 Q 0
KHz以下の機械的振動(150〜200KHz)を大
きく減衰されて除かれるのであり、バイパスフィルタ1
1においては、キャビテーションの超音波のみを通過さ
せることになる。Therefore, a piezoelectric element 10 that receives ultrasonic waves and mechanical vibrations
outputs the received signal to the bypass filter 11, and the signal is transmitted to the bypass filter 11 at a frequency of 3 Q 0
Mechanical vibrations below KHz (150 to 200 KHz) are greatly attenuated and removed, and the bypass filter 1
1, only the cavitation ultrasonic waves are allowed to pass through.
このバイパスフィルタ11を通過した信号は、増幅器1
2で増幅されてから、あらかじめ耐久試験を実施してキ
ャビテーションと超音波出力との関係より求めておいた
評価値と比較され、これによシキャビテーシミンの強度
が求められるのである。The signal passing through the bypass filter 11 is sent to the amplifier 1
After being amplified in Step 2, it is compared with an evaluation value determined from the relationship between cavitation and ultrasonic output through a durability test in advance, and the strength of the cavitation simulator is determined from this.
上述のごとき計測系を実際の内燃機関に適用してみると
、第3図において、破線へのグラフは、バイパスフィル
タ11を用いない状態での耐久試験によシキャビテーシ
ョンエローションの発生しなかった状態を計測し、その
結果を周波数分析したもので、周波数が200KH2程
度以下での出力はかなりある力瓢 この場合にはキャビ
テーションが発生していないことがら、この出力は機械
的ノイズでえることがゎがる。When the above-mentioned measurement system was applied to an actual internal combustion engine, the broken line in Figure 3 shows that cavitation erosion did not occur during the durability test without using the bypass filter 11. The state was measured and the results were frequency-analyzed, and the output was quite high at frequencies below about 200KH2.In this case, cavitation did not occur, so this output could be caused by mechanical noise. Wow.
また、実線Bのグラフは、キャビテーションエロージョ
ンが若ギ発生した場合のもので、バイパスフィルタ11
を用りない状態で計測し、周波数分析がなされたもので
ある。In addition, the graph of solid line B is for the case where cavitation erosion occurs at a young age, and the graph of the bypass filter 11
It was measured without using the oscillator, and frequency analysis was performed.
そして、一点鎖線Cのグラフは、上述の実線Bのグラフ
の場合と同一の条件下において、しかも遮断周波数30
.0KHzで且つ減衰特性24db10at +7)バ
イパスフィルタ11を用いた場合のものであシ、二点鎖
線りのグラフは、やはシ上述の実線Bのグラフの場合と
同一の条件下において、遮断周波数300KH2で且つ
減衰特性48 abloctのバイパスフィルタl l
ヲ用Vsだ場合のものである。The graph of the dashed-dotted line C is obtained under the same conditions as the graph of the solid line B above, and at a cut-off frequency of 30.
.. 0KHz and the attenuation characteristic is 24db10at +7) using the bypass filter 11. and a bypass filter with an attenuation characteristic of 48 abloc.
This is for the case of Woyo Vs.
上述のグラフCおよびグラフDにより、減衰特性が24
abloctのグラフCでは、機械的ノイズの大きく
なる周波数200KI(Zでの出力が、周波数300〜
500KH2のキャビテーションによる出力と同レベル
となり、機械的ノイズの影響がかなり入ることがわかる
。また、減衰特性48 abloctのグラフDでは1
周波数200KH2での出力が充分小さくなり、機械的
ノイズの影響が少なくなることがわかる。According to graph C and graph D above, the damping characteristic is 24
In graph C of abloct, the mechanical noise increases at a frequency of 200KI (the output at Z
The output is at the same level as the cavitation output of 500KH2, and it can be seen that the influence of mechanical noise is considerable. Also, in graph D of damping characteristic 48 abloct, 1
It can be seen that the output at a frequency of 200 KH2 is sufficiently small, and the influence of mechanical noise is reduced.
したがって、グラフAの機械的ノイズのレベルが周波数
150KH2では、出力が300 mVあるので、この
出力レベルを115o〜1/100程度下げることにょ
シ、バイパスフィルタ11の遮断周波数を300K)1
2とし、減衰特性を35〜40db10ctとすれば、
グラフAの周波数150 K H2の機械的ノイズの出
力レベルが、周波数300〜500 K H2の出力レ
ベルまで下がること罠なシ、このことからも前述の実験
に信頼性のあることがわかる。Therefore, when the level of mechanical noise in graph A is at a frequency of 150KH2, the output is 300 mV, so it is necessary to lower this output level by about 115o to 1/100, and the cutoff frequency of the bypass filter 11 is set to 300K)1.
2 and the attenuation characteristic is 35-40db10ct,
The output level of the mechanical noise at a frequency of 150 KH2 in graph A decreases to the output level at a frequency of 300 to 500 KH2, which also shows that the above experiment is reliable.
また、バイパスフィルタ11の遮断周波数ヲ機械的ノイ
ズの若干増す250KH2としても、精度が僅かに落ち
る程度であるので、バイパスフィルタ11としては、遮
断周波数が250〜300 K H2以上で且つ減衰特
性が35〜40db10ct以上の特性を有するものを
用いると、極めて効率よくキャビテーションの超音波の
みをとらえることができる。Furthermore, even if the cutoff frequency of the bypass filter 11 is set to 250 KH2, which slightly increases the mechanical noise, the accuracy will only slightly decrease. If a material having a characteristic of ~40 db10 ct or more is used, only the ultrasonic waves of cavitation can be captured extremely efficiently.
すなわち、内燃機関のシリンダブロック4の外壁部4a
に装着した高周波振動検出体としての圧電素子10によ
り、シリンダライナ2とピストン1との相互間の隙間6
のキャビテーションの超音波を検出してバイパスフィル
タ11に送り、このバイパスフィルタ11を通過した圧
電素子lOの出力信号とあらかじめ実験で求めておいた
圧電素子10の出力信号に対する評価値トを比較して、
シリンダライナ2とピストン1との相互間の隙間6にお
けるキャビテーションの強度を求めることができる。That is, the outer wall portion 4a of the cylinder block 4 of the internal combustion engine
The gap 6 between the cylinder liner 2 and the piston 1 is
The cavitation ultrasonic waves are detected and sent to the bypass filter 11, and the output signal of the piezoelectric element 10 that has passed through the bypass filter 11 is compared with the evaluation value T for the output signal of the piezoelectric element 10, which has been determined in advance by experiment. ,
The intensity of cavitation in the gap 6 between the cylinder liner 2 and the piston 1 can be determined.
なお、ハイノぐスフィルタl]として、電気ノイズを除
くための高周波域遮断特性を持たせたバンドパスフィル
タを用いると、上記の評価出力の信頼性をさらに向上さ
せることができる。Note that if a bandpass filter having a high-frequency cutoff characteristic for removing electrical noise is used as the high-noise filter I, the reliability of the evaluation output described above can be further improved.
また、上述の実施例では高周波振動検出体として圧電素
子10が用いられているが5弾性振動を検出する他の手
段として、高周波域唸で使える半導体歪ゲージのような
ものを用いることもできる。Further, in the above embodiment, the piezoelectric element 10 is used as a high frequency vibration detector, but as another means for detecting elastic vibration, it is also possible to use something such as a semiconductor strain gauge that can be used in a high frequency range.
第4〜6図はいずれも本発明のキャビテーション評価法
における高周波振動検出体のシリンダブロックへの装着
例を示す断面図である。4 to 6 are cross-sectional views showing examples of mounting a high-frequency vibration detector on a cylinder block in the cavitation evaluation method of the present invention.
第4図の例では、高周波振動検出体としての圧電素子]
0が、振動伝播部材20を介してシリンダブロック4に
装着されておシ、この例でも、前述の実施例のごとくシ
リンダブロック4に圧電素子10を直接装着した場合と
比べて、はぼ同様の作用効果を得ることができる。In the example shown in Fig. 4, a piezoelectric element is used as a high-frequency vibration detector]
0 is attached to the cylinder block 4 via the vibration propagation member 20. In this example as well, compared to the case where the piezoelectric element 10 is directly attached to the cylinder block 4 as in the previous embodiment, it is almost the same. Effects can be obtained.
また、第5図の例では、圧電素子10を装着しているシ
リンダブロック4の一部が、ゴム等の振動絶縁体30に
よって遮断されることにより振動的に絶縁されるように
なっており、第6図の例では、圧電素子10をケース3
1に収め、そのケース31の側壁とシリンダブロック4
との間に振動絶縁体30を装着して、圧電素子10がシ
リンダブロック4から振動的に絶縁されるようになって
いる。Further, in the example shown in FIG. 5, a part of the cylinder block 4 on which the piezoelectric element 10 is mounted is vibrationally insulated by being blocked by a vibration insulator 30 such as rubber. In the example of FIG. 6, the piezoelectric element 10 is
1, and the side wall of the case 31 and the cylinder block 4
A vibration insulator 30 is installed between the cylinder block 4 and the piezoelectric element 10 so that the piezoelectric element 10 is vibrationally isolated from the cylinder block 4.
第4,5図の例ではキャビテーションからの超音波のう
ち、絶縁されたシリンダブロック4に装着されている圧
電素子10に伝達された超音波あるいはケース31に収
容されている圧電素子10に伝達された超音波のみを検
出することになるため、シリンダブロック4の他の部分
に伝達されたものは検知せず、局部的なキャビテーショ
ンが検知できるようになり、キャビテーションの評価出
力の信頼性をさらに向上させることができる。In the example of FIGS. 4 and 5, among the ultrasonic waves from cavitation, the ultrasonic waves are transmitted to the piezoelectric element 10 mounted on the insulated cylinder block 4, or the ultrasonic waves are transmitted to the piezoelectric element 10 housed in the case 31. Since only the ultrasonic waves transmitted to other parts of the cylinder block 4 are detected, local cavitation can be detected, further improving the reliability of the cavitation evaluation output. can be done.
以上詳述したように本発明の内燃機関のシリンダライナ
とピストンとの相互間におけるキャビテーション評価法
によれば、シリンダブロックの壁部に装着された高周波
振動検出体およびバイパスフィルタを用いて、 内燃機
関のシリンダライナとピストンとの相互間におけるキャ
ビテーションに基づく振動が検知され、上記振動検出体
の出力信号とあらかじめ実験で求めておいた評価値とを
比較することにより、キャビテーションの強度の評価が
可能となるのであり、従来性なわれていた長時間の耐久
試験が不要となって、大幅なコストダウンをもたらすこ
とができ、しかも極めて短時間の作業でキャビテーショ
ンの評価を行なえる利点があり、これによシ内燃機関の
開発が効率よく行なわれるようになるのである。As detailed above, according to the method for evaluating cavitation between a cylinder liner and a piston of an internal combustion engine according to the present invention, a high-frequency vibration detector and a bypass filter mounted on the wall of the cylinder block are used to detect cavitation in an internal combustion engine. Vibration due to cavitation between the cylinder liner and piston was detected, and by comparing the output signal of the vibration detector and the evaluation value determined in advance through experiments, it was possible to evaluate the strength of cavitation. This eliminates the need for long-term durability tests that were conventionally done, resulting in significant cost reductions, and has the advantage of being able to evaluate cavitation in an extremely short amount of time. This will enable the development of internal combustion engines to be carried out more efficiently.
第1図は従来の内燃機関のシリンダおよびピストン部分
を示す縦断面図であり、第2,3図は本発明の実施例と
しての内燃機関のシリンダライナとピストンとの相互間
におけるキャビテーション評価法を示すもので、第2図
はそのシリンダライナとピストンとの相互間におけるキ
ャビテーション評価システムを示す系統図、第3図はそ
の実験例を示すグラフであり、第4〜6図はいずれも本
発明のキャビテーション評価法における高周波振動検出
体のシリンダブロックへの装着例を示す断面図である。
1・・ピストン、2・・シリンダライナ、3・・冷却水
通路% 4・・シリンダブロック、4a・・シリンダブ
ロックの外壁部、5・・コンロッド、6・・シリンダラ
イナとピストンとの相互間の隙間、10・・高周波振動
検出体としての圧電素子、11・・バイパスフィルタ。
12・・増幅器、20・・振動伝播部材、30・・振動
絶縁体、 31・・ケース。
復代理人 弁理士 飯 沼 義 彦
第1図
第2図
第3図
周波&(kH2)−
第4図FIG. 1 is a longitudinal sectional view showing the cylinder and piston portions of a conventional internal combustion engine, and FIGS. 2 and 3 show a method for evaluating cavitation between the cylinder liner and piston of an internal combustion engine as an embodiment of the present invention. Fig. 2 is a system diagram showing a cavitation evaluation system between the cylinder liner and piston, Fig. 3 is a graph showing an experimental example thereof, and Figs. FIG. 3 is a cross-sectional view showing an example of mounting a high-frequency vibration detector on a cylinder block in a cavitation evaluation method. 1... Piston, 2... Cylinder liner, 3... Cooling water passage % 4... Cylinder block, 4a... Outer wall of cylinder block, 5... Connecting rod, 6... Between cylinder liner and piston Gap, 10...Piezoelectric element as a high frequency vibration detector, 11...Bypass filter. 12...Amplifier, 20...Vibration propagation member, 30...Vibration insulator, 31...Case. Sub-Agent Patent Attorney Yoshihiko Iinuma Figure 1 Figure 2 Figure 3 Frequency & (kH2) - Figure 4
Claims (1)
シリンダライナと同シリンダライナ内のピストンとの相
互間に生じるキャビテーションを評価すべく、上記シリ
ンダブロックの壁部に高周波振動検出体を装着し5同高
周波振動検出体の出力信号を、遮断周波数250〜30
0KHz以上で且つ減衰特性35〜40 db10at
以上の特性を有するバイパスフィルタに通して、その低
周波成分を遮断し、上記バイパスフィルタを通過した上
記出力信号を、あらかじめ実験で求めておいた上記出力
信号に対する評価値と比較して、上記キャビテーション
の強度を求めることを特徴とする5内燃機関のシリンダ
ライナとピストンとの相互間におけるキャビテーション
評価法。In an internal combustion engine, in order to evaluate the cavitation that occurs between the cylinder liner installed in the cylinder block and the piston inside the cylinder liner, a high-frequency vibration detector is attached to the wall of the cylinder block. The output signal of the detection object is set to a cutoff frequency of 250 to 30
0KHz or higher and attenuation characteristic 35-40 db10at
The cavitation signal is passed through a bypass filter having the above characteristics to cut off its low frequency components, and the output signal that has passed through the bypass filter is compared with an evaluation value for the output signal determined in advance by an experiment. 5. A cavitation evaluation method between a cylinder liner and a piston of an internal combustion engine, which is characterized by determining the strength of the .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7474583A JPS59198340A (en) | 1983-04-27 | 1983-04-27 | Evaluation of cavitation between cylinder liner and piston of internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7474583A JPS59198340A (en) | 1983-04-27 | 1983-04-27 | Evaluation of cavitation between cylinder liner and piston of internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59198340A true JPS59198340A (en) | 1984-11-10 |
JPH0215809B2 JPH0215809B2 (en) | 1990-04-13 |
Family
ID=13556088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7474583A Granted JPS59198340A (en) | 1983-04-27 | 1983-04-27 | Evaluation of cavitation between cylinder liner and piston of internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59198340A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318253A (en) * | 2018-02-07 | 2018-07-24 | 安徽华菱汽车有限公司 | A kind of the cavitation pitting detection device and method of cylinder jacket |
CN110887756A (en) * | 2019-11-11 | 2020-03-17 | 太原理工大学 | Cylinder sleeve cavitation erosion simulation test and observation device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177905A (en) * | 1974-12-27 | 1976-07-06 | Tokyo Shibaura Electric Co | DENJIHON PUSOCHI |
-
1983
- 1983-04-27 JP JP7474583A patent/JPS59198340A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5177905A (en) * | 1974-12-27 | 1976-07-06 | Tokyo Shibaura Electric Co | DENJIHON PUSOCHI |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108318253A (en) * | 2018-02-07 | 2018-07-24 | 安徽华菱汽车有限公司 | A kind of the cavitation pitting detection device and method of cylinder jacket |
CN110887756A (en) * | 2019-11-11 | 2020-03-17 | 太原理工大学 | Cylinder sleeve cavitation erosion simulation test and observation device |
Also Published As
Publication number | Publication date |
---|---|
JPH0215809B2 (en) | 1990-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Prosser et al. | Time-frequency analysis of the dispersion of Lamb modes | |
US5408880A (en) | Ultrasonic differential measurement | |
CN110702150A (en) | Optimized sweep frequency excitation method for vibrating wire collector | |
US5088327A (en) | Phase cancellation enhancement of ultrasonic evaluation of metal-to-elastomer bonding | |
US5742232A (en) | Glass breaking detection device | |
JPH02183190A (en) | Jamming signal checking method and apparatus for ultrasonic proximity initiator | |
JP4577957B2 (en) | Tunnel diagnostic equipment | |
JPS59198340A (en) | Evaluation of cavitation between cylinder liner and piston of internal combustion engine | |
CN109001300A (en) | A kind of sound arrester being suitable for impact echo audio frequency detection | |
KR100553570B1 (en) | Method for non-destructive testing of concrete structure | |
JP2002055089A (en) | Apparatus and method for diagnosing of tunnel | |
JPH09133732A (en) | Abnormal vibration monitor device for electric equipment | |
CN1402014A (en) | Ultrasonic reflection detecting device and mehtod for diagnosis of insulation state of stator for large electric generator | |
CN114200016B (en) | Double-channel nondestructive testing method and related equipment for rock anchor rod | |
US6155116A (en) | Acoustic treatment performance testing | |
US9228981B2 (en) | Resonance inspection-based surface defect system/method | |
BG99112A (en) | Method and instrument for establishing faulty fuel stems by using acoustic energy frequency attenuation | |
RU2290634C1 (en) | Method for acoustic-emission control and diagnostics of reservoirs for storage of liquefied gas | |
KR100380063B1 (en) | Method for detecting combustion noise and mechanical noise in engine | |
EP3543688A1 (en) | Inspection method | |
Beltle et al. | Investigations of in-oil methods for PD detection and vibration measurement | |
JP5497448B2 (en) | Method for enhancing interference protection in ultrasonic testing and apparatus for carrying out this method | |
RU2797126C1 (en) | Device for concrete strength measurement | |
SU1109591A1 (en) | Method of determination of internal combustion engine piston position | |
KR940002703B1 (en) | Failed fuel rod detection using the acoustic resonance phenomenon |