JP3745434B2 - Engine intake air amount control device - Google Patents

Engine intake air amount control device Download PDF

Info

Publication number
JP3745434B2
JP3745434B2 JP01944896A JP1944896A JP3745434B2 JP 3745434 B2 JP3745434 B2 JP 3745434B2 JP 01944896 A JP01944896 A JP 01944896A JP 1944896 A JP1944896 A JP 1944896A JP 3745434 B2 JP3745434 B2 JP 3745434B2
Authority
JP
Japan
Prior art keywords
peripheral surface
valve body
valve
air
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01944896A
Other languages
Japanese (ja)
Other versions
JPH09195897A (en
Inventor
征洋 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikki Co Ltd
Original Assignee
Nikki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Co Ltd filed Critical Nikki Co Ltd
Priority to JP01944896A priority Critical patent/JP3745434B2/en
Publication of JPH09195897A publication Critical patent/JPH09195897A/en
Application granted granted Critical
Publication of JP3745434B2 publication Critical patent/JP3745434B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自動車エンジンのアイドリング時における回転速度を所要の速度に維持させるための吸入空気量制御装置に関するものである。
【0002】
【従来の技術】
冬期にエンジンを冷たい状態で始動させたとき潤滑油が高粘度であるために暖気運転中に発生する機械的負荷、或いは冬期の暖房装置作動状態や夏期の冷房装置作動状態または換気装置作動状態でアイドリングを行っているときにこれらの機器がエンジンに与える電気的負荷に打ち勝つため、エンジンのアイドリング速度を通常よりも高くする必要がある。
【0003】
そのために、エンジンの吸気通路に絞り弁の上流側と下流側とを短絡させるバイパスを設け、このバイパスにエンジン温度や機器作動状況に応じて開閉動作する調整弁を設置して絞り弁をアイドル位置に置いたままでバイパスを流れる空気によってアイドリング速度を高くさせることが行われている(特開昭51−2834号公報参照)。
【0004】
前記特開昭51−2834号公報にはアイドリング時の吸入空気量制御手段の一つとして、ステッピングモータまたはDCモータからなる電気的サーボ機構によってバイパスに設置した調整弁の弁体を回転させ、弁体に設けた空気通路とバイパスとの重なり度合い、即ち弁体の回転位置を制御することによってバイパス空気流量を計量する、という手段が示されている。
【0005】
一方、ブローバイガス処理装置や排気還流装置を具えているエンジン系においては、これらによって吸気通路を流れる空気に油分、カーボンなどの不純物が混入する。また、燃料としてLPGのような気体燃料を使用するエンジン系においては、燃料に含有されているタール分などの不純物が吸入通路を流れる空気に混入する。
【0006】
不純物混入の空気がバイパスを流れて調整弁を通過するとき、弁体の表面に不純物が付着するのを避けることができない。そして、付着不純物はエンジンが長時間停止した場合、その間に硬化して弁体と弁室との円周方向隙間に入った不純物が弁体を固着させて次のエンジン運転時における作動を妨げる原因となる。
【0007】
【発明が解決しようとする課題】
回転形の調整弁が付着不純物硬化により作動を妨げられる現象をなくすための手段として、弁体外側周面にフッ素樹脂層など不純物が付着しにくい付着防止層を設けることが提案されたが、弁体と弁室との円周方向隙間の寸法公差管理が困難であって、実用に供するには問題がある。そこで、弁体に付着した不純物が弁室にも付着することがないように円周方向隙間を大きくすることが提案されたが、この隙間を通って無視できない量の空気が流れ、バイパス空気流量を狂わせてエンジンのアイドリング速度を適正に維持させることができないという不都合を伴う。
【0008】
本発明は回転形の調整弁において避けることのできない不純物の付着による弁体の固着を調整弁の機能を損なうことなく防止する適切な対策がなかった、という点の解決を計ったものであり、エンジンが長時間停止している間に付着不純物が弁体を固着して作動を防げることがなく、且つ作動時の空気漏れが少なく吸入空気量を適正に制御することができる装置とすることを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明は弁体の空気通路と同じ円上に少なくとも一つの肉抜き溝を外側周面へ開放させて設けるとともに弁室内側周面の前記と同じ円上に複数の逃し溝を円周方向隙間を与えて設けた。そして、バイパス空気流量を制御する作動時に弁体を空気通路と肉抜き溝との間の外側周面部の少なくとも一部が弁室の逃し溝の間の内側周面部と重なった状態で全閉位置と全開位置との間で回転させるようにし、これによって弁体と弁室との隙間を通る空気漏れ量を微量にとどめて空気通路とバイパスとの重なり度合いに応じて計量される所定量の空気をエンジンに供給することができる。また、電気的サーボ機構に通電されない不作動時に弁体を外側周面部が内側周面部と重なることなく逃がし溝と向かい合う位置に停止させるようにし、これによって不純物が付着している弁体表面は弁室内側から大きく離れた状態となり硬化しても固着して作動を妨げるということがなくなる。
【0010】
【発明の実施の形態】
図面を参照して本発明の実施の形態を説明すると、図1,図2においてエンジンの吸気系に設置されるスロットルボディ1の吸気通路2を開閉する絞り弁3の側方に調整弁5のハウジング6がシール材7を挟み込んで取り付けねじ8により気密に固定されている。
【0011】
ハウジング6は一端が閉塞されもう一端が開放された端面円形の弁室9を有しており、短円柱状の弁体10およびその両端に突出した弁軸11,12に嵌装した軸受13,14が弁室9に開放端から嵌込まれ、弁体10が軸受13,14によりハウジング6に回転可能に支持されて弁室9に内装されている。
【0012】
弁体10は円周方向約120度乃至130度の範囲に亘って中央部外側周面に開放したくぼみからなる空気通路15を有しているとともに、中心軸線を挟んで反対側に円周方向約90度の範囲に亘って中央部外側周面に開放したくぼみからなる肉抜き溝16が設けられている。
【0013】
また、絞り弁3が閉弁位置に置かれている状態で吸気通路2の上流側と下流側とを短絡するバイパス18がスロットルボディ2とハウジング6とに形成され、その入り口側である上流通路部19と出口側である下流通路部20とは互いに直角の位置で弁体10の外側周面に向かって弁室9に開口している。図示の形態では、下流通路部20は中心線を弁体10の中心軸線を通る線X−X上に位置させて弁室9に開口し、上流通路部19は中心線を弁体10の中心軸線を通る前記と直角の線Y−Yよりも下流通路部20の方へ偏位させて弁室9に開口している。更に、空気通路15は全開時に空気がなめらかに方向を変えて通過するように底面15aを円弧形としている。
【0014】
前記の弁室9の内側周面と弁体10の外側周面とは寸法公差に基く最小限の隙間を有しており、空気通路15および肉抜き溝16の幅は上流通路部19および下流通路部20の幅とほぼ同一寸法とされている。
【0015】
前記の弁室9の内側周面には、前記の線Y−Yを中心としてそれより両側方へ延び円周方向約120度の範囲に亘る浅いくぼみからなる二つの逃し溝22,23が設けられ、その一方の逃し溝22は端部が上流通路部19に連通している。また、これらの逃し溝22,23は前記の線X−Xを挟んでほぼ対称に形成されており、空気通路15および肉抜き溝16よりも僅かに大きい幅を有している。
【0016】
一方、ステッピングモータ、DCモータまたはソレノイドからなる電気的サーボ機構27がハウジング6の弁室開放端に固定されており、弁軸12を駆動して図3(A)に示す全閉位置と図3(C)に示す全開位置との間で弁体10を往復回転させ、空気通路15と下流通路部20との重なり度合いによってバイパス空気流量を制御するものである。
【0017】
全閉位置において、弁体10の空気通路15と肉抜き溝16との間の外側周面部25a,25bは弁室9の逃し溝22,23が設けられていない内側周面部24a,24bと最小限の隙間を有して重なり合っており、上流通路部19から下流通路部20へのこれらの隙間を通る空気の漏れは微量にとどまる。全閉位置から弁体10が図3で反時計方向へ回転し図1,図2および図3(B)に示す半開位置を経て全開位置に至る間、弁体10の二つの外側周面部25a,25bは弁室9の二つの内側周面部24a,24bと常に少なくとも一部で重なり合っており、外側周面を回って漏れる空気を微量にとどめながら空気通路15と下流通路部20との重なり度合いに応じた所定量の空気をエンジンに供給する。
【0018】
エンジンを停止して電気的サーボ機構27の電源を切ったとき、弁体10はどの位置に置かれていても図3で反時計方向へ回転し、図3(D)に示すように外側周面部25a,25bが逃し溝22,23と向かい合う位置に停止させられる。この停止位置への回転は弁軸12とハウジング6とに両端を係止したねじりコイルばねからなる戻し手段28によって行われ、且つ図示しないストッパによって図3(D)に示す位置に停止させられるようになっている。
【0019】
空気がバイパス18を流れているとき、この空気は弁体10のバイパス18に露出する表面に接しながら流れ、含有している油分、カーボン、タール分などの不純物が空気通路15の側面と底面15a、および外側周面部25a,25bに付着する。この付着不純物はエンジンが長時間停止しているとその間に硬化し、外側周面部25a,25bの付着不純物が弁室9の内側周面にも付着して硬化することによって弁体10が固着され、次のエンジン運転時における作動を妨げる原因となる。
【0020】
図示の形態によると、エンジン停止時に外側周面部25a,25bは逃し溝22,23に向かい合って弁室9の内側周面との間に大きな隙間を有しているので、付着不純物が弁室9の内側周面にも付着するという現象が避けられる。また、逃し溝22,23の間の内側周面部24aに対しては空気通路15が向かい合い、内側周面部24aに対しては肉抜き溝16が向かい合っているので、この部分に不純物が付着していても固着する心配はない。
【0021】
図4は本発明の異なる実施の形態を示すものであって、短円柱状の弁体40は中心軸線に直交して貫通する空気通路45を中央部に有しているとともに、空気通路45を挟んで中央部外側周面に開放した二つのくぼみからなる肉抜き溝46,47が設けられている。
【0022】
また、ハウジング36にはバイパス48の入口側である上流通路部49と下流通路部50とが弁体40の中心軸線に直交して弁体40の外側周面に向かって弁室39に開口している。
【0023】
更に、弁室39の内側周面には、上流通路部49と下流通路部50との間に位置して円周方向へ延びる浅いくぼみからなる二つの逃し溝52.53が設けられており、一方の逃し溝52は端部が上流通路部49に連通したもう一方の逃し溝53は端部が下流通路部50に連通している。これらの逃し溝52,53は弁体40の中心軸線を挟んでほぼ対称に設けられており、空気通路45,肉抜き溝46,47よりも僅かに大きい幅を有している。
【0024】
バイパス空気流量を制御する作動時において、弁体40が全閉位置に置かれているとき、図4(A)に示すように弁体40の空気通路45出口端と一方の肉抜き溝46との間の外側周面部55aは弁室39の下流通路部50と一方の逃し溝52との間の内側周面部54aと最小限の隙間を有して向かい合い、空気通路45入口端ともう一方の肉抜き溝47との間の外側周面部55bは弁室39の上流通路部49ともう一方の逃し溝53との間の内側周面部54bと最小限の隙間を有して重なり合っており、上流通路部49から下流通路部50へのこれらの隙間を通る空気の漏れは微量にとどまる。
【0025】
全閉位置から弁体40が図で反時計方向へ回し図4(B)に示す半開位置を経て図4(C)に示す全開位置に至る間、弁体40の二つの外側周面部55a,55bは弁室39の内側周面部54a,54bと常に少なくとも一部で重なり合っており、外側周面を回って漏れる空気を微量にとどめながら空気通路45と上流通路部49,下流通路部50との重なり度合いに応じた所定量の空気をエンジンに供給する。
【0026】
エンジンを停止して電源を切ったとき、弁体40はどの位置に置かれていても図で時計方向へ回転し、全閉位置を通過して図4(D)に示すように外側周面部55a,55bおよびこれらと空気通路45を挟んで反対側の外側周面部55c,55dが逃し溝52,53と向かい合う位置に停止させられる。この停止位置への回転は前記形態のものと同様の戻し手段によって行われる。そして、この形態においても弁体40の外側周面部55a・・・55dは全て逃し溝52,53と向かい合って弁室49の内側周面との間に大きな隙間を有し、且つ弁室49の内側周面部54a,54bに対しては肉抜き溝46,47が向かい合って大きな隙間を有しているので、付着不純物が硬化しても固着の心配がないものである。
【0027】
【発明の効果】
このように、バイパスの弁室への開口位置と弁体の空気通路の形状、およびこれらによって設定される作動時の全閉位置と全開位置との間の回転角度に応じて肉抜き溝と逃し溝とを設け、作動時には弁体と弁室との間に狭い隙間を形成するが不作動時には弁体が弁室との間に狭い隙間をもたない位置に置かれるようにした本発明によると、作動時の空気漏れを少なくして吸入空気量を適正に制御しエンジンのアイドリング速度を適正に維持できるばかりか、エンジンが長時間停止している間に付着不純物が硬化し弁体を固着するという不都合を生じなくなって円滑に作動させることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す縦断面図。
【図2】図1のa−a線に沿う断面図。
【図3】図1の形態の動作を説明する断面図。
【図4】本発明の異なる実施の形態の動作を説明する断面図。
【符号の説明】
2吸気通路,3絞り弁,6,36ハウジング,9,39弁室,10,40弁体,15,45空気通路,16,46,47肉抜き溝,18,48バイパス,22,23,53,54逃し溝,24a,24b,54a,54b内側周面部,25a,25b,55a,55b外側周面部,
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake air amount control device for maintaining a rotational speed at a required speed during idling of an automobile engine.
[0002]
[Prior art]
Mechanical load generated during warm-up operation due to the high viscosity of the lubricating oil when the engine is started in the cold state in winter, or in the winter heating unit operating state, summer cooling unit operating state or ventilator operating state In order to overcome the electrical load that these devices put on the engine when idling, the engine idling speed needs to be higher than normal.
[0003]
For this purpose, a bypass that short-circuits the upstream and downstream sides of the throttle valve is provided in the intake passage of the engine, and an adjustment valve that opens and closes according to the engine temperature and the operating condition of the equipment is installed in this bypass. The idling speed is increased by the air flowing through the bypass while being kept in the air (see JP-A-51-2834).
[0004]
In Japanese Patent Laid-Open No. 51-2834, as one of intake air amount control means at idling, a valve body of a regulating valve installed in a bypass is rotated by an electric servo mechanism composed of a stepping motor or a DC motor. Means for measuring the bypass air flow rate by controlling the degree of overlap between the air passage provided in the body and the bypass, that is, the rotational position of the valve body is shown.
[0005]
On the other hand, in an engine system including a blow-by gas processing device and an exhaust gas recirculation device, impurities such as oil and carbon are mixed into the air flowing through the intake passage. Further, in an engine system using a gaseous fuel such as LPG as a fuel, impurities such as tar contained in the fuel are mixed into the air flowing through the intake passage.
[0006]
When air containing impurities flows through the bypass and passes through the regulating valve, it is inevitable that impurities adhere to the surface of the valve body. And when the engine is stopped for a long time, the adhering impurities harden during that time and the impurities that have entered the circumferential clearance between the valve body and the valve chamber cause the valve body to adhere and prevent the operation during the next engine operation. It becomes.
[0007]
[Problems to be solved by the invention]
As a means to eliminate the phenomenon that the operation of the rotary regulator valve is hindered by the adhesion impurity hardening, it has been proposed to provide an adhesion prevention layer such as a fluororesin layer on the outer peripheral surface of the valve body that is difficult for impurities to adhere. It is difficult to manage the dimensional tolerance of the circumferential clearance between the body and the valve chamber, which is problematic for practical use. Therefore, it has been proposed to increase the circumferential clearance so that impurities attached to the valve body do not adhere to the valve chamber. This is accompanied by a disadvantage that the engine idling speed cannot be properly maintained by deviating the engine.
[0008]
The present invention is intended to solve the problem that there was no appropriate measure to prevent the sticking of the valve body due to adhesion of impurities that cannot be avoided in the rotary type regulating valve without impairing the function of the regulating valve, To prevent the adhering impurities from sticking to the valve body and prevent operation while the engine is stopped for a long time, and to reduce the air leakage during operation and to control the intake air amount appropriately. Objective.
[0009]
[Means for Solving the Problems]
That is, according to the present invention, at least one lightening groove is provided on the same circle as the air passage of the valve body so as to open to the outer peripheral surface, and a plurality of relief grooves are provided on the same circle on the valve chamber side peripheral surface. A directional gap was provided. When the bypass air flow rate is controlled, the valve body is fully closed with at least a part of the outer peripheral surface portion between the air passage and the hollow groove overlapping the inner peripheral surface portion between the relief grooves of the valve chamber. And a predetermined amount of air that is measured according to the degree of overlap between the air passage and the bypass while keeping the amount of air leakage through the gap between the valve body and the valve chamber to a very small amount. Can be supplied to the engine. Also, when the electric servo mechanism is not energized, the valve body is stopped at the position where the outer peripheral surface portion faces the escape groove without overlapping the inner peripheral surface portion. There is no longer a situation in which the operation is hindered due to being firmly separated from the indoor side even when cured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. In FIG. 1 and FIG. 2, an adjustment valve 5 is disposed on the side of a throttle valve 3 that opens and closes an intake passage 2 of a throttle body 1 installed in an intake system of an engine. A housing 6 is airtightly fixed by a mounting screw 8 with a sealing material 7 interposed therebetween.
[0011]
The housing 6 has a circular valve chamber 9 whose one end is closed and the other end is open, and a short cylindrical valve body 10 and bearings 13 fitted to valve shafts 11 and 12 projecting at both ends thereof. 14 is fitted into the valve chamber 9 from the open end, and the valve body 10 is rotatably supported on the housing 6 by bearings 13 and 14 and is housed in the valve chamber 9.
[0012]
The valve body 10 has an air passage 15 composed of a recess opened to the outer peripheral surface of the central portion over a range of about 120 to 130 degrees in the circumferential direction, and circumferentially on the opposite side across the central axis. A lightening groove 16 formed of a recess opened on the outer peripheral surface of the central portion is provided over a range of about 90 degrees.
[0013]
In addition, a bypass 18 is formed in the throttle body 2 and the housing 6 to short-circuit the upstream side and the downstream side of the intake passage 2 in a state where the throttle valve 3 is in the closed position, and the upstream side that is the entrance side thereof The passage portion 19 and the downstream passage portion 20 on the outlet side open to the valve chamber 9 toward the outer peripheral surface of the valve body 10 at a position perpendicular to each other. In the form shown in the figure, the downstream passage portion 20 is opened to the valve chamber 9 with the center line positioned on the line XX passing through the center axis of the valve body 10, and the upstream passage portion 19 is centered on the valve body 10. The valve chamber 9 is opened by being displaced toward the downstream passage portion 20 with respect to the line Y-Y perpendicular to the center axis. Further, the air passage 15 has an arcuate bottom surface 15a so that the air smoothly changes its direction when fully opened.
[0014]
The inner peripheral surface of the valve chamber 9 and the outer peripheral surface of the valve body 10 have a minimum clearance based on dimensional tolerances, and the width of the air passage 15 and the lightening groove 16 is set to the upstream passage portion 19 and The width of the downstream passage portion 20 is substantially the same.
[0015]
On the inner peripheral surface of the valve chamber 9, there are provided two relief grooves 22 and 23 consisting of shallow depressions extending from the line YY to both sides and extending in the circumferential direction of about 120 degrees. One end of the escape groove 22 communicates with the upstream passage portion 19. Further, the escape grooves 22 and 23 are formed substantially symmetrically across the line XX, and have a slightly larger width than the air passage 15 and the lightening groove 16.
[0016]
On the other hand, an electric servo mechanism 27 composed of a stepping motor, a DC motor or a solenoid is fixed to the open end of the valve chamber of the housing 6, and the valve shaft 12 is driven and the fully closed position shown in FIG. The valve body 10 is reciprocally rotated between the fully open position shown in FIG. 3C, and the bypass air flow rate is controlled by the degree of overlap between the air passage 15 and the downstream passage portion 20.
[0017]
In the fully closed position, the outer peripheral surface portions 25a and 25b between the air passage 15 of the valve body 10 and the lightening groove 16 are the smallest with the inner peripheral surface portions 24a and 24b where the relief grooves 22 and 23 of the valve chamber 9 are not provided. Overlapping with limited gaps, the air leakage from the upstream passage portion 19 to the downstream passage portion 20 through these gaps is very small. While the valve body 10 rotates counterclockwise in FIG. 3 from the fully closed position and reaches the fully open position through the half-open position shown in FIGS. 1, 2, and 3B, the two outer peripheral surface portions 25a of the valve body 10 are obtained. , 25b always overlap at least partly with the two inner peripheral surface portions 24a, 24b of the valve chamber 9, and the degree of overlap between the air passage 15 and the downstream passage portion 20 while keeping a small amount of air leaking around the outer peripheral surface. A predetermined amount of air is supplied to the engine.
[0018]
When the engine is stopped and the electric servo mechanism 27 is turned off, the valve body 10 rotates counterclockwise in FIG. 3 regardless of the position, and as shown in FIG. The surface portions 25 a and 25 b are stopped at positions facing the escape grooves 22 and 23. The rotation to the stop position is performed by the return means 28 formed of a torsion coil spring that is engaged at both ends with the valve shaft 12 and the housing 6, and is stopped at the position shown in FIG. It has become.
[0019]
When the air flows through the bypass 18, the air flows while contacting the surface exposed to the bypass 18 of the valve body 10, and impurities such as oil, carbon, and tar are contained on the side surface and the bottom surface 15 a of the air passage 15. And the outer peripheral surface portions 25a and 25b. When the engine is stopped for a long time, the adhering impurities are hardened during that time, and the adhering impurities on the outer peripheral surface portions 25a and 25b are also adhered to the inner peripheral surface of the valve chamber 9 to be hardened. This is a cause of hindering operation during the next engine operation.
[0020]
According to the illustrated embodiment, the outer peripheral surface portions 25a and 25b face the escape grooves 22 and 23 and have a large gap with the inner peripheral surface of the valve chamber 9 when the engine is stopped. The phenomenon of adhering to the inner peripheral surface of the can be avoided. Further, since the air passage 15 faces the inner peripheral surface portion 24a between the escape grooves 22 and 23, and the lightening groove 16 faces the inner peripheral surface portion 24a, impurities are attached to this portion. But there is no worry of sticking.
[0021]
FIG. 4 shows a different embodiment of the present invention. A short cylindrical valve element 40 has an air passage 45 penetrating perpendicularly to the central axis at the center, and the air passage 45 is provided in the central portion. The lightening grooves 46 and 47 are formed of two depressions opened on the outer peripheral surface of the center portion.
[0022]
Further, the housing 36 has an upstream passage portion 49 and a downstream passage portion 50 which are the inlet side of the bypass 48 opened to the valve chamber 39 toward the outer peripheral surface of the valve body 40 perpendicular to the central axis of the valve body 40. is doing.
[0023]
Further, on the inner peripheral surface of the valve chamber 39, there are provided two escape grooves 52.53 that are located between the upstream passage portion 49 and the downstream passage portion 50 and are formed of shallow recesses extending in the circumferential direction. One relief groove 52 has an end communicating with the upstream passage portion 49, and the other relief groove 53 has an end communicating with the downstream passage portion 50. These relief grooves 52 and 53 are provided substantially symmetrically with respect to the central axis of the valve body 40 and have a slightly larger width than the air passage 45 and the lightening grooves 46 and 47.
[0024]
When the valve body 40 is in the fully closed position during the operation of controlling the bypass air flow rate, the outlet end of the air passage 45 of the valve body 40 and one of the lightening grooves 46 as shown in FIG. The outer peripheral surface portion 55a between the air passage 45 faces the inner peripheral surface portion 54a between the downstream passage portion 50 of the valve chamber 39 and the one escape groove 52 with a minimum clearance, and the air passage 45 inlet end and the other end portion. The outer peripheral surface portion 55b between the lightening groove 47 and the inner peripheral surface portion 54b between the upstream passage portion 49 of the valve chamber 39 and the other escape groove 53 overlaps with a minimum gap, Leakage of air passing through these gaps from the upstream passage portion 49 to the downstream passage portion 50 is very small.
[0025]
While the valve body 40 is rotated counterclockwise in the figure from the fully closed position to reach the fully open position shown in FIG. 4C through the half-open position shown in FIG. 4B, the two outer peripheral surface portions 55a of the valve body 40, 55b always overlaps at least partly with the inner peripheral surface portions 54a and 54b of the valve chamber 39, and the air passage 45, the upstream passage portion 49, the downstream passage portion 50 and the air passage 45 while keeping a small amount of air leaking around the outer peripheral surface. A predetermined amount of air corresponding to the degree of overlap is supplied to the engine.
[0026]
When the engine is stopped and the power is turned off, the valve body 40 rotates clockwise in any position regardless of the position, passes through the fully closed position, and as shown in FIG. The outer peripheral surface portions 55c and 55d on the opposite side across 55a and 55b and the air passage 45 therebetween are stopped at positions facing the escape grooves 52 and 53. The rotation to the stop position is performed by the return means similar to that of the above-described embodiment. Even in this embodiment, the outer peripheral surface portions 55a... 55d of the valve body 40 all face the escape grooves 52, 53 and have a large gap between the inner peripheral surface of the valve chamber 49 and the valve chamber 49. Since the thinning grooves 46 and 47 face the inner peripheral surface portions 54a and 54b and have a large gap, there is no fear of sticking even if the adhering impurities are cured.
[0027]
【The invention's effect】
As described above, according to the opening position to the valve chamber of the bypass, the shape of the air passage of the valve body, and the rotation angle between the fully closed position and the fully open position during operation set by these, According to the present invention, a groove is provided so that a narrow gap is formed between the valve body and the valve chamber during operation, but the valve body is placed at a position having no narrow gap between the valve chamber and the valve chamber when not operating. In addition to reducing the air leakage during operation and controlling the intake air volume appropriately to maintain the engine idling speed properly, the adhered impurities harden and the valve body sticks while the engine is stopped for a long time. It is possible to operate smoothly without causing inconvenience.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
2 is a cross-sectional view taken along line aa in FIG.
FIG. 3 is a cross-sectional view illustrating the operation of the embodiment of FIG.
FIG. 4 is a cross-sectional view illustrating the operation of a different embodiment of the present invention.
[Explanation of symbols]
2 intake passages, 3 throttle valves, 6, 36 housings, 9, 39 valve chambers, 10, 40 valve bodies, 15, 45 air passages, 16, 46, 47 cutout grooves, 18, 48 bypass, 22, 23, 53 , 54 relief groove, 24a, 24b, 54a, 54b inner peripheral surface portion, 25a, 25b, 55a, 55b outer peripheral surface portion,

Claims (1)

電気的サーボ機構によって弁体がハウジングの弁室内で回転させられる調整弁を設置したバイパスが絞り弁の上流側と下流側とを短絡させて吸気通路に設けられ、前記弁体の空気通路と前記バイパスとの重なり度合いによってアイドリング時の吸入空気量を制御するエンジンの吸入空気量制御装置において;
前記弁体の前記空気通路と同じ円上に少なくとも一つの肉抜き溝が外側周面へ開放して設けられているとともに、前記弁室の内側周面の前記と同じ円上に複数の逃し溝が円周方向間隔を有して設けられており;
バイパス空気流量を制御する作動時に前記弁体は前記空気通路と肉抜き溝との間の外側周面部の少なくとも一部が前記弁室の逃し溝の間の内側周面部と重なった状態で全開位置と全位置との間で回転させられ;
前記電気的サーボ機構に通電されない不作動時に前記弁体は前記外側周面部が前記内側周面と重なることなく前記逃し溝と向かい合う位置に停止させられる;
構成としたことを特徴とする吸入空気量制御装置。
A bypass provided with an adjustment valve that rotates the valve body in the valve chamber of the housing by an electric servo mechanism is provided in the intake passage by short-circuiting the upstream side and the downstream side of the throttle valve, and the air passage of the valve body and the In the engine intake air amount control device that controls the intake air amount when idling according to the degree of overlap with the bypass;
A plurality of relief grooves are provided on the same circle as the inner circumferential surface of the valve chamber, and at least one lightening groove is provided on the same circle as the air passage of the valve body. Are provided with circumferential intervals;
When operating to control the flow rate of bypass air, the valve body is in a fully open position in a state where at least a part of the outer peripheral surface portion between the air passage and the hollow groove overlaps with the inner peripheral surface portion between the relief grooves of the valve chamber. And between fully closed positions;
The valve body is stopped at a position facing the escape groove without overlapping the outer peripheral surface portion with the inner peripheral surface when the electric servo mechanism is not energized;
An intake air amount control device characterized by being configured.
JP01944896A 1996-01-10 1996-01-10 Engine intake air amount control device Expired - Fee Related JP3745434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01944896A JP3745434B2 (en) 1996-01-10 1996-01-10 Engine intake air amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01944896A JP3745434B2 (en) 1996-01-10 1996-01-10 Engine intake air amount control device

Publications (2)

Publication Number Publication Date
JPH09195897A JPH09195897A (en) 1997-07-29
JP3745434B2 true JP3745434B2 (en) 2006-02-15

Family

ID=11999598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01944896A Expired - Fee Related JP3745434B2 (en) 1996-01-10 1996-01-10 Engine intake air amount control device

Country Status (1)

Country Link
JP (1) JP3745434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273611B2 (en) * 2009-02-24 2013-08-28 株式会社ミクニ Throttle device

Also Published As

Publication number Publication date
JPH09195897A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
US5950576A (en) Proportional coolant valve
US7543563B2 (en) High flow dual throttle body for small displacement engines
JP3745434B2 (en) Engine intake air amount control device
JPS5911789B2 (en) Rotary type electromagnetic flow control valve device
CA1143629A (en) Three way butterfly valve
JP2004143976A (en) Intake controller of internal combustion engine and intake controller of gasoline engine
JP3966807B2 (en) Engine idle intake control system
JP3950276B2 (en) Exhaust gas recirculation controller
JPH094546A (en) Control device of auxiliary air volume of internal combustion engine
US4979484A (en) Device for controlling at least one throttle cross-section at least one control orifice
JP4059055B2 (en) Cooling liquid injection method and flow control valve used for the injection method
JPH03501147A (en) Device for controlling at least one aperture cross section in at least one control aperture
JPH0968138A (en) Intake air amount control device for engine
JPH0338421Y2 (en)
JPH02108842A (en) Flow control valve
JPH0968139A (en) Intake air amount control device for engine
JP2881162B2 (en) Engine idle speed control device
JP2000297660A (en) Intake air flow control device for diesel engine
JP3748914B2 (en) Engine intake control method
JPH0523829Y2 (en)
JPS6244090B2 (en)
JPH10103082A (en) Intake throttle system for diesel engine
JPS61167130A (en) Intake device of internal-combustion engine
JPH0227185Y2 (en)
JPH0631178Y2 (en) Auxiliary air control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees