JPS59196512A - Method of producing high foamable plastic cable - Google Patents

Method of producing high foamable plastic cable

Info

Publication number
JPS59196512A
JPS59196512A JP58071189A JP7118983A JPS59196512A JP S59196512 A JPS59196512 A JP S59196512A JP 58071189 A JP58071189 A JP 58071189A JP 7118983 A JP7118983 A JP 7118983A JP S59196512 A JPS59196512 A JP S59196512A
Authority
JP
Japan
Prior art keywords
conductor
foaming
temperature
plastic cable
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071189A
Other languages
Japanese (ja)
Inventor
修 清水
昌 木下
斉藤 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP58071189A priority Critical patent/JPS59196512A/en
Publication of JPS59196512A publication Critical patent/JPS59196512A/en
Pending legal-status Critical Current

Links

Classifications

    • B29C47/92

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高発泡プラスチックケーブルの製造方法に係わ
り、特に化学発泡剤の分解残渣に起因する電気特性の低
下および導体の変色を改良した高発泡プラスチックテー
ブルの製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a highly foamed plastic cable, and particularly to a highly foamed plastic cable that improves deterioration in electrical properties and discoloration of conductors caused by decomposition residues of chemical foaming agents. This invention relates to a method for manufacturing a table.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来がら、発泡ポリエチレンのような発泡プラスチック
絶縁ケーブルを製造するにあたり、化学発泡剤を配合し
たプラスチックを押出機に供給して発泡剤の分解温度以
上の温度で導体上に押出被覆し、次いでこれを空気中で
発泡させた後冷却固化することが行なわれている。
Conventionally, in manufacturing foamed plastic insulated cables such as foamed polyethylene, plastic mixed with a chemical foaming agent is fed into an extruder, extruded and coated onto a conductor at a temperature above the decomposition temperature of the foaming agent, and then this is coated onto a conductor. It is carried out to foam in the air and then cool and solidify.

一方近時同軸ケーブル等においては、絶縁体の発泡率を
高くし、これによって誘電率やtanδの域少および漏
洩減衰量の低減をはかった、いわゆる高発泡プラスチッ
クケーブルの開発がすすめられている。
On the other hand, in recent years, in the field of coaxial cables and the like, progress has been made in the development of so-called highly foamed plastic cables in which the foaming rate of the insulator is increased, thereby reducing the dielectric constant, tan δ range, and leakage attenuation.

また高発泡ケーブルにおいては、設計上同一ケーブルサ
イズでも導体径をより大きくして抵抗減衰量を小さくす
ることができ、従ってケーブルの不在化および材料コス
トの低減をはかることができるという利点がある。
In addition, highly foamed cables have the advantage that even if the cable size is the same in terms of design, the conductor diameter can be made larger to reduce the amount of resistance attenuation, thereby eliminating the need for cables and reducing material costs.

しかしながら単純に発泡剤の配合量を増やしてもただち
に高い発泡率を得ることはできないことは各種技術文献
等によっても明らかである。このため、高発泡率の絶縁
体を有するケーブルはガス発泡による製法がもっばら採
用されている。ところが、ガス発泡法は多大な設備費を
必要とし、化学発泡法の経済性も見逃せない。
However, it is clear from various technical documents that a high foaming rate cannot be obtained immediately by simply increasing the amount of foaming agent blended. For this reason, cables having high foaming ratio insulators are often manufactured using gas foaming. However, the gas foaming method requires large equipment costs, and the economic efficiency of the chemical foaming method cannot be overlooked.

本発明者等は、上記のような化学発泡法の問題を解決す
るために種々検討を重ねた結果、ベース樹脂の選定や押
出し条件の改善によって高発泡率を得ることができるよ
うになった。
The present inventors have conducted various studies to solve the problems of the chemical foaming method as described above, and as a result, it has become possible to obtain a high foaming rate by selecting a base resin and improving extrusion conditions.

ところが、絶縁体中への発泡剤の配合量を増やすと発泡
剤の分解残渣が多量に生じ、これがtanδの増大や高
周波領域での減衰量の増大などの電気特性の低下や、0
.との共存下で内部導体の変色をもたらすという問題が
生じた。
However, when the amount of foaming agent blended into the insulator is increased, a large amount of decomposed residue of the foaming agent is generated, which causes deterioration of electrical properties such as an increase in tan δ and an increase in attenuation in the high frequency region, and
.. A problem arose in that the internal conductor became discolored.

また導体の変色は導体抵抗の増大をもたらし、いっそう
減衰量を増大させる一因になるとも考えられている。
It is also believed that the discoloration of the conductor causes an increase in the conductor resistance, which is a contributing factor to further increasing the amount of attenuation.

そこで本発明者等は、このような高発泡プラスチック絶
縁体を空気中或いは減圧下で加熱処理し発泡剤の分解残
渣を絶縁体中から速かに揮散させる方法を試みた。しか
し、いずれの方法においてもtanδおよび減衰量の減
少はみられるが空気中加熱の方法においては、高温加熱
するかあるいは低湿で長時間加熱しなければならないと
いう難点があり、加熱により揮散する分解残渣が02と
の共存下で導体と接触することになるので、導体の変色
の防止が十分できないという難点があった。
Therefore, the present inventors attempted a method of heat-treating such a highly foamed plastic insulator in air or under reduced pressure to quickly volatilize the decomposition residue of the foaming agent from within the insulator. However, although a decrease in tan δ and attenuation is observed in both methods, the method of heating in air has the disadvantage that it must be heated at a high temperature or at low humidity for a long time, and the decomposition residue that evaporates when heated Since it comes into contact with the conductor in the coexistence with 02, there is a problem in that discoloration of the conductor cannot be sufficiently prevented.

また、真空中あるいは減圧下で加熱する方法においては
、所定の湿度になるまでに時間がかかり、その後はケー
ブルを巻回したドラム等ケーブルの絶縁体と接触してい
る物の温度が高まり、絶縁体を軟化変形させてしまう恐
れがあった。
In addition, in the method of heating in a vacuum or under reduced pressure, it takes time to reach the specified humidity, and after that the temperature of objects in contact with the cable insulation, such as the drum around which the cable is wound, increases and the insulation There was a risk that the body would become soft and deformed.

〔発明の目的〕[Purpose of the invention]

本発明はこのような難点を解消し、化学発泡剤を用いて
電気特性に優れ、かつ導体変色のない高発泡率のプラス
チックケーブルを得るための製造方法を提供することを
目的とする。
It is an object of the present invention to overcome these difficulties and to provide a manufacturing method for obtaining a high foaming rate plastic cable that has excellent electrical properties and does not cause discoloration of the conductor using a chemical foaming agent.

〔発明の概要〕[Summary of the invention]

本発明は、化学発泡剤を配合したポリエチレンのような
プラスチック組成物を導体上に発泡剤の分解温度以上の
温度で押出被覆して発泡させた後、  □不活性ガス中
で60℃以上の温度に加熱処理を行なうことにより、発
泡剤の分解による残渣を速やかに絶縁被覆中から揮散さ
せて除去するとともに、導体変色の要因となるO7をと
り除き残渣と共存させないようにした高発泡プラスチッ
クケーブルの製造方法に関する。
In the present invention, a plastic composition such as polyethylene mixed with a chemical foaming agent is extruded onto a conductor at a temperature higher than the decomposition temperature of the foaming agent and foamed, and then □ At a temperature higher than 60°C in an inert gas. By applying heat treatment to the insulation coating, the residue from the decomposition of the foaming agent is quickly volatilized and removed from the insulation coating, and O7, which causes discoloration of the conductor, is removed to prevent it from coexisting with the residue. Regarding the manufacturing method.

ここで本発明における高発泡ケーブルとは、発泡率60
%以上のポリエチレン、ポリプロピレン、シリル変性ポ
リエチレン等を銅導体上に被覆したものである。
Here, the highly foamed cable in the present invention refers to a foaming ratio of 60
% or more of polyethylene, polypropylene, silyl-modified polyethylene, etc., coated on a copper conductor.

本発明における化学発泡剤としては、例えばアゾジカル
ボンアミド(以下ADOAという)やP。
Examples of the chemical blowing agent in the present invention include azodicarbonamide (hereinafter referred to as ADOA) and P.

y−オキシビス(ベンゼンスルホニルヒドラジド)(以
下、0BSHという)その他公知の化学発泡剤を用いる
ことができる。
Y-oxybis(benzenesulfonylhydrazide) (hereinafter referred to as 0BSH) and other known chemical blowing agents can be used.

発泡剤の配合量は、使用するプラスチックや発泡剤の種
類、およびどの程度の発泡率のものを製造しようとして
いるか等によって異なるが、プラスチック100重量部
当りほぼ1〜5重量部の範囲が好ましい。
The amount of the blowing agent to be added varies depending on the type of plastic used, the type of blowing agent, and the foaming rate to be manufactured, but is preferably in the range of about 1 to 5 parts by weight per 100 parts by weight of the plastic.

また本発明において、加熱処理湿度を、60℃以上で、
かつ絶縁体を構成するプラスチックの軟 5− 化点以下の温度に限定したのは、60℃未満の温度では
電気特性を向上させる効果がほとんどなく、反対にプラ
スチックの軟化点以上の温度では絶縁体の形状が不安定
になる等の不都合が生じ好ましくないためである。
In addition, in the present invention, the heat treatment humidity is 60°C or higher,
In addition, the reason why we limited the temperature to below the softening point of the plastic that makes up the insulator is that temperatures below 60°C have little effect on improving electrical properties, and conversely, temperatures above the softening point of the plastic cause the insulator to deteriorate. This is because there are disadvantages such as the shape becoming unstable, which is not preferable.

さらに不活性ガスには、NtあるいはAr等が好適する
。熱処理がこのガスの対流に寄与するところが大きいの
で、ガスを循環させるのもよい。
Furthermore, Nt, Ar, or the like is suitable as the inert gas. Since heat treatment greatly contributes to the convection of this gas, it is also good to circulate the gas.

処理温度は絶縁体軟化温度にできるだけ近い方が処理時
間を短縮できる。
The treatment time can be shortened if the treatment temperature is as close as possible to the insulator softening temperature.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例について記載する。 Next, examples of the present invention will be described.

実施例1 メルトインデックス3、密度0.92の低密度ポリエチ
レンとADOAおよび0BSR含有マスターバツチを、
ポリエチレン100重量部に対してADOAおよび0B
8Hの配合量がそれぞれ1.5および0.8重量部にな
るように混合し、これを押出機に供給し、押出温度18
0℃で直径1.8mの軟鋼線上に絶縁体外径(ダイス内
径)7.3−で押 6− 重被覆して自然発泡させた。
Example 1 A masterbatch containing low density polyethylene with a melt index of 3 and a density of 0.92 and containing ADOA and 0BSR,
ADOA and 0B per 100 parts by weight of polyethylene
The amounts of 8H were mixed to be 1.5 parts by weight and 0.8 parts by weight, respectively, and the mixture was fed to an extruder and the extrusion temperature was set to 18 parts by weight.
At 0° C., the insulator was overlaid on a mild steel wire with a diameter of 1.8 m with an outer diameter of 7.3 mm (inner diameter of the die) and allowed to foam naturally.

次いで得られた発泡ポリエチレン絶縁線心(発泡率75
%)を窒素ガス下で60℃、70°C1および80″C
の温度で加熱し一定時間保持し、絶縁体の誘電正接(t
anδ)の値を測定した。
Next, the obtained foamed polyethylene insulated wire core (foaming ratio 75
%) under nitrogen gas at 60°C, 70°C1 and 80″C
The dielectric loss tangent (t
and (δ) was measured.

測定結果を図面のグラフに示す。The measurement results are shown in the graph of the drawing.

また比較のために、同じ温度条件で空気中で加熱処理を
行なった後のtanδの変化を測定した。
For comparison, changes in tan δ after heat treatment in air under the same temperature conditions were measured.

測定結果を同じグラフ中に破線で示す。The measurement results are shown as dashed lines in the same graph.

このとき、減圧下で熱処理したものと比較したらtan
δの改善効果はわずかに減圧下処理のものの方が優るが
、所定温度に到達するまでの時間が(容器の大きさによ
り異なるため絶対比較はできないが)本発明の方法の場
合非常に早く、処理の合計時間は結局本発明の方法がよ
り短時間であったO 実施例2 実施例1で得られたものと同じ高発泡ポリエチレン絶縁
線心を、窒素ガス存在下で温度70”Cで加熱処理を行
なった後、200MHzにおける減衰量を測定した。
At this time, when compared with the one heat-treated under reduced pressure, the tan
The effect of improving δ is slightly better when treated under reduced pressure, but in the case of the method of the present invention, the time it takes to reach the specified temperature (although an absolute comparison cannot be made because it varies depending on the size of the container) is very fast. The total treatment time was ultimately shorter with the method of the invention. Example 2 The same highly expanded polyethylene insulated wire core as obtained in Example 1 was heated at a temperature of 70"C in the presence of nitrogen gas. After the treatment, the amount of attenuation at 200 MHz was measured.

またこの絶縁線心の絶縁体を剥離し、導体表面の状態を
肉眼で観察した。
In addition, the insulator of this insulated wire core was peeled off, and the condition of the conductor surface was observed with the naked eye.

また比較のために加熱処理なしおよび表の条件で加熱処
理を行なったケーブルについて減衰量測定と導体表面の
観察を行なった。
For comparison, attenuation was measured and the conductor surface was observed for cables that were not heat-treated and were heat-treated under the conditions shown in the table.

以上の測定および観察結果を次表に示す。The results of the above measurements and observations are shown in the table below.

表 〔発明の効果〕 以上の実施例からも明らかなように、本発明の方法によ
れば、導体表面の変色がなく、電気特性に優れ特に高周
波の減衰量の小さな高発泡率のプラスチックケーブルを
製造することができる。
Table [Effects of the Invention] As is clear from the above examples, the method of the present invention can produce a high foaming rate plastic cable that does not discolor the conductor surface, has excellent electrical properties, and has particularly low attenuation at high frequencies. can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例1で得られた絶縁線心について、加熱温度
および雰囲気の違いによるtanδの時間的変化の違い
を示すグラフである。 =9− →− 4匠 靭
The drawing is a graph showing differences in tan δ changes over time due to differences in heating temperature and atmosphere for the insulated wire core obtained in Example 1. =9− →− 4 Craftsmanship

Claims (1)

【特許請求の範囲】 1、 化学発泡剤を配合したプラスチック組成物を導体
上に押出被覆しこれを発泡させた後、不活性ガス中で6
0℃以上の温度に加熱処理を行なうことを特徴とする高
発泡プラスチックケーブルの製造方法。 2、絶縁体の発泡率が60%以上であることを特徴とす
る特許請求の範囲第1項記載の高発泡プラスチックケー
ブルの製造方法。
[Claims] 1. After extrusion coating a conductor with a plastic composition containing a chemical foaming agent and foaming it, it is heated in an inert gas for 6 hours.
1. A method for producing a highly foamed plastic cable, which comprises performing heat treatment to a temperature of 0° C. or higher. 2. The method for manufacturing a highly foamed plastic cable according to claim 1, wherein the foaming rate of the insulator is 60% or more.
JP58071189A 1983-04-22 1983-04-22 Method of producing high foamable plastic cable Pending JPS59196512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071189A JPS59196512A (en) 1983-04-22 1983-04-22 Method of producing high foamable plastic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071189A JPS59196512A (en) 1983-04-22 1983-04-22 Method of producing high foamable plastic cable

Publications (1)

Publication Number Publication Date
JPS59196512A true JPS59196512A (en) 1984-11-07

Family

ID=13453460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071189A Pending JPS59196512A (en) 1983-04-22 1983-04-22 Method of producing high foamable plastic cable

Country Status (1)

Country Link
JP (1) JPS59196512A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113050U (en) * 1984-12-28 1986-07-17
JPS61113046U (en) * 1984-12-28 1986-07-17
JPH0333136A (en) * 1989-04-20 1991-02-13 Astro Valcour Inc Rapid purge of foaming agent from foam polymer product
JP2002251922A (en) * 2001-02-23 2002-09-06 Furukawa Electric Co Ltd:The Coaxial cable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113050U (en) * 1984-12-28 1986-07-17
JPS61113046U (en) * 1984-12-28 1986-07-17
JPS6347560Y2 (en) * 1984-12-28 1988-12-08
JPH0333136A (en) * 1989-04-20 1991-02-13 Astro Valcour Inc Rapid purge of foaming agent from foam polymer product
JP2002251922A (en) * 2001-02-23 2002-09-06 Furukawa Electric Co Ltd:The Coaxial cable

Similar Documents

Publication Publication Date Title
US4683166A (en) Foamed plastic insulated wire and method for producing same
US6064008A (en) Conductor insulated with foamed fluoropolymer using chemical blowing agent
CA1124950A (en) Foamed plastic insulated wire and method for producing the same
JPS59196512A (en) Method of producing high foamable plastic cable
US4547328A (en) Method for producing foamed plastic insulator
JPS58178914A (en) Method of producing high foamable plastic cable
JP3241126B2 (en) Small diameter high foam polyethylene insulated cable and method of manufacturing the same
JP4694225B2 (en) Method for reducing water absorption of coaxial cable and method for reducing tan δ of coaxial cable
JP2005047981A (en) Resin composition and high-frequency coaxial cable using the same
JPH0824013B2 (en) Method for manufacturing foam insulated wire
JP2571570B2 (en) Manufacturing method of foam insulated wire
JPH0440379B2 (en)
JPH02276115A (en) Manufacture of foam plastic insulated wire
JP3514835B2 (en) High foam covered wire and method of manufacturing the same
JP2001266650A (en) Electric insulating composition and electric cable
JPH0668940B2 (en) Method for manufacturing foam insulated wire
JPH04348141A (en) Polymer composition for foam molding
JP2003068152A (en) High foaming and high frequency coaxial cable and method of manufacturing same
JPS63224120A (en) Manufacture of foam insulated wire
JPH0755990B2 (en) Expandable polyolefin resin composition for coating electric wires
JPS6039712A (en) Method of producing foamable polypropylene insulated wire
JPS63170817A (en) Manufacture of highly foaming insulated wire
JP2002251922A (en) Coaxial cable
JPH0367416A (en) Manufacture of foamed insulator electric wire
JPH06295621A (en) Electric insulation composite and electric wire/cable