JPS5919786A - Fluid flow rate control valve - Google Patents

Fluid flow rate control valve

Info

Publication number
JPS5919786A
JPS5919786A JP12736382A JP12736382A JPS5919786A JP S5919786 A JPS5919786 A JP S5919786A JP 12736382 A JP12736382 A JP 12736382A JP 12736382 A JP12736382 A JP 12736382A JP S5919786 A JPS5919786 A JP S5919786A
Authority
JP
Japan
Prior art keywords
valve
pressure
chambers
control valve
valve element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12736382A
Other languages
Japanese (ja)
Inventor
Akira Furukawa
晃 古川
Tetsuji Suzuki
鈴木 哲二
Yoshiaki Kondo
近藤 義昭
Hibiki Hattori
響 服部
Kazuhiro Sakurai
桜井 計宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP12736382A priority Critical patent/JPS5919786A/en
Publication of JPS5919786A publication Critical patent/JPS5919786A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0682Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with an articulated or pivot armature

Abstract

PURPOSE:To enable to drive a fluid flow rate control valve with small driving force irrespective of the pressure difference on the opposite sides of the control valve and to make it unnecessary to provide a pressure cancelling mechanism, by dividing a work chamber into four valve chambers by a rotatable valve element, and communicating two pairs of opposite chambers with each other via respective pressure-equalizing passages. CONSTITUTION:A fluid flow rate control valve of this invention is controlled through rotation of a valve element 5 to shift its position continuously from the state that an inlet port 13 and an outlet port 14 are both communicated with one valve chamber 12a to the state that a valve chamber 12d communicated with the inlet port 13 and the valve chamber 12a communicated with the outlet port 14 are isolated from each other. In such a control valve, a first pressure-equalizing passage 13a is formed in the valve element 5 to communicate two chambers 12a, 12b located on the opposite sides of the valve element 5 with each other and to thereby making the pressures in these two chambers equal to each other. Thus, the forces acted to the valve element 5 is balanced. Similarly, a second pressure-equalizing passage 13b is formed in the valve element 5 to equalize the pressures in pressure chambers 12c and 12d and to thereby balance the forces acted to the valve element 5.

Description

【発明の詳細な説明】 本発明は、流体の流量を連続的に制御する流体流量制御
弁に関し、例えばエンジンの吸入空気量を制御する為に
用いて有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluid flow control valve that continuously controls the flow rate of fluid, and is effective when used, for example, to control the intake air amount of an engine.

この種の制御弁は、流体流路面積を連続的に可変乃至遮
断するものであるため、制御弁の−に流と下流とに圧力
差があるときは、その圧力に逆って弁体を駆動しなけれ
ばならない。そのため、従来の制御弁では、この圧力差
に打ぢ勝つだけの大きな駆動力が必要とされていた。ま
た、小さな駆動力で弁体を駆動しようとすれば制御弁前
後の圧力を均圧させるための特別の圧力キャンセル機構
が必要となり、いずれにせよ制御弁の大型化、価格上昇
を招いていた。
This type of control valve continuously varies or shuts off the fluid flow area, so when there is a pressure difference between the flow and the downstream of the control valve, the valve body is moved against that pressure. Must be driven. Therefore, conventional control valves require a large driving force to overcome this pressure difference. Furthermore, if a valve body is to be driven with a small driving force, a special pressure canceling mechanism is required to equalize the pressure before and after the control valve, which in any case leads to an increase in the size and price of the control valve.

本発明は、上記点に鑑みて案出されたもので、制御弁前
後の圧力差に係わらず、小さな駆動力で良好に弁体の駆
動ができるようにすること、及びそのために特別な圧力
キャンセル機構を制御弁とは別に設ける必要をなくすこ
とを目的とする。
The present invention was devised in view of the above points, and it is an object of the present invention to enable a valve body to be driven satisfactorily with a small driving force regardless of the pressure difference before and after the control valve, and to achieve this by special pressure cancellation. The purpose is to eliminate the need to provide a mechanism separately from the control valve.

この目的達成のため、本発明は弁体が作動室内を回転す
ることにより流体流量の制御を行なうようにし、かつ、
作動室内を弁体により4つの弁室に区画成形して、4つ
の弁室のうぢ相対抗する弁室を均圧通餡で連通ずるとい
う構成を採用する。
To achieve this objective, the present invention controls the fluid flow rate by rotating the valve body within the working chamber, and
A configuration is adopted in which the working chamber is divided into four valve chambers by a valve body, and the four valve chambers, which are opposed to each other, are communicated by pressure equalization.

それゆえ 本発明では弁体を挾んで相対向する弁室の内
圧が略等しくなり、弁体の回転を阻害する圧力成分の影
響が小さくなり、従って、小さな駆動力で弁体を良好に
回転駆動することができる。
Therefore, in the present invention, the internal pressures of the valve chambers that sandwich the valve body and face each other are approximately equal, and the influence of the pressure component that inhibits the rotation of the valve body is reduced. Therefore, the valve body can be rotated well with a small driving force. can do.

以下本発明の一実施例を図に基づいて説1す1する。An embodiment of the present invention will be explained below based on the drawings.

第1図は流量制御弁ZOを示す断面図で、図中7は磁性
体からなる円筒状のヨークである。このヨーク7の周囲
にはコイル2をS線形成し、また、コーク7内周には、
径方向に極を持つ円柱形の永久磁石6が配設されている
。そしてこれらを包む様に鉄材等の磁性材料からなるケ
ース1が配設され、従ってケースにより閉磁路を形成し
、この閉磁路により永久磁石6を回転駆り」する駆動部
が形成される。尚、永久磁石6はシャフト10に圧入さ
れ、かつ、シャフト10はロータリー弁体5に溶接等で
一体に取付けられている。そして、シャフト10はハウ
ジング9に打込み等で挿入された軸受8を介して回転自
在に支持されている。従って、弁体5は永久磁石6の回
転と共にハウジング9の作動室12内を回転することに
なる。
FIG. 1 is a sectional view showing the flow rate control valve ZO, and 7 in the figure is a cylindrical yoke made of a magnetic material. The coil 2 is formed into an S wire around the yoke 7, and the inner circumference of the coke 7 is
A cylindrical permanent magnet 6 having poles in the radial direction is disposed. A case 1 made of a magnetic material such as iron is disposed so as to enclose them, and thus a closed magnetic path is formed by the case, and a drive section is formed that rotates the permanent magnet 6 by this closed magnetic path. The permanent magnet 6 is press-fitted into the shaft 10, and the shaft 10 is integrally attached to the rotary valve body 5 by welding or the like. The shaft 10 is rotatably supported via a bearing 8 inserted into the housing 9 by driving or the like. Therefore, the valve body 5 rotates within the working chamber 12 of the housing 9 together with the rotation of the permanent magnet 6.

弁体5はff12図の如く4木の突部5a、5b。The valve body 5 has four wooden protrusions 5a and 5b as shown in Figure ff12.

5c、5dが作動室12内面を摺接し、それゆえ、作動
室12内は弁体5により4つの弁室12a。
5c and 5d are in sliding contact with the inner surface of the working chamber 12, therefore, the inside of the working chamber 12 has four valve chambers 12a formed by the valve body 5.

12b、12c、12dに区画形成される。そして、弁
体5の回転−により1つの弁室12aにインレットボー
ト13とアウトレットボ−トが同時に開口する状態から
、インレットボー1・13が開口する弁室12dとアウ
トレットボート14が開口する弁室12aが遮断される
状態まで連続的に制御される。それゆえ、弁体5の回転
に応じて流路面積は連続的に制御されることになる。
It is divided into sections 12b, 12c, and 12d. Then, due to the rotation of the valve body 5, the inlet boat 13 and the outlet boat are simultaneously opened in one valve chamber 12a, and the valve chamber 12d, in which the inlet boats 1 and 13 are opened, and the valve chamber, in which the outlet boat 14 is opened, is changed. 12a is continuously controlled until it is shut off. Therefore, the flow path area is continuously controlled according to the rotation of the valve body 5.

尚、n11記ケース1とハウジング9とはネジ等で固定
される。また、永久磁石の回転制御は、I・ーシロンバ
ー4の一端部を、シャフト10、駆動部に取付られたホ
ルダ3に蚊め等で固定し、他端をシャフト10に固定す
ることにより、コイル2、永久磁石6の磁力比に応じて
トーシジンバ−4がねじられ、回転角度が制御出来る。
Note that the case 1 and the housing 9 are fixed with screws or the like. Further, the rotation of the permanent magnet can be controlled by fixing one end of the I-shiron bar 4 to the shaft 10 and the holder 3 attached to the drive part with a mosquito net, and fixing the other end to the shaft 10, thereby controlling the coil 2. The toshi zimbar 4 is twisted according to the magnetic force ratio of the permanent magnet 6, and the rotation angle can be controlled.

13a,13bは、インレットボート13、アウトレッ
トボート14間の差圧の影響をう(プにくぐする為の均
圧通路である。即ち、第1均圧通路13aは弁体5を挾
んで相対する2つの弁室12a−12b、の圧力を同等
とし、弁体5にかかる影響をバランスさせる。第2均圧
通路13bも上記と同様で、圧力室12c,12dをバ
ランスさ一U、弁体5にかかる影響を少なくさ一已る。
13a and 13b are pressure equalizing passages for passing through the influence of the differential pressure between the inlet boat 13 and the outlet boat 14. That is, the first pressure equalizing passage 13a faces each other with the valve body 5 in between. The pressures in the two valve chambers 12a and 12b are made equal, and the influence on the valve body 5 is balanced.The second pressure equalizing passage 13b is also the same as above, and the pressure chambers 12c and 12d are balanced. Reduce the impact on

第3図は、上記流体流量制御弁を駆動さゼる駆動回路を
示す。
FIG. 3 shows a drive circuit for driving the fluid flow control valve.

演箕JI!幅器AトコンデンサCI−第1〜第4抵抗R
 + R 2 R 3 R 4で、ランプ波形を0点に
得る。このランプ波形の波形特性は第4図図示の如くで
ある。そして、波形形状は、第1〜第3の抵抗R,.R
2.R3により決まり、また波形周波数は、第4の抵抗
R4により決まる。そこで、このランプ波形と、後述す
る電気制御ユニットl 2 0からのアナログ電圧とを
入力端子Cに人力したものを電圧比較器Δ2によって比
較し、コイル八を駆動する信号電圧を0点に得る。この
信号電圧で駆動用トランジスタQ + Q 2を制御し
、駆動トランジスタQ2よりコイル八を駆動する電流が
出力される。尚、0点の電圧特性は、第5図に示す。
Enki JI! Capacitor CI - 1st to 4th resistor R
+ R 2 R 3 R 4 to obtain the ramp waveform at 0 point. The waveform characteristics of this ramp waveform are as shown in FIG. The waveform shape is determined by the first to third resistors R, . R
2. The waveform frequency is determined by the fourth resistor R4. Therefore, the voltage comparator Δ2 compares this ramp waveform with an analog voltage from an electric control unit l 2 0, which will be described later, which is manually applied to the input terminal C, to obtain the signal voltage for driving the coil 8 at the 0 point. This signal voltage controls the driving transistor Q + Q 2, and a current for driving the coil 8 is output from the driving transistor Q2. Incidentally, the voltage characteristics at the 0 point are shown in FIG.

即ち、第4図において、制御ユニット120がらのアナ
ログ電圧が一点鎖線、実線、破線の如く変化すれば、α
電圧コンパレータA2で比較しテ+1られる0点電圧も
一点鎖線、実線、破線の如く変化する。
That is, in FIG. 4, if the analog voltage from the control unit 120 changes as indicated by the dashed line, solid line, and broken line, then α
The 0 point voltage, which is compared by the voltage comparator A2 and obtained by +1, also changes as shown by the dashed line, solid line, and broken line.

第6図は上記制御弁を使用するアイドル回転速度制御装
置の概略を示すシステム図である。
FIG. 6 is a system diagram schematically showing an idle rotation speed control device using the above control valve.

この第6図において、エンジン110は、自動車用の公
知の4サイクル火花点火エンジンで、エンジン負荷とし
ての車両用空調機用の冷媒圧縮機126と自動変速機と
を装備した場合のものである。このエンジン110はエ
アクリーナ111、エアフロメータ112、吸気管11
3、サージタンク114、各邪気分岐管115を経て空
気を吸入し、燃料、例えばガソリンは各吸気分岐管11
5に設けられた電磁燃料噴A・I弁116がら噴射供給
される。
In FIG. 6, an engine 110 is a known four-cycle spark ignition engine for automobiles, and is equipped with a refrigerant compressor 126 for a vehicle air conditioner as an engine load and an automatic transmission. This engine 110 includes an air cleaner 111, an air flow meter 112, an intake pipe 11
3. Air is inhaled through the surge tank 114 and each evil air branch pipe 115, and fuel, such as gasoline, is inhaled through each intake branch pipe 11.
The fuel is injected and supplied from the electromagnetic fuel injection A/I valve 116 provided at 5.

エンジン110の主吸入空気量は、任意に1M作される
スロットル弁117によって調整され、−メ、I′燃料
■バ射量は、電子+1.l制御ユニノl−+ 20によ
つこ調整される。電子制御ユニ・ノド120は、点火装
置、のディストリビュータ内に内蔵される回転速度セン
サ118によって測定されるエンジン回転速度と、エア
フロメータ112によつ−C測定される吸入空気量とを
長本パラメータとして燃料噴射量を公知の手法にて決定
するもので、他に冷却水温を検出する温水センサを用い
た暖機センサ119等からのイバ号によっても公知の如
く燃料噴射量の増減を行う。
The main intake air amount of the engine 110 is adjusted by a throttle valve 117 which is arbitrarily made 1M, and the amount of fuel radiation is +1. It is regulated by the l control unit l-+ 20. The electronic control unit 120 uses the engine rotational speed measured by the rotational speed sensor 118 built in the distributor of the ignition system and the intake air amount measured by the airflow meter 112 as parameters. The fuel injection amount is determined by a known method, and the fuel injection amount is also increased or decreased by a signal from a warm-up sensor 119 using a hot water sensor that detects the cooling water temperature.

バイパス通路である空気導管L21.,122はスロ7
 トル弁117をバイパスするように設りられ、両導管
121 1220間には第1図図示の流体流量制御弁2
0が設けられている。即ち、導’Iff 121は一端
が、スロットル弁117とエアフロメータ112の間に
設けられた空気導入口123に接続され、他端が前記イ
ンレ・7トボート接続される。一方、導管122は一端
がスロットル弁117の下流部に設けられた空気導出口
124に接続され、他端が前記アウトし・ノドボート1
4に接続される。
Air conduit L21. which is a bypass passage. , 122 is slot 7
The fluid flow control valve 2 shown in FIG.
0 is set. That is, one end of the lead 'Iff 121 is connected to an air inlet 123 provided between the throttle valve 117 and the air flow meter 112, and the other end is connected to the inlet port 123. On the other hand, one end of the conduit 122 is connected to an air outlet 124 provided downstream of the throttle valve 117, and the other end is connected to the air outlet 124 provided downstream of the throttle valve 117.
Connected to 4.

次に、」二記構成制御ブ「の作動を説明する。Next, the operation of the configuration control block 2 will be explained.

第6図に示す如くエンジンの吸入空気量を制i:lnす
るために使用された場合、制御弁20はエンジン110
0通席の吸入通路におけるスロットル弁117をバイパ
スする形態で装着され、インレットボート 弁117の上流に、またアウトレット 122を介しー(7. tlソトル弁117の下流にそ
れぞれ接続される。この結果、制御弁20はスロットル
弁117をバイパスする吸入空気、(又は混合気)流量
を制御することになる。即ち、第3図の0点に得られる
ランプ波形と、電子制御ユニット1 2 0から印加さ
れるアナログ電圧とを、電圧比較器A2に人力すると、
電圧比LP9.器Δ?が比較しC、0点電圧が得られ、
この0点電圧が第5図の如くとなり、これを駆動!・ラ
ンジスタθI,θ2に印加し、駆動用1ランジスタθ1
よりコイル2に逓伝される。
When used to control the intake air amount i:ln of the engine as shown in FIG.
It is installed in a form that bypasses the throttle valve 117 in the intake passage of the 0-way seat, and is connected upstream of the inlet boat valve 117 and downstream of the sottle valve 117 via the outlet 122. As a result, The control valve 20 controls the flow rate of the intake air (or mixture) that bypasses the throttle valve 117. That is, the ramp waveform obtained at the 0 point in FIG. When the analog voltage is manually applied to voltage comparator A2,
Voltage ratio LP9. Vessel Δ? Compare C, 0 point voltage is obtained,
This zero-point voltage becomes as shown in Figure 5, which drives it!・Apply to transistors θI and θ2, and drive transistor θ1
is transmitted to coil 2.

コイル2はヨーク7に円柱形の永久磁石6を包も様にし
て配設されている為、磁界はほぼ]1行となり、平行磁
界中に置かれた永久磁石6には磁気モーメントが与えら
れる。そのため、永久磁石6とこの磁石6と1体に取付
られたシャフト10、弁体5には回転駆動力が与えられ
る。この回転駆動力はホルダ3と、シャフト10が両端
を固定されたI・−シロンバー4を反時計方向にねじり
、このねしり力と上記回転力とがつりあう回転角でとま
る。
Since the coil 2 has cylindrical permanent magnets 6 arranged around the yoke 7, the magnetic field is approximately one line, and a magnetic moment is given to the permanent magnets 6 placed in a parallel magnetic field. . Therefore, a rotational driving force is applied to the permanent magnet 6, the shaft 10 and the valve body 5 which are integrally attached to the magnet 6. This rotational driving force twists the holder 3 and the I-silon bar 4, both ends of which are fixed to the shaft 10, in a counterclockwise direction, and stops at a rotation angle where this twisting force and the rotational force are balanced.

特に本構成制御弁は弁室12a.12bは第1均圧if
fllfR 1 3 aで導通し、弁室12c,12d
は第2均圧通[jδ13bが導通さ一Uて、相対する弁
室内圧力をバランスさー已°ζいる為、インレットボー
ト5に与える影響は非常に小さくなる。そのため、たと
え高負圧時であっても、上記回転力にはほとんど影響を
及ぼさない。ゆえに、流体流量制御弁20の開度は電子
制御ユニット120から印加されるアナログ電圧に応じ
て反時δ1方向に回り、全開から閉弁状態に確実に変化
さゼることができる。
In particular, the control valve of this configuration has a valve chamber 12a. 12b is the first equalization pressure if
conduction through fllfR 1 3 a, valve chambers 12c, 12d
Since the second pressure equalizing communication [jδ13b is conducted and balances the opposing pressures in the valve chambers, the influence on the inlet boat 5 is extremely small. Therefore, even under high negative pressure, the rotational force is hardly affected. Therefore, the opening degree of the fluid flow control valve 20 rotates counterclockwise in the δ1 direction in response to the analog voltage applied from the electronic control unit 120, and can reliably change from a fully open state to a closed state.

従って、エンジン110の運転状態を電子制御ユニット
1 2 0がfd箕し、機関が最も良い状態になる様、
アナログ電圧を可変させればその信すに応じて確実に流
体流量制御弁20でコントロールすることが出来る。
Therefore, the electronic control unit 120 adjusts the operating condition of the engine 110 so that the engine is in the best condition.
By varying the analog voltage, it is possible to reliably control the fluid flow rate control valve 20 according to the signal.

尚、上述の例では本発明に係る制御弁20をエンジン1
10の吸入空気流量制御に用いたが、本発明制御弁20
の用途はこの一例に限定されるべきでないことは勿論で
、流路面積を可変して流量を制御する弁として広く使用
可能である。
Note that in the above example, the control valve 20 according to the present invention is installed in the engine 1.
The control valve of the present invention was used to control the intake air flow rate of No. 10, but the control valve of the present invention
Needless to say, the use of the valve should not be limited to this example, and can be widely used as a valve that controls the flow rate by varying the flow path area.

また、上述の例では弁体5をコイル2の磁力と1−一シ
eンパー4のねじり力との均合で回転制御したが、弁体
の回転駆動力にステッピングモータ等、他の動力を使用
してもよい。
Furthermore, in the above example, the rotation of the valve body 5 was controlled by the balance between the magnetic force of the coil 2 and the torsional force of the 1-1 symper 4, but other power sources such as a stepping motor or the like may be used to drive the rotation of the valve body. May be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明制御弁の一実施例を示す断面図、第2図
はm1図のII − II矢視断面図、第3図は第1図
図示制御弁の制御回路を示す回路図、第4図は第3図図
示回路のライブ波形を示す説明図、第5図は第3図図示
回路の信号電圧を示す説明図、第6図は第1図図示制御
弁の使用例を示す構成図である。 5・・・弁体、9・・・ハウジング、12・・・作動室
、12a、12b、12c、12d−−・弁室、13−
・・インレットボート、14・・・アウトレットボート
13a.13b・・・均圧通路。 代理人弁理士 岡 部   隆
FIG. 1 is a sectional view showing an embodiment of the control valve of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a circuit diagram showing the control circuit of the control valve shown in FIG. FIG. 4 is an explanatory diagram showing live waveforms of the circuit shown in FIG. 3, FIG. 5 is an explanatory diagram showing signal voltages of the circuit shown in FIG. 3, and FIG. 6 is a configuration showing an example of use of the control valve shown in FIG. 1. It is a diagram. 5...Valve body, 9...Housing, 12...Working chamber, 12a, 12b, 12c, 12d--Valve chamber, 13-
...Inlet boat, 14...Outlet boat 13a. 13b... pressure equalization passage. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 内面円筒状の作動室を有するハウジングと、前記作動室
へ流体を導くインレットボー1−と、前記作動室より流
体を導出するアウトレットボートと、前記作動室内に回
転自在に配設され前記作動室内を4つの弁室に区画する
弁体と、この弁体に設けられ前記4つの弁室のうち相対
向する弁室間を連通ずる均圧通路とを備え、前記弁体の
回転により、−の弁室に前記インレットボート及び前記
アラI・レットボートの両方が開口する状態から前記イ
ンレットボート及び前記アウトレットボートが夫々別の
弁室に開口する状態まで制御される流体流量制御弁。
a housing having a cylindrical inner surface working chamber; an inlet boat 1 for guiding fluid into the working chamber; an outlet boat leading fluid out from the working chamber; The valve body is provided with a valve body that divides into four valve chambers, and a pressure equalizing passage that is provided in the valve body and communicates between opposing valve chambers among the four valve chambers. A fluid flow rate control valve that is controlled from a state in which both the inlet boat and the arbor boat open to a chamber to a state in which the inlet boat and the outlet boat each open to separate valve chambers.
JP12736382A 1982-07-21 1982-07-21 Fluid flow rate control valve Pending JPS5919786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12736382A JPS5919786A (en) 1982-07-21 1982-07-21 Fluid flow rate control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12736382A JPS5919786A (en) 1982-07-21 1982-07-21 Fluid flow rate control valve

Publications (1)

Publication Number Publication Date
JPS5919786A true JPS5919786A (en) 1984-02-01

Family

ID=14958103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12736382A Pending JPS5919786A (en) 1982-07-21 1982-07-21 Fluid flow rate control valve

Country Status (1)

Country Link
JP (1) JPS5919786A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838655A (en) * 1981-09-02 1983-03-07 Fuji Kogyosho:Kk Production of rolling roll for bar steel
JPS6160256A (en) * 1984-08-30 1986-03-27 Hitachi Metals Ltd Building-up method by tinkering
JPS62127156A (en) * 1985-11-26 1987-06-09 Hitachi Metals Ltd Tinkering building up method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838655A (en) * 1981-09-02 1983-03-07 Fuji Kogyosho:Kk Production of rolling roll for bar steel
JPH0117789B2 (en) * 1981-09-02 1989-04-03 Fuji Kogyosho Kk
JPS6160256A (en) * 1984-08-30 1986-03-27 Hitachi Metals Ltd Building-up method by tinkering
JPH0235628B2 (en) * 1984-08-30 1990-08-13 Hitachi Metals Ltd
JPS62127156A (en) * 1985-11-26 1987-06-09 Hitachi Metals Ltd Tinkering building up method

Similar Documents

Publication Publication Date Title
CA1303442C (en) Throttle assembly
GB2128295A (en) Flow control valve
JP2766026B2 (en) Control device with slot unit
US5065718A (en) Engine idle control valve
JPS5751934A (en) Idling revolution speed controller in internal combustion engine
JPH0243011B2 (en)
JPS5919786A (en) Fluid flow rate control valve
JP2002317658A (en) Throttle apparatus for internal combustion engine
JPS5919785A (en) Fluid flow rate control valve
JPH02503585A (en) Device for controlling at least one throttle cross section in at least one control port
US4476828A (en) Method and apparatus for controlling the idling speed of an engine
JP2555571B2 (en) Rotary Solenoid Actuator
JP3745434B2 (en) Engine intake air amount control device
JPS59196936A (en) Fuel controlling apparatus
JPS6244090B2 (en)
JPS57134089A (en) Flow control valve
US1493281A (en) Engine governor
JP3677910B2 (en) solenoid valve
JPS5837382A (en) Flow rate control valve
KR950011688B1 (en) Air intake apparatus
JPS61278674A (en) Motor operated
JPH01247728A (en) Control device for idling revolution number of internal combustion engine
KR100222521B1 (en) Intake system and its control method for internal combustion engines
JPH07279776A (en) Internal combustion engine exhaust gas reflux control device
JP2899596B2 (en) Engine intake control method