JP2005047981A - Resin composition and high-frequency coaxial cable using the same - Google Patents

Resin composition and high-frequency coaxial cable using the same Download PDF

Info

Publication number
JP2005047981A
JP2005047981A JP2003203708A JP2003203708A JP2005047981A JP 2005047981 A JP2005047981 A JP 2005047981A JP 2003203708 A JP2003203708 A JP 2003203708A JP 2003203708 A JP2003203708 A JP 2003203708A JP 2005047981 A JP2005047981 A JP 2005047981A
Authority
JP
Japan
Prior art keywords
weight
parts
sample
density polyethylene
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003203708A
Other languages
Japanese (ja)
Other versions
JP4036157B2 (en
Inventor
Masahiro Abe
正浩 阿部
Kimihiro Yokoyama
公宏 横山
Minoru Kameyama
稔 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003203708A priority Critical patent/JP4036157B2/en
Publication of JP2005047981A publication Critical patent/JP2005047981A/en
Application granted granted Critical
Publication of JP4036157B2 publication Critical patent/JP4036157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition good in foamability and electrical properties. <P>SOLUTION: The resin composition is a mixture obtained by adding 0.001 to 0.1 pt.wt. foaming nucleating agent to 100 pts.wt. mixture obtained by mixing 55 to 90 pts.wt. medium-density polyethylene having a density of 0.931 to 0.939 g/cm<SP>3</SP>and synthesized with a metallocene catalyst with 5 to 40 pts.wt. high-density polyethylene having a density of 0.950 to 0.965 g/cm<SP>3</SP>and 5 to 40 pts.wt. low-density polyethylene having a density of 0.925 to 0.930 g/cm<SP>3</SP>. The high-frequency coaxial cable 10 is produced by surrounding a conductor 11 with a foam insulation layer 12 made of a foam from the resin composition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂組成物及びそれを用いた高周波同軸ケーブルに係り、特に、移動体通信施設やマイクロ波通信施設で用いられる高周波同軸ケーブルに関するものである。
【0002】
【従来の技術】
携帯電話に必要な移動体通信施設やテレビ局のマイクロ波通信施設などで用いられる高周波同軸ケーブルは、導体の外周に、発泡させた樹脂組成物を押出成形することで構成される発泡絶縁層を有している。この樹脂組成物としては、従来、溶融張力(MS)が大きく、発泡させ易い高圧法低密度ポリエチレンをベースにし、誘電正接(tanδ)が小さく、減衰量の小さい高密度ポリエチレン又は中密度ポリエチレンを少量ブレンドしたものが用いられていた。
【0003】
ここで、樹脂組成物を発泡させるために発泡核剤を用いているが、発泡核剤としては、物理発泡核剤と化学発泡核剤の2種類がある。物理発泡核剤としては、タルク(珪酸マグネシウム)や窒化珪素(BN)が主に使用されている。また、化学発泡核剤としては、アゾジカルボンアミド(以下、ADCAと記す)やp,p’−オキシ−ビス−ベンゼンスルホニルヒドラジド(以下、OBSHと記す)が主に使用されている(例えば、特許文献1参照)。発泡核剤を樹脂組成物中に分散させることで、各発泡核剤がそれぞれ気泡開始点となり、樹脂組成物が発泡される。
【0004】
近年、通信速度の向上及び容量アップを目的として、高周波同軸ケーブルの使用周波数が高くなる傾向にあり、例えば移動体通信施設の高周波同軸ケーブルにおいては使用周波数が800MHzから2.2GHzとなっている。これに伴い、信号の減衰量の小さいケーブルが要求されるようになっている。従来の低密度ポリエチレンを多く含む樹脂組成物では、この要求に対処できなくなっており、より減衰量の小さい高密度ポリエチレン又は中密度ポリエチレンを多く含む樹脂組成物とする必要が生じている。
【0005】
【特許文献1】
特開平9−52983号公報
【0006】
【発明が解決しようとする課題】
ところで、高密度ポリエチレン又は中密度ポリエチレンを多く含む樹脂組成物を用いて、外径がφ25mmを超える大径の高周波同軸ケーブルの発泡絶縁層を被覆形成する場合、減衰量は小さくなるものの発泡性が悪化することから、層中の気泡壁が破れて“巣(巨大な空隙)”が発生するという問題があった。絶縁層中における“巣”の発生は、高周波同軸ケーブルの電圧定在波比(VSWR)の上昇を招くため、好ましくない。
【0007】
一方、発泡核剤として化学発泡核剤を用いた場合、押出被覆時の加熱によって発泡核剤が分解して窒素ガスが発生し、この窒素ガスが気泡の開始点となり、微細な気泡を有する発泡絶縁層を形成することができる。しかしながら、OBSHは熱分解時に水が発生し、また、ADCAは熱分解時に高極性分解残渣が生成することから、化学発泡核剤を多く混合した場合、発泡絶縁層の電気特性を悪化させるという問題があった。また、発泡核剤として物理発泡核剤を用いた場合、少量の添加では、化学発泡核剤と比較して気泡が大きくなりやすいため、気泡を微細化するには添加量を多くする必要がある。その結果、発泡絶縁層の電気特性を悪化させるという問題があった。
【0008】
以上の事情を考慮して創案された本発明の一つの目的は、減衰量が小さく、かつ、発泡性が良好な樹脂組成物を提供することにある。
【0009】
また、本発明の他の目的は、減衰量が小さく、かつ、VSWRが小さい高周波同軸ケーブルを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成すべく本発明に係る樹脂組成物は、メタロセン触媒により合成した密度が0.931〜0.939g/cmの中密度ポリエチレン55〜90重量部に、密度が0.950〜0.965g/cmの高密度ポリエチレンを5〜40重量部及び密度が0.925〜0.930g/cmの低密度ポリエチレンを5〜40重量部の割合で混合した混合物100重量部に対し、
発泡核剤を0.001〜0.1重量部の割合で混合した混合組成物で構成したものである。
【0011】
ここで、混合組成物のメルトフローレートが1〜10g/10分であることが好ましい。
【0012】
以上によれば、減衰量が小さいという高密度ポリエチレンの良好な電気特性は保持したまま、発泡核剤の混合割合が少ないにも関わらず良好な発泡性を有する樹脂組成物が得られる。
【0013】
一方、本発明に係る高周波同軸ケーブルは、導体の外周に、上述した樹脂組成物の発泡体で構成される発泡絶縁層を設けたものである。
【0014】
以上によれば、発泡性が良好な樹脂組成物で構成される発泡絶縁層であるため、層中に巣が発生することはない。また、樹脂組成物中における発泡核剤の混合割合が少ないため、高周波同軸ケーブルの電気特性は良好となる。
【0015】
【発明の実施の形態】
以下、本発明の好適一実施の形態を添付図面に基づいて説明する。
【0016】
本発明の好適な一実施形態に係る樹脂組成物は、
メタロセン触媒により合成した密度が0.931〜0.939g/cmの中密度ポリエチレン55〜90重量部に、密度が0.950〜0.965g/cmの高密度ポリエチレンを5〜40重量部及び密度が0.925〜0.930g/cmの高圧法低密度ポリエチレンを5〜40重量部の割合で混合した混合物100重量部に対し、
発泡核剤を0.001〜0.1重量部の割合で混合してなる混合組成物で構成される発泡組成物である。また、混合組成物のメルトフローレート(以下、MFRと記す)は1〜10g/10分に調整される。このMFRは、JIS K7210に準拠し、190℃、21.18Nの押出圧力で測定した値である。
【0017】
ここで言う「高圧法低密度ポリエチレン」とは、ラジカル重合で製造される低密度ポリエチレンである。
【0018】
この樹脂組成物を用いた本発明の好適な一実施の形態に係る高周波同軸ケーブルは、図1に示すように、内部導体11の外周に、前述した樹脂組成物で構成される発泡絶縁層12を設けたものである。発泡絶縁層12の周りには、ケーブル10を曲げ易くするための波付け金属管(外部導体)13が適宜設けられる。また、外部導体13の周りには、ケーブル10の保護及び水の浸入防止を目的として、ポリエチレン組成物で構成されるシース14が適宜設けられる。ここで、内部導体11の外周に発泡絶縁層12を押出し被覆してなるものを発泡コアと称する。
【0019】
内部導体11としては、導電性が良好な金属パイプ、例えば銅パイプが使用され、長尺コイル状のスパイラルタイプの波付け金属管が用いられる。
【0020】
また、発泡絶縁層12は、樹脂組成物を発泡させてなるコンパウンドで構成され、例えば2.5〜20mmの厚さで押出し被覆される。
【0021】
ケーブル10のサイズは、発泡コアの外径に応じて、直径が5、8、10、17、20、29、39mmの7種類がある。ここで、ケーブル10のサイズが10mm以上の場合、ケーブル10の屈曲性及び可撓性を良好とするために、図1に示した波付け金属管(コルゲート管)13が用いられる。波付け金属管13としては、図1に示したコルゲート状のアニュラータイプ、長尺コイル状のスパイラルタイプの2種類がある。また、外部導体13は、ケーブル10の屈曲性及び可撓性を良好とするために薄肉に形成され、例えば肉厚は0.2〜1mmとされる。尚、ケーブル10のサイズが10mm未満の場合、発泡コアの外周に波付け金属管13を設けなくてもよい。
【0022】
次に、本実施の形態に係る高周波同軸ケーブル10の製造方法を、添付図面に基づいて説明する。
【0023】
図2に示すように、ケーブル製造装置20は、主に、内部導体11(図1参照)を送出する送出ドラム21と、送出された内部導体11の外周に、発泡絶縁層12(図1参照)を被覆する押出機27と、内部導体11の外周に発泡絶縁層を設けてなる発泡コア31の巻き取りを行う巻取ドラム33とで構成される。
【0024】
送出ドラム21から送出された内部導体11は、予熱槽23において予熱された後、押出機27に導入される。押出機27において、内部導体11の外周に、発泡絶縁層が被覆形成され、発泡コア31が得られる。押出機27は、第1押出部27a、第2押出部27b、及び押出ヘッド部27cで構成される。発泡絶縁層を構成するコンパウンドは、第1押出部27aにおいて、溶融樹脂(中密度ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、及び発泡核剤の混合組成物)28と、ガス注入装置29から注入、供給される発泡剤(例えば、炭酸ガスなど)30とをよく混練した後、第2押出部27bにおいて発泡に適した温度に低下させると共に、発泡度を70〜80%、好ましくは75〜80%に調整する。この発泡コンパウンドを押出ヘッド部27cにおいて内部導体11の外周に押出し被覆し、発泡絶縁層を形成する。
【0025】
次に、発泡コア31を冷却水槽32内に導入して冷却を行い、巻取ドラム33に巻き取る。
【0026】
その後、巻取ドラム33に巻き取られた発泡コア31を送出し、その外周に、順次、外部導体13(図1参照)、保護シース(外皮)14(図1参照)を設けることで、図1に示した高周波同軸ケーブル10が得られる。
【0027】
ここで、溶融樹脂28は、高圧法低密度ポリエチレンに発泡核剤を練り込み、樹脂組成物における発泡核剤の配合割合の10〜100倍の濃度の核剤マスターバッチを形成し、そのマスターバッチに中密度ポリエチレン及び高密度ポリエチレンをドライブレンドし、発泡核剤の割合を0.001〜0.1重量部に調整したものである。
【0028】
また、発泡させるための発泡剤(ガス)30としては、樹脂の発泡に慣用的に用いているものであれば全て適用可能であり、炭酸ガスの他に、例えば、規制対象外のフロンガス、窒素ガス、アルゴンガス、又はこれら不活性ガスの混合ガスなどが挙げられる。
【0029】
次に、本実施の形態に係る樹脂組成物及びそれを用いた高周波同軸ケーブルの作用を説明する。
【0030】
ポリエチレンの高周波帯域でのtanδは、密度と密接に関係しており、不純物の量が同じであれば密度が高いほど小さくなる。従って、純粋にtanδを小さくするのであれば、高密度ポリエチレンを用いるのが好ましい。しかし、高密度ポリエチレンは、分子鎖の分岐が小さいため、発泡し易さの尺度となる伸張粘度が小さく、発泡樹脂を用いた絶縁層を押出被覆する際に巣が発生し易くなってしまう。
【0031】
そこで、本実施の形態に係る樹脂組成物においては、ベースとなるポリエチレンとして、メタロセン触媒により合成した密度が0.931〜0.939g/cmの中密度ポリエチレンを用いている。これは、メタロセン触媒を用いた中密度ポリエチレンは、合成時に要する触媒量及びその残渣量などが、その他の触媒を用いた中密度ポリエチレンと比較して少なく、かつ、tanδが小さいという特長を有しているからである。
【0032】
また、本実施の形態に係る樹脂組成物は、メタロセン触媒により合成した密度が0.931〜0.939g/cmの中密度ポリエチレンに、密度が0.925〜0.930g/cmの高圧法低密度ポリエチレンを所定の割合でブレンドした時に、伸張粘度が著しく増大するという新たな知見に基づいている。これによって、このブレンド物に、tanδを小さくするのに効果的な高密度ポリエチレンをブレンドした時の、伸張粘度の低下を抑えることができる。
【0033】
以上より、本実施の形態に係る樹脂組成物は、メタロセン触媒により合成した中密度ポリエチレン、高密度ポリエチレン、及び高圧法低密度ポリエチレン(各ポリエチレン)を、それぞれ所定の密度に調整し、かつ、所定の割合でブレンドしている。また、発泡体である樹脂組成物のMFRを1〜10g/10分に調整している。
【0034】
これによって、中密度ポリエチレン及び高密度ポリエチレンの、tanδ及び減衰量が小さいという特性を保ったまま、発泡挙動を安定化することができる。その結果、図1に示した発泡絶縁層12を押出被覆する際に、層中に巣が発生するおそれがなく、延いては減衰量及びVSWRが小さな高周波同軸ケーブル10が得られる。
【0035】
ここで、メタロセン触媒により合成した中密度ポリエチレンの密度が0.930g/cm以下では、tanδが所定値よりも大きくなってしまい、また、密度が0.940g/cmを超えると、伸張粘度が小さくなってしまい、発泡絶縁層12の被覆時に巣が発生し易くなるためである。また、中密度ポリエチレンの混合割合を55〜90重量部としたのは、55重量部未満だとtanδが所定値よりも大きくなってしまい、90重量部を超えると十分な溶融張力を得る(伸張粘度を十分に向上させる)ことができないためである。
【0036】
高圧法低密度ポリエチレンの密度が0.925g/cm未満では、tanδが所定値よりも大きくなってしまい、また、密度が0.930g/cmを超えると、伸張粘度が小さくなってしまい、発泡絶縁層12の被覆時に巣が発生し易くなるためである。また、中密度ポリエチレン55〜90重量部に対する高圧法低密度ポリエチレンの混合割合を5〜40重量部としたのは、5重量部未満だと伸張粘度を著しく増大させる効果が十分に得られず、40重量部を超えるとtanδが所定値よりも大きくなってしまうためである。
【0037】
高密度ポリエチレンの密度が0.950g/cm未満では、tanδが所定値よりも大きくなってしまい、また、密度が0.965g/cmを超えると、伸張粘度が小さくなってしまい、発泡絶縁層12の被覆時に巣が発生し易くなるためである。また、中密度ポリエチレン55〜90重量部に対する高密度ポリエチレンの混合割合を5〜40重量部としたのは、5重量部未満だとtanδを十分に小さくさせることができず、40重量部を超えると伸張粘度が大きく低下してしまうためである。
【0038】
樹脂組成物のMFRが、1g/10分未満だと、発泡絶縁層12の押出被覆時に発泡コンパウンドの発熱が大きくなって、発泡絶縁層12の内層側と外層側とで温度ムラが生じ、巣の発生を招いてしまい、10g/10分を超えると、十分な溶融張力を得ることができず、発泡絶縁層12の被覆時に巣が発生し易くなるためである。
【0039】
ケーブル10の安定化を図るためには、発泡絶縁層12の気泡サイズを極力小さくする必要がある。このため、発泡核剤として、気泡の微細化効果が大きい化学発泡核剤、好ましくはADCA、OBSH、又はこれらの混合物を用いる。化学発泡核剤の添加量が少ない程、発泡絶縁層12の電気特性が良好となる。このため、各ポリエチレンの混合物100重量部に対して、1種の化学発泡核剤を単独で混合する場合は0.001〜0.1重量部、又は2種の化学発泡核剤を併用して混合する場合は合計0.002〜0.1重量部混合する。
【0040】
以上、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。
【0041】
【実施例】
次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
【0042】
次に、本発明の実施の形態について、実施例に基づいて説明するが、本発明の実施の形態はこれらの実施例に限定されるものではない。
【0043】
<実施例(試料1〜試料15)及び比較例(試料21〜試料34)>
メタロセン触媒により合成した中密度ポリエチレン、高密度ポリエチレン、低密度ポリエチレン、ADCA及び/又はOBSHを、所定の割合で混合して樹脂組成物を作製した(試料1〜15及び試料21〜34)。
【0044】
次に、各試料を発泡させてなる発泡コンパウンドで構成される発泡絶縁層を、内部導体である銅パイプの外周に押出被覆し、発泡コアを作製する。その後、発泡コアの外周に、アニュラータイプの波付け金属管(外部導体)及び保護シースを設け、外径がφ39mmの高周波同軸ケーブルを作製した。
【0045】
ここで、試料1,2は中密度ポリエチレンの種類を変更した例であり、
試料1は、60重量部の試料B、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料2は、60重量部の試料C、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0046】
また、試料3〜5は高密度ポリエチレンの種類を変更した例であり、
試料3は、60重量部の試料A、20重量部の試料a、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料4は、60重量部の試料A、20重量部の試料b、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料5は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0047】
また、試料6,7は低密度ポリエチレンの種類を変更した例であり、
試料6は、60重量部の試料A、20重量部の試料c、20重量部の試料β、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料7は、60重量部の試料A、20重量部の試料c、20重量部の試料γ、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0048】
また、試料8〜10は各ポリエチレンのブレンド比率を変更した例であり、
試料8は、55重量部の試料A、40重量部の試料c、5重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料9は、90重量部の試料A、5重量部の試料c、5重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料10は、55重量部の試料A、5重量部の試料c、40重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0049】
また、試料11〜15は発泡核剤の種類及びブレンド比率を変更した例であり、
試料11は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.1重量部のADCA)の混合組成物、
試料12は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.1重量部のOBSH)の混合組成物、
試料13は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.001重量部のADCA)の混合組成物、
試料14は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.001重量部のOBSH)の混合組成物、
試料15は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.001重量部のADCA+0.001重量部のOBSH)の混合組成物、
である。
【0050】
一方、試料21〜23は規定外の中密度ポリエチレンを用いた例であり、
試料21は、60重量部の試料D、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料22は、60重量部の試料E、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料23は、70重量部の試料F、15重量部の試料c、15重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0051】
また、試料24は規定外の高密度ポリエチレンを用いた例であり、
試料24は、60重量部の試料A、20重量部の試料d、20重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0052】
また、試料25,26は規定外の低密度ポリエチレンを用いた例であり、
試料25は、60重量部の試料A、20重量部の試料c、20重量部の試料δ、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料26は、60重量部の試料A、20重量部の試料c、20重量部の試料ε、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0053】
また、試料27〜30は各ポリエチレンのブレンド比率が規定外の例であり、試料27は、50重量部の試料A、50重量部の試料c、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料28は、100重量部の試料A及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料29は、60重量部の試料A、40重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
試料30は、50重量部の試料A、25重量部の試料c、25重量部の試料α、及び発泡核剤(0.005重量部のADCA+0.01重量部のOBSH)の混合組成物、
である。
【0054】
また、試料31〜34は発泡核剤のブレンド比率が規定外の例であり、
試料31は、60重量部の試料A、20重量部の試料c、及び20重量部の試料αの混合組成物、
試料32は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.2重量部のADCA)の混合組成物、
試料33は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.2重量部のOBSH)の混合組成物、
試料34は、60重量部の試料A、20重量部の試料c、20重量部の試料α、及び発泡核剤(0.2重量部のADCA+0.2重量部のOBSH)の混合組成物、
である。
【0055】
試料1〜15及び試料21〜34の樹脂組成物の諸元、各樹脂組成物のMFR、及び各樹脂組成物を用いた高周波同軸ケーブルの特性(減衰量、VSWR、巣の有無)の評価結果を表1、表2に示す。
【0056】
ここで、樹脂組成物のMFR(メルトフローレート)は、JIS K7210に準拠し、190℃、21.18Nの押出圧力で測定した値である。
【0057】
各ケーブルの減衰量及びVSWRの測定は、アジレント社製スカラネットワークアナライザ8757Dを用いて行った。減衰量は、直径39mmのアニュラータイプケーブルの2.2GHzにおける減衰量によって評価を行い、6.5dB/100m以下を合格とした。VSWRは、1.10以下を合格とした。
【0058】
【表1】

Figure 2005047981
【0059】
【表2】
Figure 2005047981
【0060】
表1に示すように、試料1〜15の各樹脂組成物のMFRは1.3〜9.8g/10分であり、いずれも規定範囲(1〜10g/10分)内であった。また、試料1〜15の各樹脂組成物を用いた高周波同軸ケーブルは、減衰量が6.0〜6.4dB/100mであり、いずれも合格であった。また、各高周波同軸ケーブルは、VSWRが1.00〜1.09であり、いずれも合格であった。また、各高周波同軸ケーブルのいずれにおいても、発泡絶縁層に巣の発生はなかった。
【0061】
これに対して、試料21の樹脂組成物は、中密度ポリエチレンの密度が規定範囲よりも大きいため、伸張粘度が低下してしまい、ケーブルの発泡絶縁層に巣が発生した。その結果、ケーブルのVSWRが大きくなり不合格であった。試料22の樹脂組成物は、中密度ポリエチレンの密度が規定範囲よりも小さいため、tanδが大きくなってしまい、その結果、ケーブルの減衰量が大きくなり不合格であった。試料23の樹脂組成物は、中密度ポリエチレンの密度が規定範囲よりも小さく、かつ、MFRが小さい。このため、樹脂組成物のtanδが大きくなると共にMFRが規定範囲よりも小さくなった。その結果、減衰量が不合格であり、かつ、巣が発生してVSWRが大きくなってしまい、VSWRも不合格であった。
【0062】
試料24の樹脂組成物は、高密度ポリエチレンの密度が規定範囲よりも小さいため、tanδが大きくなってしまい、その結果、ケーブルの減衰量が大きくなり不合格であった。
【0063】
試料25の樹脂組成物は、低密度ポリエチレンの密度が規定範囲よりも小さいため、tanδが大きくなってしまい、その結果、ケーブルの減衰量が大きくなり不合格であった。試料26の樹脂組成物は、低密度ポリエチレンの密度が規定範囲よりも大きいため、伸張粘度が低下してしまい、ケーブルの発泡絶縁層に巣が発生した。また、減衰量が大きくなり不合格であった。
【0064】
試料27の樹脂組成物は低密度ポリエチレンを混合しておらず、また、試料28の樹脂組成物は高密度ポリエチレン及び低密度ポリエチレンを混合していないことから、MFRが規定範囲よりも大きくなり、伸張粘度が著しく低くなることから、発泡絶縁層の被覆形成ができず、ケーブル製造が不可能であった。試料29の樹脂組成物は高密度ポリエチレンを混合しておらず、また、試料30の樹脂組成物は中密度ポリエチレンの混合割合が規定範囲よりも少ないことから、tanδが大きくなってしまい、その結果、ケーブルの減衰量が大きくなり不合格であった。
【0065】
試料31の樹脂組成物は発泡核剤を混合していないことから、樹脂組成物を発泡させることができなかった。その結果、発泡絶縁層の被覆形成ができず、ケーブル製造が不可能であった。試料32〜34の樹脂組成物は発泡核剤の混合割合が規定範囲よりも多いことから、減衰量が大きくなり不合格であった。
【0066】
以上より、実施例1〜15の樹脂組成物を用いて、内部導体の外周に発泡絶縁層を形成し、高周波同軸ケーブルを作製したことで、巣の発生がなく、かつ、減衰量が6.5dB/100m以下、VSWRが1.10以下と電気特性が良好な高周波同軸ケーブルを得ることができた。
【0067】
【発明の効果】
以上要するに本発明によれば、良好な電気特性及び良好な発泡性を有する樹脂組成物が得られるという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の好適な一実施形態に係る高周波同軸ケーブルの平面図である。
【図2】図1の高周波同軸ケーブルの製造装置の概略図である。
【符号の説明】
10 高周波同軸ケーブル
11 内部導体(導体)
12 発泡絶縁層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition and a high-frequency coaxial cable using the same, and more particularly to a high-frequency coaxial cable used in a mobile communication facility and a microwave communication facility.
[0002]
[Prior art]
High-frequency coaxial cables used in mobile communication facilities required for mobile phones and microwave communication facilities for television stations have a foamed insulation layer formed by extruding a foamed resin composition on the outer periphery of a conductor. is doing. This resin composition is based on a high-pressure low-density polyethylene that has a high melt tension (MS) and is easy to foam, and has a small amount of high-density polyethylene or medium-density polyethylene that has a low dielectric loss tangent (tan δ) and low attenuation. A blend was used.
[0003]
Here, a foam nucleating agent is used for foaming the resin composition, and there are two types of foam nucleating agents, a physical foaming nucleating agent and a chemical foaming nucleating agent. As the physical foam nucleating agent, talc (magnesium silicate) or silicon nitride (BN) is mainly used. As chemical foaming nucleating agents, azodicarbonamide (hereinafter referred to as ADCA) and p, p′-oxy-bis-benzenesulfonylhydrazide (hereinafter referred to as OBSH) are mainly used (for example, patents). Reference 1). By dispersing the foam nucleating agent in the resin composition, each foam nucleating agent becomes a bubble starting point, and the resin composition is foamed.
[0004]
In recent years, for the purpose of improving communication speed and increasing capacity, the frequency of use of high-frequency coaxial cables tends to increase. For example, the frequency of use of high-frequency coaxial cables in mobile communication facilities is from 800 MHz to 2.2 GHz. Accordingly, a cable having a small signal attenuation is required. Conventional resin compositions containing a large amount of low-density polyethylene cannot cope with this requirement, and there is a need for a resin composition containing a large amount of high-density polyethylene or medium-density polyethylene with a smaller attenuation.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 9-52983
[0006]
[Problems to be solved by the invention]
By the way, when a foamed insulating layer of a large-diameter high-frequency coaxial cable having an outer diameter exceeding φ25 mm is formed using a resin composition containing a large amount of high-density polyethylene or medium-density polyethylene, the foaming property is reduced although the attenuation is small. Since it deteriorates, there is a problem that the bubble wall in the layer is broken and a “nest (huge void)” is generated. Generation | occurrence | production of the "nest" in an insulating layer invites the raise of the voltage standing wave ratio (VSWR) of a high frequency coaxial cable, and is unpreferable.
[0007]
On the other hand, when a chemical foaming nucleating agent is used as the foaming nucleating agent, the foaming nucleating agent is decomposed by heating during extrusion coating to generate nitrogen gas, and this nitrogen gas becomes the starting point of bubbles, and foaming having fine bubbles. An insulating layer can be formed. However, OBSH generates water during thermal decomposition, and ADCA generates highly polar decomposition residues during thermal decomposition. Therefore, when a large amount of chemical foaming nucleating agent is mixed, the electrical characteristics of the foam insulation layer deteriorate. was there. In addition, when a physical foam nucleating agent is used as the foam nucleating agent, it is necessary to increase the amount of addition in order to make the bubbles finer because bubbles are likely to be larger than a chemical foaming nucleating agent when added in a small amount. . As a result, there is a problem that the electrical characteristics of the foamed insulating layer are deteriorated.
[0008]
One object of the present invention, which was created in view of the above circumstances, is to provide a resin composition having a small amount of attenuation and good foamability.
[0009]
Another object of the present invention is to provide a high-frequency coaxial cable having a small attenuation and a small VSWR.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the resin composition according to the present invention has a density of 0.931 to 0.939 g / cm synthesized with a metallocene catalyst. 3 Medium density polyethylene of 55 to 90 parts by weight, density of 0.950 to 0.965 g / cm 3 5 to 40 parts by weight of high density polyethylene and a density of 0.925 to 0.930 g / cm 3 100 parts by weight of a mixture of 5 to 40 parts by weight of low density polyethylene
It is comprised with the mixed composition which mixed the foaming nucleating agent in the ratio of 0.001-0.1 weight part.
[0011]
Here, the melt flow rate of the mixed composition is preferably 1 to 10 g / 10 min.
[0012]
According to the above, it is possible to obtain a resin composition having a good foaming property while maintaining a good electrical property of the high density polyethylene having a small attenuation amount and a small mixing ratio of the foam nucleating agent.
[0013]
On the other hand, the high-frequency coaxial cable according to the present invention is provided with a foamed insulating layer made of the above-described foamed resin composition on the outer periphery of a conductor.
[0014]
According to the above, since the foamed insulating layer is composed of a resin composition having good foamability, no nest is generated in the layer. Moreover, since the mixing ratio of the foam nucleating agent in the resin composition is small, the electrical characteristics of the high-frequency coaxial cable are good.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.
[0016]
The resin composition according to a preferred embodiment of the present invention is:
Density synthesized by metallocene catalyst is 0.931 to 0.939 g / cm 3 Medium density polyethylene of 55 to 90 parts by weight, density of 0.950 to 0.965 g / cm 3 5 to 40 parts by weight of high density polyethylene and a density of 0.925 to 0.930 g / cm 3 To 100 parts by weight of a mixture of 5 to 40 parts by weight of the high pressure method low density polyethylene
It is a foam composition composed of a mixed composition obtained by mixing a foam nucleating agent at a ratio of 0.001 to 0.1 parts by weight. Further, the melt flow rate (hereinafter referred to as MFR) of the mixed composition is adjusted to 1 to 10 g / 10 minutes. This MFR is a value measured according to JIS K7210 at an extrusion pressure of 190 ° C. and 21.18 N.
[0017]
The “high pressure method low density polyethylene” referred to here is low density polyethylene produced by radical polymerization.
[0018]
As shown in FIG. 1, a high-frequency coaxial cable according to a preferred embodiment of the present invention using this resin composition has a foamed insulating layer 12 made of the resin composition described above on the outer periphery of an internal conductor 11. Is provided. Around the foamed insulating layer 12, a corrugated metal tube (outer conductor) 13 for making the cable 10 easy to bend is appropriately provided. In addition, a sheath 14 made of a polyethylene composition is appropriately provided around the outer conductor 13 for the purpose of protecting the cable 10 and preventing water from entering. Here, the one obtained by extruding and covering the foam insulating layer 12 on the outer periphery of the inner conductor 11 is referred to as a foam core.
[0019]
As the internal conductor 11, a metal pipe having good conductivity, such as a copper pipe, is used, and a spiral coil corrugated metal pipe having a long coil shape is used.
[0020]
Moreover, the foaming insulating layer 12 is comprised with the compound formed by foaming a resin composition, and is extrusion-coated by the thickness of 2.5-20 mm, for example.
[0021]
There are seven types of cable 10 with diameters of 5, 8, 10, 17, 20, 29, and 39 mm depending on the outer diameter of the foam core. Here, when the size of the cable 10 is 10 mm or more, the corrugated metal tube (corrugated tube) 13 shown in FIG. 1 is used in order to make the cable 10 flexible and flexible. As the corrugated metal tube 13, there are two types of corrugated annular type and long coiled spiral type shown in FIG. Further, the outer conductor 13 is formed to be thin in order to improve the flexibility and flexibility of the cable 10, for example, the thickness is set to 0.2 to 1 mm. In addition, when the size of the cable 10 is less than 10 mm, the corrugated metal tube 13 may not be provided on the outer periphery of the foam core.
[0022]
Next, a method for manufacturing the high-frequency coaxial cable 10 according to the present embodiment will be described with reference to the accompanying drawings.
[0023]
As shown in FIG. 2, the cable manufacturing apparatus 20 mainly includes a sending drum 21 that sends out the inner conductor 11 (see FIG. 1), and a foamed insulating layer 12 (see FIG. 1) on the outer periphery of the sent inner conductor 11. ) And a winding drum 33 that winds the foamed core 31 provided with a foamed insulating layer on the outer periphery of the inner conductor 11.
[0024]
The internal conductor 11 delivered from the delivery drum 21 is preheated in the preheating tank 23 and then introduced into the extruder 27. In the extruder 27, the foamed insulating layer is coated on the outer periphery of the inner conductor 11 to obtain the foamed core 31. The extruder 27 includes a first extrusion unit 27a, a second extrusion unit 27b, and an extrusion head unit 27c. The compound constituting the foam insulation layer is injected from the molten resin (mixed composition of medium density polyethylene, high density polyethylene, low density polyethylene, and foam nucleating agent) 28 and the gas injection device 29 in the first extrusion part 27a. After thoroughly kneading the foaming agent (for example, carbon dioxide gas) 30 to be supplied, the second extrusion part 27b is lowered to a temperature suitable for foaming and the degree of foaming is 70 to 80%, preferably 75 to 80%. Adjust to. This foamed compound is extrusion coated on the outer periphery of the inner conductor 11 at the extrusion head portion 27c to form a foam insulation layer.
[0025]
Next, the foam core 31 is introduced into the cooling water tank 32 to be cooled, and wound around the winding drum 33.
[0026]
Thereafter, the foamed core 31 wound around the winding drum 33 is sent out, and an outer conductor 13 (see FIG. 1) and a protective sheath (outer skin) 14 (see FIG. 1) are sequentially provided on the outer periphery thereof. 1 is obtained.
[0027]
Here, the molten resin 28 is prepared by kneading a foam nucleating agent into high-pressure low-density polyethylene to form a nucleating agent master batch having a concentration 10 to 100 times the blending ratio of the foam nucleating agent in the resin composition. And medium density polyethylene and high density polyethylene were dry blended, and the ratio of the foam nucleating agent was adjusted to 0.001 to 0.1 parts by weight.
[0028]
Further, as the foaming agent (gas) 30 for foaming, any material that is conventionally used for foaming resins can be applied. In addition to carbon dioxide gas, for example, non-regulated Freon gas, nitrogen Examples thereof include gas, argon gas, or a mixed gas of these inert gases.
[0029]
Next, the operation of the resin composition according to the present embodiment and the high-frequency coaxial cable using the resin composition will be described.
[0030]
The tan δ in the high frequency band of polyethylene is closely related to the density, and becomes smaller as the density is higher if the amount of impurities is the same. Accordingly, it is preferable to use high-density polyethylene if the tan δ is to be reduced purely. However, since high-density polyethylene has small molecular chain branching, it has a low extensional viscosity, which is a measure of foaming ease, and a nest is likely to occur when an insulating layer using a foamed resin is extrusion coated.
[0031]
Therefore, in the resin composition according to the present embodiment, the density synthesized from the metallocene catalyst as the base polyethylene is 0.931 to 0.939 g / cm. 3 Medium density polyethylene is used. This is because medium density polyethylene using a metallocene catalyst has a feature that the amount of catalyst required during synthesis and the amount of its residue are small compared to medium density polyethylene using other catalysts and tan δ is small. Because.
[0032]
The resin composition according to the present embodiment has a density of 0.931 to 0.939 g / cm synthesized with a metallocene catalyst. 3 Medium density polyethylene with a density of 0.925 to 0.930 g / cm 3 The high-pressure low-density polyethylene is based on the new finding that the elongational viscosity increases significantly when blended at a predetermined ratio. As a result, it is possible to suppress a decrease in elongational viscosity when this blend is blended with high-density polyethylene effective to reduce tan δ.
[0033]
As described above, the resin composition according to the present embodiment adjusts the medium density polyethylene, the high density polyethylene, and the high pressure method low density polyethylene (each polyethylene) synthesized by the metallocene catalyst to a predetermined density, respectively, and Is blended at a rate of Moreover, MFR of the resin composition which is a foam is adjusted to 1-10 g / 10min.
[0034]
As a result, the foaming behavior can be stabilized while maintaining the characteristics of medium density polyethylene and high density polyethylene that tan δ and attenuation are small. As a result, when the foamed insulating layer 12 shown in FIG. 1 is extrusion-coated, there is no possibility of forming a nest in the layer, and the high-frequency coaxial cable 10 with a small attenuation and VSWR is obtained.
[0035]
Here, the density of the medium density polyethylene synthesized by the metallocene catalyst is 0.930 g / cm. 3 In the following, tan δ becomes larger than a predetermined value, and the density is 0.940 g / cm. 3 This is because the extensional viscosity becomes small and a nest is likely to occur when the foamed insulating layer 12 is covered. Further, the mixing ratio of medium density polyethylene is 55 to 90 parts by weight. If it is less than 55 parts by weight, tan δ becomes larger than a predetermined value, and if it exceeds 90 parts by weight, sufficient melt tension is obtained (extension) This is because the viscosity cannot be sufficiently improved.
[0036]
The density of the high-pressure low-density polyethylene is 0.925 g / cm 3 Is less than the predetermined value, the density is 0.930 g / cm. 3 This is because the extensional viscosity becomes small and a nest is likely to occur when the foamed insulating layer 12 is covered. Moreover, the mixing ratio of the high-pressure method low density polyethylene to 55 to 90 parts by weight of the medium density polyethylene is 5 to 40 parts by weight, and if it is less than 5 parts by weight, the effect of remarkably increasing the extensional viscosity cannot be obtained sufficiently. This is because if it exceeds 40 parts by weight, tan δ will be larger than a predetermined value.
[0037]
The density of the high density polyethylene is 0.950 g / cm 3 Is less than the predetermined value, and the density is 0.965 g / cm. 3 This is because the extensional viscosity becomes small and a nest is likely to occur when the foamed insulating layer 12 is covered. Moreover, the mixing ratio of the high density polyethylene with respect to 55 to 90 parts by weight of the medium density polyethylene is 5 to 40 parts by weight. If it is less than 5 parts by weight, tan δ cannot be sufficiently reduced, and exceeds 40 parts by weight. This is because the extensional viscosity is greatly reduced.
[0038]
If the MFR of the resin composition is less than 1 g / 10 minutes, heat generation of the foamed compound increases during extrusion coating of the foamed insulating layer 12, and temperature unevenness occurs between the inner layer side and the outer layer side of the foamed insulating layer 12. If it exceeds 10 g / 10 minutes, sufficient melt tension cannot be obtained, and nests are likely to be generated when the foamed insulating layer 12 is covered.
[0039]
In order to stabilize the cable 10, it is necessary to make the bubble size of the foamed insulating layer 12 as small as possible. For this reason, as the foam nucleating agent, a chemical foaming nucleating agent having a large bubble refining effect, preferably ADCA, OBSH, or a mixture thereof is used. The smaller the amount of chemical foam nucleating agent added, the better the electrical properties of the foamed insulating layer 12. For this reason, when one kind of chemical foaming nucleating agent is mixed singly with respect to 100 parts by weight of each polyethylene mixture, 0.001 to 0.1 parts by weight, or two kinds of chemical foaming nucleating agents are used in combination. When mixing, a total of 0.002 to 0.1 parts by weight is mixed.
[0040]
As mentioned above, it cannot be overemphasized that embodiment of this invention is not limited to embodiment mentioned above, and various things are assumed in addition.
[0041]
【Example】
Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.
[0042]
Next, embodiments of the present invention will be described based on examples, but the embodiments of the present invention are not limited to these examples.
[0043]
<Example (Sample 1 to Sample 15) and Comparative Example (Sample 21 to Sample 34)>
Medium density polyethylene, high density polyethylene, low density polyethylene, ADCA and / or OBSH synthesized with a metallocene catalyst were mixed at a predetermined ratio to prepare resin compositions (Samples 1 to 15 and Samples 21 to 34).
[0044]
Next, a foamed insulating layer composed of a foamed compound obtained by foaming each sample is extrusion coated on the outer periphery of a copper pipe that is an internal conductor to produce a foamed core. Thereafter, an annular type corrugated metal tube (outer conductor) and a protective sheath were provided on the outer periphery of the foam core, and a high-frequency coaxial cable having an outer diameter of φ39 mm was produced.
[0045]
Here, Samples 1 and 2 are examples in which the type of medium density polyethylene is changed,
Sample 1 is a mixed composition of 60 parts by weight of sample B, 20 parts by weight of sample c, 20 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 2 is a mixed composition of 60 parts by weight of sample C, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0046]
Samples 3 to 5 are examples in which the type of high-density polyethylene is changed.
Sample 3 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample a, 20 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 4 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample b, 20 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 5 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0047]
Samples 6 and 7 are examples in which the type of low density polyethylene is changed,
Sample 6 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample β, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 7 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample γ, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0048]
Samples 8 to 10 are examples in which the blend ratio of each polyethylene was changed,
Sample 8 is a mixed composition of 55 parts by weight of sample A, 40 parts by weight of sample c, 5 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 9 is a mixed composition of 90 parts by weight of sample A, 5 parts by weight of sample c, 5 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 10 is a mixed composition of 55 parts by weight of sample A, 5 parts by weight of sample c, 40 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0049]
Samples 11 to 15 are examples in which the type and blend ratio of the foam nucleating agent were changed,
Sample 11 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.1 part by weight of ADCA),
Sample 12 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and a foam nucleating agent (0.1 part by weight of OBSH),
Sample 13 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.001 part by weight of ADCA),
Sample 14 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.001 part by weight of OBSH),
Sample 15 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.001 part by weight of ADCA + 0.001 part by weight of OBSH),
It is.
[0050]
On the other hand, samples 21 to 23 are examples using non-standard medium density polyethylene,
Sample 21 is a mixed composition of 60 parts by weight of sample D, 20 parts by weight of sample c, 20 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 22 is a mixed composition of 60 parts by weight of sample E, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 23 is a mixed composition of 70 parts by weight of sample F, 15 parts by weight of sample c, 15 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0051]
Sample 24 is an example using non-standard high density polyethylene,
Sample 24 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample d, 20 parts by weight of sample α, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0052]
Samples 25 and 26 are examples using non-regulated low density polyethylene,
Sample 25 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample δ, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 26 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample ε, and foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0053]
Samples 27 to 30 are examples in which the blend ratio of each polyethylene is not specified, and sample 27 is 50 parts by weight of sample A, 50 parts by weight of sample c, and foam nucleating agent (0.005 parts by weight of ADCA + 0 .01 parts by weight of OBSH),
Sample 28 is a mixed composition of 100 parts by weight of sample A and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 29 is a mixed composition of 60 parts by weight of sample A, 40 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
Sample 30 is a mixed composition of 50 parts by weight of sample A, 25 parts by weight of sample c, 25 parts by weight of sample α, and a foam nucleating agent (0.005 parts by weight of ADCA + 0.01 parts by weight of OBSH),
It is.
[0054]
Samples 31 to 34 are examples in which the blend ratio of the foam nucleating agent is not specified,
Sample 31 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, and 20 parts by weight of sample α.
Sample 32 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.2 parts by weight of ADCA),
Sample 33 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and a foam nucleating agent (0.2 parts by weight of OBSH).
Sample 34 is a mixed composition of 60 parts by weight of sample A, 20 parts by weight of sample c, 20 parts by weight of sample α, and foam nucleating agent (0.2 parts by weight of ADCA + 0.2 parts by weight of OBSH),
It is.
[0055]
Evaluation results of specifications of resin compositions of samples 1 to 15 and samples 21 to 34, MFR of each resin composition, and characteristics (attenuation amount, VSWR, presence / absence of nest) of high-frequency coaxial cable using each resin composition Are shown in Tables 1 and 2.
[0056]
Here, the MFR (melt flow rate) of the resin composition is a value measured in accordance with JIS K7210 at an extrusion pressure of 190 ° C. and 21.18 N.
[0057]
The attenuation of each cable and the measurement of VSWR were performed using a scalar network analyzer 8757D manufactured by Agilent. The attenuation was evaluated based on the attenuation at 2.2 GHz of an annular type cable with a diameter of 39 mm, and a value of 6.5 dB / 100 m or less was accepted. A VSWR of 1.10 or less was accepted.
[0058]
[Table 1]
Figure 2005047981
[0059]
[Table 2]
Figure 2005047981
[0060]
As shown in Table 1, the MFR of each resin composition of Samples 1 to 15 was 1.3 to 9.8 g / 10 minutes, and all were within the specified range (1 to 10 g / 10 minutes). Moreover, the attenuation amount of the high frequency coaxial cable using each resin composition of the samples 1-15 was 6.0-6.4 dB / 100m, and all passed. Each high-frequency coaxial cable had a VSWR of 1.00 to 1.09, and all passed. In each of the high-frequency coaxial cables, no nest was generated in the foamed insulating layer.
[0061]
On the other hand, the resin composition of Sample 21 had a density of medium density polyethylene larger than the specified range, so that the extensional viscosity decreased, and a nest was generated in the foamed insulating layer of the cable. As a result, the VSWR of the cable was increased and it was rejected. Since the density of the medium density polyethylene was smaller than the specified range, the tan δ of the resin composition of Sample 22 was increased, and as a result, the amount of attenuation of the cable was increased and the resin composition was rejected. In the resin composition of Sample 23, the density of the medium density polyethylene is smaller than the specified range, and the MFR is small. For this reason, the tan δ of the resin composition increased and the MFR became smaller than the specified range. As a result, the amount of attenuation was unacceptable, nests were generated and VSWR was increased, and VSWR was also unacceptable.
[0062]
The resin composition of Sample 24 was unsuccessful because the density of high-density polyethylene was smaller than the specified range, resulting in an increase in tan δ, resulting in an increase in cable attenuation.
[0063]
The resin composition of Sample 25 was unsuccessful because the density of the low density polyethylene was smaller than the specified range, resulting in an increase in tan δ, resulting in an increase in cable attenuation. In the resin composition of sample 26, since the density of the low density polyethylene was larger than the specified range, the extensional viscosity was lowered, and a nest was generated in the foamed insulating layer of the cable. In addition, the amount of attenuation increased, and it was rejected.
[0064]
Since the resin composition of sample 27 is not mixed with low density polyethylene, and the resin composition of sample 28 is not mixed with high density polyethylene and low density polyethylene, the MFR becomes larger than the specified range, Since the extensional viscosity becomes remarkably low, the foamed insulating layer cannot be formed and the cable cannot be manufactured. The resin composition of sample 29 is not mixed with high-density polyethylene, and the resin composition of sample 30 has a tan δ increased because the mixing ratio of medium-density polyethylene is less than the specified range. The attenuation of the cable increased and it was rejected.
[0065]
Since the resin composition of sample 31 was not mixed with a foam nucleating agent, the resin composition could not be foamed. As a result, the foam insulation layer could not be formed and the cable could not be manufactured. The resin compositions of Samples 32-34 were rejected because the mixing ratio of the foam nucleating agent was larger than the specified range, resulting in a large attenuation.
[0066]
As described above, by using the resin compositions of Examples 1 to 15 and forming a foamed insulating layer on the outer periphery of the inner conductor to produce a high-frequency coaxial cable, there is no generation of nests and the attenuation is 6. It was possible to obtain a high-frequency coaxial cable with good electrical characteristics such as 5 dB / 100 m or less and VSWR of 1.10 or less.
[0067]
【The invention's effect】
In short, according to the present invention, an excellent effect is obtained that a resin composition having good electrical characteristics and good foamability can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view of a high-frequency coaxial cable according to a preferred embodiment of the present invention.
FIG. 2 is a schematic view of an apparatus for manufacturing the high-frequency coaxial cable of FIG.
[Explanation of symbols]
10 High frequency coaxial cable
11 Inner conductor (conductor)
12 Foam insulation layer

Claims (4)

メタロセン触媒により合成した密度が0.931〜0.939g/cmの中密度ポリエチレン55〜90重量部に、密度が0.950〜0.965g/cmの高密度ポリエチレンを5〜40重量部及び密度が0.925〜0.930g/cmの低密度ポリエチレンを5〜40重量部の割合で混合した混合物100重量部に対し、
発泡核剤を0.001〜0.1重量部の割合で混合した混合組成物で構成したことを特徴とする樹脂組成物。
5 to 90 parts by weight of high density polyethylene having a density of 0.950 to 0.965 g / cm 3 and 55 to 90 parts by weight of medium density polyethylene having a density of 0.931 to 0.939 g / cm 3 synthesized by a metallocene catalyst. And 100 parts by weight of a mixture obtained by mixing 5 to 40 parts by weight of low density polyethylene having a density of 0.925 to 0.930 g / cm 3 ,
A resin composition comprising a mixed composition in which a foam nucleating agent is mixed in a proportion of 0.001 to 0.1 parts by weight.
上記混合組成物のメルトフローレートが1〜10g/10分である請求項1記載の樹脂組成物。The resin composition according to claim 1, wherein the mixed composition has a melt flow rate of 1 to 10 g / 10 minutes. 導体の外周に、請求項1又は2記載の樹脂組成物の発泡体で構成される発泡絶縁層を設けたことを特徴とする高周波同軸ケーブル。A high-frequency coaxial cable comprising a foam insulating layer made of a foam of the resin composition according to claim 1 or 2 provided on an outer periphery of a conductor. 上記発泡絶縁層の外周に、外部導体及び保護シースを設けた請求項3記載の高周波同軸ケーブル。The high-frequency coaxial cable according to claim 3, wherein an outer conductor and a protective sheath are provided on the outer periphery of the foamed insulating layer.
JP2003203708A 2003-07-30 2003-07-30 Resin composition and high-frequency coaxial cable using the same Expired - Fee Related JP4036157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203708A JP4036157B2 (en) 2003-07-30 2003-07-30 Resin composition and high-frequency coaxial cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003203708A JP4036157B2 (en) 2003-07-30 2003-07-30 Resin composition and high-frequency coaxial cable using the same

Publications (2)

Publication Number Publication Date
JP2005047981A true JP2005047981A (en) 2005-02-24
JP4036157B2 JP4036157B2 (en) 2008-01-23

Family

ID=34262966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203708A Expired - Fee Related JP4036157B2 (en) 2003-07-30 2003-07-30 Resin composition and high-frequency coaxial cable using the same

Country Status (1)

Country Link
JP (1) JP4036157B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339099A (en) * 2005-06-06 2006-12-14 Hitachi Cable Ltd Foaming wire
WO2007148685A1 (en) * 2006-06-20 2007-12-27 Hitachi Cable, Ltd. High-frequency coaxial cable
CN102120840A (en) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 Polyethylene sheathing material
CN102120845A (en) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 Polyethylene jacket material for cable
JP2012146481A (en) * 2011-01-12 2012-08-02 Fujikura Ltd Electric wire coating formation material
JP2012521632A (en) * 2009-03-24 2012-09-13 エスケー イノベーション シーオー., エルティーディー. Non-crosslinked polyethylene composition for power cables

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339099A (en) * 2005-06-06 2006-12-14 Hitachi Cable Ltd Foaming wire
WO2007148685A1 (en) * 2006-06-20 2007-12-27 Hitachi Cable, Ltd. High-frequency coaxial cable
US7795531B2 (en) 2006-06-20 2010-09-14 Hitachi Cable, Ltd. High-frequency coaxial cable
JP2012521632A (en) * 2009-03-24 2012-09-13 エスケー イノベーション シーオー., エルティーディー. Non-crosslinked polyethylene composition for power cables
CN102120840A (en) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 Polyethylene sheathing material
CN102120845A (en) * 2010-10-13 2011-07-13 成都亨通光通信有限公司 Polyethylene jacket material for cable
JP2012146481A (en) * 2011-01-12 2012-08-02 Fujikura Ltd Electric wire coating formation material

Also Published As

Publication number Publication date
JP4036157B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
JP5092555B2 (en) High frequency coaxial cable
US8476527B2 (en) Resin composition and high-frequency co-axial cable using same
JP3461758B2 (en) Foaming composition and foamed coaxial insulated cable
US8715798B2 (en) Resin composition and foam insulated wire
JP2014055249A (en) Foam resin molding, foam insulation electric wire and cable, and production method of foam resin molding
JP2000512796A (en) Coaxial high-frequency cable and its dielectric material
JP3523943B2 (en) Foamable resin composition for highly foamed insulated polyethylene and high foamed insulated polyethylene coated wire made by coating the same
JP2008019379A (en) Masterbatch for foaming resin composition, foamed coaxial cable and method for producing the same
JP4036157B2 (en) Resin composition and high-frequency coaxial cable using the same
JP2012046574A (en) Resin composition and high-frequency coaxial cable
JP2011001494A (en) Resin composition, and high foaming, high density, and high frequency coaxial cable
JP4123087B2 (en) Resin composition and high-frequency coaxial cable using the same
JP3962421B1 (en) Foam molding method, foamed coaxial cable, and foamed coaxial cable manufacturing method
JP4512239B2 (en) Ethylene-based resin composition and electric wire / cable coated therewith
JP2004349160A (en) Insulating material for high-frequency coaxial cable
JP4061112B2 (en) High frequency coaxial cable and manufacturing method thereof
JP3534666B2 (en) Foamable resin composition for producing highly foamed polyethylene-coated electric wire by inert gas foaming method and highly foamed insulated polyethylene-coated wire produced by coating the same
JP4304183B2 (en) Foamed coaxial cable
JP4175247B2 (en) Resin composition and high-frequency coaxial cable using the same
JP2012216456A (en) High-frequency coaxial cable
JP4186695B2 (en) High frequency coaxial cable
JP2000235814A (en) Foaming resin composition for manufacturing highly foamed polyethylene covered wire with inert gas foaming method, and highly foamed insulating polyethylene covered wire using the same
JPH10120835A (en) Foamable resin composition for producing highly foamed polyethylene-covered insulated electric wire by inert gas blowing and highly foamed polyethylene-covered insulated electric wire produced therefrom
JP2012038456A (en) Resin composition, method for manufacturing resin composition and high-frequency coaxial cable
JP2003068152A (en) High foaming and high frequency coaxial cable and method of manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Ref document number: 4036157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees