JPS61278674A - Motor operated - Google Patents

Motor operated

Info

Publication number
JPS61278674A
JPS61278674A JP11909485A JP11909485A JPS61278674A JP S61278674 A JPS61278674 A JP S61278674A JP 11909485 A JP11909485 A JP 11909485A JP 11909485 A JP11909485 A JP 11909485A JP S61278674 A JPS61278674 A JP S61278674A
Authority
JP
Japan
Prior art keywords
valve
rotor
stator
hollow cylindrical
partition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11909485A
Other languages
Japanese (ja)
Inventor
Masahide Takanaka
高中 正秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Seiki Manufacturing Co Ltd filed Critical Keihin Seiki Manufacturing Co Ltd
Priority to JP11909485A priority Critical patent/JPS61278674A/en
Publication of JPS61278674A publication Critical patent/JPS61278674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To simplify configuration by making a section piece with a hollow cylindrical shape of a nonmagnetic material. CONSTITUTION:A hollow cylindrical section piece 3 of a nonmagnetic material is arranged between a stator 1 and a rotor 2, with the section piece 3 as a valve pressure bearing member. A valve hole 5 is bored through a periphery wall of a cylindrical valve body 4 driven by the rotor 2. Further, valve opening areas of the valve hole 5 and a fluid passage 6 are changed in proportion to the rotation angle of the rotor 2. With this constitution, a motor operated valve of simple configuration without external leakage of controlled fluid can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は電気入力を受けて回動する電動機にて駆動され
る弁体によって流体流路を開閉する電動弁に係るもので
あり、特に制御流体の外部洩れが無く流体流量を比例的
に制御する電動弁に関するものである。より具体的には
燃焼機器、給湯機に使用されるガス流量制御弁、水用流
量制御弁、プラントにおけるプロセス流体制御弁等に利
用できるものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to an electric valve that opens and closes a fluid flow path by a valve body driven by an electric motor that rotates in response to electrical input, and particularly relates to a control valve. The present invention relates to an electric valve that proportionally controls fluid flow rate without external leakage of fluid. More specifically, it can be used in combustion equipment, gas flow control valves used in water heaters, water flow control valves, process fluid control valves in plants, and the like.

「従来の技術」 従来の電動弁は、例えば特開昭58−178117号公
報に開示されているように流体流路を開閉制御する弁軸
をステッピングモータにて駆動制御するものが一般的で
ある。これによると、弁軸は直接ステッピングモータの
駆動軸に連設され、制御流体の外部洩れ(耐圧洩れ)を
防止するため弁軸には軸シールとしてのシールリング配
置されている。しかしながら使用過程における摩耗等に
よってこの軸シール部から制御流体が外部へ洩れる恐れ
があり、引火性ガス(プロパンガス、都市ガス)あるい
は毒性ガス等の制御に使用できないという欠点があった
。またこのシール性を向上させるために軸シールのシメ
代を増大させれば外部への洩れは抑止できるものの軸シ
ールの摺動抵抗はモータの回動トルクに対して動作抵抗
となり。
"Prior Art" Conventional electric valves generally use a stepping motor to drive and control a valve shaft that controls the opening and closing of a fluid flow path, as disclosed in, for example, Japanese Patent Laid-Open No. 58-178117. . According to this, the valve shaft is directly connected to the drive shaft of the stepping motor, and a seal ring as a shaft seal is arranged on the valve shaft to prevent external leakage of control fluid (pressure leakage). However, there is a risk that the control fluid may leak to the outside from this shaft seal due to wear during use, and there is a drawback that it cannot be used to control flammable gases (propane gas, city gas) or toxic gases. Furthermore, in order to improve this sealing performance, increasing the shim width of the shaft seal can prevent leakage to the outside, but the sliding resistance of the shaft seal becomes operational resistance against the rotational torque of the motor.

駆動力増加のためにモータを大型化することが必要とな
る欠点があった。モしてモータに入力される電気信号量
によって流体流量を比例制御できず、マイクロコンピュ
ータ−による制御流体の流量制御が困難であった。
There was a drawback that it was necessary to increase the size of the motor in order to increase the driving force. Therefore, the fluid flow rate cannot be proportionally controlled by the amount of electric signal input to the motor, and it is difficult to control the flow rate of the control fluid using a microcomputer.

「発明が解決しようとする問題点」 本発明は、制御流体の外部洩れが無く、マイコンによる
制御にて制御流体の流量を比例的に制御ができ、しかも
構造が簡単で安価な電動弁を提供することにある。
"Problems to be Solved by the Invention" The present invention provides an electrically operated valve that has no external leakage of the control fluid, can proportionally control the flow rate of the control fluid under control by a microcomputer, and has a simple structure and is inexpensive. It's about doing.

「問題点を解決するための手段」 本発明になる電動弁は前記目的達成のために電気入力を
受ける電機子コイルを巻回されたステータと、該ステー
タに囲繞されて回動自在に配置されたロータと、該ロー
タの回動によって駆動制御される弁体と、を備えた電動
弁において、ステータとロータとの間に非磁性材料より
なる中空円筒状の区画体を配置して該区画体を弁の耐圧
部材とすると共に、ロータによって回動駆動される円筒
状の弁体の周側面に弁孔を形成し、該弁孔と流体流路の
弁開口面積と、ロータの回動角度と、を比例的に変化さ
せたものである。
"Means for Solving the Problems" In order to achieve the above object, the electric valve of the present invention includes a stator wound with an armature coil that receives electrical input, and a stator that is surrounded by the stator and is rotatably arranged. In an electric motor-operated valve comprising a rotor and a valve body whose drive is controlled by rotation of the rotor, a hollow cylindrical partition made of a non-magnetic material is disposed between the stator and the rotor. is used as a pressure-resistant member of the valve, and a valve hole is formed on the circumferential side of a cylindrical valve body that is rotationally driven by a rotor, and the valve opening area of the valve hole and the fluid flow path, and the rotation angle of the rotor. , is changed proportionally.

「作用」 中空円筒状の区画体は非磁性材料であるので、ステータ
とロータとの中間にあっても電動機の磁束作用に影響を
与えることがなく、又弁の耐圧部材の一部を構成するの
で軸シールが不要で外部洩れの恐れがない、又ロータと
弁体を直結し、円筒形状の弁体の周側面に弁孔を設けた
ので、ギヤ等の減速による抵抗がなく、構成が簡単で安
価となる。更に流体流路と弁孔の形状設定のみで容易に
弁開口面積とロータの回動角度を比例的に変化させるこ
とができる。
"Function" Since the hollow cylindrical partition is made of non-magnetic material, it does not affect the magnetic flux action of the electric motor even if it is located between the stator and rotor, and also forms part of the pressure-resistant member of the valve. No shaft seal is required, so there is no risk of external leakage, and since the rotor and valve body are directly connected, and a valve hole is provided on the circumferential side of the cylindrical valve body, there is no resistance due to deceleration of gears, etc., and the configuration is simple. It will be cheaper. Further, the valve opening area and the rotation angle of the rotor can be easily changed proportionally only by setting the shapes of the fluid flow path and the valve hole.

「実施例」 以下本発明になる電動弁の一実施例を第1図〜第5図に
よって説明する。
"Embodiment" An embodiment of the electric valve according to the present invention will be described below with reference to FIGS. 1 to 5.

弁本体10内部を流入口11から流出口12へ貫通して
流体流路6が形成され、円筒形の弁体4が弁本体10内
部に回動自在に嵌合配置される。弁体4は中空円筒形に
形成され、その周側面には開口断面形、状が四角形の弁
孔5が穿設されると共に流出口側の流体流路6の開口断
面形状も四角形に形成される。弁体4の上部には磁性材
料を極13に配置されたロータ2が連結され、弁体と共
に回動自在に配置されも、ロータ2の外周には非磁性材
料よりなる有底中空円筒形状の区画体3が配置され、0
−リング14を介して弁本体10に固着され、弁の耐圧
部材の一部として構成される、区画体3の外周には、極
15を有するステータ1が配置され、極には電気入力を
受ける電気機コイル18が巻回され、ステータとロータ
にて公知のステッピングモータが構成される。そして本
発明においては第5図に示すように弁孔5と流体流路6
との開口面積Sとロータの回転角度とが比例的に対応変
化するように構成されているので、電動機の電気入力に
対応して流体流量が比例的に制御できるものである。す
なわち、弁孔と流体流路との絞り弁オリフィスを通過す
る流体流量θは式 %式% ΔP−・・・オリフィス前後の差圧 A−・・・オリフィスの開口面積 Cφ・・・流量係数 にて表わされ、絞り弁の形状が開閉を通じて余り変化し
ないので、流量係数Cはほぼ一定と考えられるから、Δ
Pが一定なら、流量θは開口面積θに比例して制御され
る。実施例では弁孔5及び流体流路6はいずれも四角形
にしてあけ、ロータ回動角度と弁開口面積5は比例的に
変化するので、ステッピングモータにて入力される電気
入力量に比例して流体流量が比例制御できマイクロコン
ピュータ−にて直接制御可能となる。
A fluid flow path 6 is formed passing through the inside of the valve body 10 from the inlet 11 to the outlet 12, and the cylindrical valve body 4 is rotatably fitted into the inside of the valve body 10. The valve body 4 is formed into a hollow cylindrical shape, and a valve hole 5 having a square opening cross-section is bored in its circumferential side, and the opening cross-section of the fluid flow path 6 on the outlet side is also square. Ru. A rotor 2 is connected to the upper part of the valve body 4, and the rotor 2 is rotatably arranged together with the valve body. The partition body 3 is placed and 0
- On the outer periphery of the partition 3, which is fixed to the valve body 10 via a ring 14 and constitutes part of the pressure-resistant member of the valve, a stator 1 with poles 15 is arranged, the poles receiving electrical input; An electric machine coil 18 is wound, and the stator and rotor constitute a known stepping motor. In the present invention, as shown in FIG.
Since the opening area S of the rotor and the rotation angle of the rotor are configured to change proportionally, the fluid flow rate can be controlled proportionally in response to the electrical input of the motor. In other words, the fluid flow rate θ passing through the throttle valve orifice between the valve hole and the fluid flow path is expressed by the formula % ΔP-...Differential pressure before and after the orifice A-...Opening area of the orifice Cφ...Flow coefficient Since the shape of the throttle valve does not change much through opening and closing, the flow coefficient C is considered to be almost constant, so Δ
If P is constant, the flow rate θ is controlled in proportion to the opening area θ. In the embodiment, the valve hole 5 and the fluid flow path 6 are both square shaped, and the rotor rotation angle and the valve opening area 5 change proportionally, so the valve opening area 5 changes proportionally to the amount of electrical input from the stepping motor. Fluid flow rate can be controlled proportionally and directly controlled by a microcomputer.

本発明の第2実施例を第6図、第7図によって説明する
A second embodiment of the present invention will be described with reference to FIGS. 6 and 7.

弁体4を円筒形状としてその周側面の一部を平面状に形
成すると共に、流出口12側の流体流路6の開口断面形
状を四角形に形成しであるので、ロータの回動角度と、
弁孔と流体流路の弁開口面積Sとは比例的に変化し、第
1実施例と同様に制御流体の比例制御が実現できる。
The valve body 4 is formed into a cylindrical shape with a part of its circumferential surface being flat, and the cross-sectional shape of the opening of the fluid flow path 6 on the side of the outlet 12 is formed into a square shape, so that the rotation angle of the rotor and
The valve hole and the valve opening area S of the fluid flow path change proportionally, and proportional control of the control fluid can be realized as in the first embodiment.

本発明の第3実施例を第8図〜第13図により説明する
と、弁本体の流出口側の流体流路6を開口断面形状円形
に形成すると共に、弁体4を中空円筒形状としてその周
側面に弁孔5を穿設し、弁孔5と流体流路の開口面積S
とロータ2の回動角度とが比例的に対応変化するように
弁孔5の形状を設定したものである。この弁孔5の形状
は、ロータの回動角度に対応して順次開口面積からその
形状を設定できるもので、コンピューターを用いたCA
Dシステムの利用で容易に求めることが可能である。
A third embodiment of the present invention will be described with reference to FIGS. 8 to 13. The fluid flow path 6 on the outlet side of the valve body is formed to have a circular opening cross-section, and the valve body 4 is formed into a hollow cylindrical shape so that its periphery is A valve hole 5 is bored in the side surface, and the opening area S of the valve hole 5 and the fluid flow path is
The shape of the valve hole 5 is set so that the angle of rotation of the rotor 2 and the angle of rotation of the rotor 2 change proportionally. The shape of the valve hole 5 can be set sequentially from the opening area in accordance with the rotation angle of the rotor.
It can be easily obtained by using the D system.

「発明の効果」 本発明は区画体を非磁性材料の中空円筒形状としたこと
によって、ロータとステータの磁束作用が影響をうける
ことなく、又ロータの回動に合わせて円筒形状を採用し
てロータとステータとの間隙寸法を最小にでき、磁束作
用を最大限に利用できる。そして区画体を弁の耐圧部材
の一部とすることによって軸シールは不要となり、流体
の外部洩れをゼロにできる。又ロータと円筒形状の弁体
を連結して弁の構成を簡単にして小型化すると共に、円
筒形状の弁体の周側面に弁孔を形成して弁開口面積Sと
ロータの回動角度とを比例的に対応変化させたので、電
動機の電気入力信号量に対応して流体流量を比例的に制
御できる。
"Effects of the Invention" The present invention uses a hollow cylindrical shape for the partition made of non-magnetic material, so that the magnetic flux action between the rotor and the stator is not affected, and the cylindrical shape is adopted in accordance with the rotation of the rotor. The gap between the rotor and stator can be minimized and the magnetic flux effect can be maximized. By making the partition a part of the pressure-resistant member of the valve, there is no need for a shaft seal, and external leakage of fluid can be reduced to zero. In addition, by connecting the rotor and the cylindrical valve body, the structure of the valve is simplified and miniaturized, and a valve hole is formed on the circumferential side of the cylindrical valve body to improve the valve opening area S and the rotor rotation angle. Since the fluid flow rate is changed proportionally, the fluid flow rate can be controlled proportionally in response to the amount of electrical input signal to the motor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる電動弁の一実施例を示す縦断面図
、第2図は第1図■−■線での横断面図、第3図は第1
図の流出口側よりみた外観図、第4図は第1図の弁体の
外観図、第5図は第1図の弁開口面積Sとロータ回動角
度の関係を示す線図、第6図は本発明の第二実施例を示
す弁体の外観図、第7図は第6図の上面図、第8図は本
発明の第三実施例を示す弁の流出口側よりみた外観図、
第9図は第8図の弁体の外観図、第10図〜第13図は
第8図の弁開口面積Sとロータ回動角度の関係を示す外
観図である。 106.ステータ、  ?11.ロータ、3141区画
体、 419.弁体、 500.弁孔、  600.流
体流路。 %ztB ’p t t@ 讃5″日 itz藺   愼t3153
Fig. 1 is a longitudinal cross-sectional view showing one embodiment of the electric valve according to the present invention, Fig. 2 is a cross-sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a cross-sectional view of the
4 is an external view of the valve body in FIG. 1, FIG. 5 is a diagram showing the relationship between the valve opening area S and rotor rotation angle in FIG. 1, and FIG. The figure is an external view of a valve body showing a second embodiment of the present invention, FIG. 7 is a top view of the valve body shown in FIG. 6, and FIG. ,
9 is an external view of the valve body shown in FIG. 8, and FIGS. 10 to 13 are external views showing the relationship between the valve opening area S and the rotor rotation angle in FIG. 8. 106. Stator, ? 11. Rotor, 3141 compartment body, 419. Valve body, 500. Valve hole, 600. fluid flow path. %ztB 'pt t@san5''日itz藺愼t3153

Claims (1)

【特許請求の範囲】 1、電気入力を受ける電機子コイルを巻回されたステー
タと、該ステータに囲繞されて回動自在に配置されたロ
ータと、該ロータの回動によって駆動制御される弁体と
、を備えた電動弁において、ステータとロータとの間に
非磁性材料よりなる中空円筒状の区画体を配置して該区
画体を弁の耐圧部材とすると共に、ロータによって回動
駆動される円筒状の弁体の周側面に弁孔を形成し、該弁
孔と流体流路の弁開口面積と、ロータの回動角度と、を
比例的に変化させてなる電動弁。 2、電気入力を受ける電機子コイルを巻回されたステー
タと、該ステータに囲繞されて回動自在に配置されたロ
ータと、該ロータの回動によって駆動制御される弁体と
、を備えた電動弁において、ステータとロータとの間に
非磁性材料よりなる中空円筒状の区画体を配置して該区
画体を弁の耐圧部材とすると共に、ロータによって回動
駆動される中空円筒状の弁体の周側面に開口断面形状が
四角形の弁孔を穿設すると共に流体流路の開口断面形状
を四角形にしてなる特許請求の範囲第1項記載の電動弁
。 3、電気入力を受ける電機子コイルを巻回されたステー
タと、該ステータに囲繞されて回動自在に配置されたロ
ータと、該ロータの回動によって駆動制御される弁体と
、を備えた電動弁において、ステータとロータとの間に
非磁性材料よりなる中空円筒状の区画体を配置して該区
画体を弁の耐圧部材とすると共に、ロータによって回動
駆動される円筒状の弁体の周側面を部分的に平面状にし
て弁孔を穿設すると共に流体流路の開口断面形状を四角
形にしてなる特許請求の範囲第1項記載の電動弁。 4、電気入力を受ける電機子コイルを巻回されたステー
タと、該ステータに囲繞されて回動自在に配置されたロ
ータと、該ロータの回動によって駆動制御される弁体と
、を備えた電動弁において、ステータとロータとの間に
非磁性材料よりなる中空円筒状の区画体を配置して該区
画体を弁の耐圧部材とすると共に、ロータによって回動
駆動される中空円筒状の弁体の周側面に弁孔を形成する
と共に流体流路の開口断面形状を円形とし、弁孔との開
口面積とロータの回動角度とが比例的に変化するよう弁
孔の形状を設定してなる特許請求の範囲第1項記載の電
動弁。
[Claims] 1. A stator wound with an armature coil that receives electrical input, a rotor surrounded by the stator and rotatably arranged, and a valve whose drive is controlled by the rotation of the rotor. In the electric valve, a hollow cylindrical partition made of a non-magnetic material is arranged between the stator and the rotor, the partition is used as a pressure-resistant member of the valve, and the partition is rotationally driven by the rotor. An electrically operated valve in which a valve hole is formed in the circumferential side of a cylindrical valve body, and the valve opening area of the valve hole, the fluid flow path, and the rotation angle of the rotor are changed proportionally. 2. It includes a stator wound with an armature coil that receives electrical input, a rotor surrounded by the stator and rotatably arranged, and a valve body whose drive is controlled by the rotation of the rotor. In the electric valve, a hollow cylindrical partition made of a non-magnetic material is arranged between the stator and the rotor, and the partition is used as a pressure-resistant member of the valve, and the hollow cylindrical valve is rotationally driven by the rotor. 2. The motor-operated valve according to claim 1, wherein a valve hole having a rectangular opening cross-sectional shape is bored in the circumferential side of the body, and the opening cross-sectional shape of the fluid flow path is square. 3. A stator wound with an armature coil that receives electrical input, a rotor surrounded by the stator and rotatably arranged, and a valve body whose drive is controlled by the rotation of the rotor. In the electric valve, a hollow cylindrical partition made of a non-magnetic material is arranged between the stator and the rotor, and the partition is used as a pressure-resistant member of the valve, and the cylindrical valve body is rotationally driven by the rotor. 2. The motor-operated valve according to claim 1, wherein the circumferential side surface of the valve hole is partially planar and a valve hole is formed therein, and the cross-sectional shape of the opening of the fluid flow path is square. 4. A stator wound with an armature coil that receives electrical input, a rotor surrounded by the stator and rotatably arranged, and a valve body whose drive is controlled by the rotation of the rotor. In the electric valve, a hollow cylindrical partition made of a non-magnetic material is arranged between the stator and the rotor, and the partition is used as a pressure-resistant member of the valve, and the hollow cylindrical valve is rotationally driven by the rotor. A valve hole is formed on the circumferential side of the body, and the cross-sectional shape of the opening of the fluid flow path is circular, and the shape of the valve hole is set so that the opening area with the valve hole and the rotation angle of the rotor change proportionally. The electric valve according to claim 1.
JP11909485A 1985-05-31 1985-05-31 Motor operated Pending JPS61278674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11909485A JPS61278674A (en) 1985-05-31 1985-05-31 Motor operated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11909485A JPS61278674A (en) 1985-05-31 1985-05-31 Motor operated

Publications (1)

Publication Number Publication Date
JPS61278674A true JPS61278674A (en) 1986-12-09

Family

ID=14752750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11909485A Pending JPS61278674A (en) 1985-05-31 1985-05-31 Motor operated

Country Status (1)

Country Link
JP (1) JPS61278674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522416A (en) * 1993-10-05 1996-06-04 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Defence Pneumatic pressure regulation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215024B2 (en) * 1971-10-20 1977-04-26
JPS5919785A (en) * 1982-07-21 1984-02-01 Nippon Denso Co Ltd Fluid flow rate control valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5215024B2 (en) * 1971-10-20 1977-04-26
JPS5919785A (en) * 1982-07-21 1984-02-01 Nippon Denso Co Ltd Fluid flow rate control valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522416A (en) * 1993-10-05 1996-06-04 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Defence Pneumatic pressure regulation system

Similar Documents

Publication Publication Date Title
JP2000120906A (en) Electromagnetically operated valve assembly and valve assembling-operating method
JPS6245789B2 (en)
US4976237A (en) Engine air intake valve
US20070090829A1 (en) Rotation angle detecting apparatus
US6648018B2 (en) Bypass control valve
JPS6349886B2 (en)
JPS61153073A (en) Rotary valve
US4491815A (en) Rotary actuator
JPS5911789B2 (en) Rotary type electromagnetic flow control valve device
JPS61278674A (en) Motor operated
US4647010A (en) Combined torque motor and rotary flow control valve unit
JPH0133714B2 (en)
JPS58221087A (en) Solenoid operated type flow rate control valve gear
JP2555571B2 (en) Rotary Solenoid Actuator
JPS61175383A (en) Electrically operated valve
JPS6362979A (en) Rotary solenoid type actuator
JP2575333Y2 (en) Waterproof structure of rotary valve
JPS61109982A (en) Electrically powered valve
JPS6362981A (en) Rotary solenoid type actuator
JPH0478874B2 (en)
JP2605864B2 (en) Flow control valve
JPS58221086A (en) Solenoid operated type flow rate control valve gear
JPH0134786Y2 (en)
JP2001235049A (en) Motor-driven selector valve
JPH029160Y2 (en)