JPS59195170A - Beam forming circuit - Google Patents

Beam forming circuit

Info

Publication number
JPS59195170A
JPS59195170A JP7049183A JP7049183A JPS59195170A JP S59195170 A JPS59195170 A JP S59195170A JP 7049183 A JP7049183 A JP 7049183A JP 7049183 A JP7049183 A JP 7049183A JP S59195170 A JPS59195170 A JP S59195170A
Authority
JP
Japan
Prior art keywords
circuit
time delay
timing
beamforming
sampling period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7049183A
Other languages
Japanese (ja)
Inventor
Junichi Kato
順一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7049183A priority Critical patent/JPS59195170A/en
Publication of JPS59195170A publication Critical patent/JPS59195170A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a satisfiable beam forming characteristic by deviating the timing in sampling the output signal of each wave receiving sensor by as much as the time corresponding to a time delay, in a basic sampling period. CONSTITUTION:The output from each wave receiving sensor is supplied to a sample holding circuit 1, by which the output is sampled at a timing d'i. The sampled output is multiplexed by a multiplexer circuit 2 and is fed by a delay quantity equivalent to niT in a register circuit 4 after A/D conversion 3, then a beam output is synthesized by an adder 5. The timing d'i indicates the time delay quantity of each wave receiving sensor within the basic sampling period. A timing circuit 6 generates a pulse d'i and the timing of each part associated thereto and the one period of the memory access thereof coincides with the basic sampling period. The memory step thereof is determined by the quantization accuracy of the time delay.

Description

【発明の詳細な説明】 本発明゛は、ソーナー装置のような、受波センサープレ
イから受信ビームを合成するビームフォーミング回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a beamforming circuit for synthesizing received beams from receiving sensor play, such as in a sonar device.

この種のビー云フォーミング回路には、受波セフf−7
レイからの受波信号を時間軸でシーケンシャルにサンプ
ルし、順次メモリに蓄えておき、必要な時間遅延に相当
したメモリのデータを取9出して合成するディジタル時
間軸ビームフォーミング回路がある。この方式では時間
遅延の量子化は受波信号のサンプリング周期によって決
められる。
This type of beam forming circuit has a receiver f-7
There is a digital time-domain beamforming circuit that sequentially samples the received signal from the ray on the time axis, sequentially stores it in memory, and extracts and synthesizes data from the memory corresponding to the required time delay. In this method, the quantization of time delay is determined by the sampling period of the received signal.

一般に、ディジタル信号処理する場合の入力信号のサン
プリング周期としては、ナイキストのサンプリングレー
ト程度で行うが、時間軸ビームフォーミンクの場合には
、時間遅延の量子化による誤差が主軸レスポンスのレベ
ル低下やサイドローブの乱れの原因となるため、前記の
ナイキスト・サンプリングレートに比べかなシ高くする
必要がある。従来はこの時間遅延の量子化誤差を防ぐた
めに、大容量のメモリを設けてサンプリング周期を上げ
たシ、或はサンプリング周期はナイキストレート程度に
おさえて、補間処理により見掛は上のサンプリング周期
を上げたのと同じ効果を得るなどの手段が取られていた
In general, the input signal sampling period for digital signal processing is approximately the Nyquist sampling rate, but in the case of time-domain beamforming, errors due to time delay quantization can cause a drop in the level of the main-axis response or side effects. Since this causes lobe disturbance, it is necessary to set the sampling rate much higher than the Nyquist sampling rate mentioned above. Conventionally, in order to prevent this time delay quantization error, a large capacity memory was installed to increase the sampling period, or the sampling period was kept to about the Nyquist rate, and an interpolation process was used to apparently increase the sampling period. Measures were taken to obtain the same effect as the previous one.

本発明は、受波センサー信号のサンプリング周期はナイ
キストレート程度にし、しかもビームフォーミングのだ
めの時間遅延の量子化は、補間等特別な処理を施さすと
も必要にして十分な精度が得うレるディジタルビームフ
ォーミング回路を提供するものである。
In the present invention, the sampling period of the receiving sensor signal is about the Nyquist rate, and the quantization of the time delay during beamforming is a digital method that can obtain sufficient accuracy even if special processing such as interpolation is performed. It provides a beamforming circuit.

本発明のビームフォーミング回路は、受渡センサー信号
の基本サンプリング周期内をさらに細かく時間分割し、
基本サンプリング1周期内でビームフォーミングに使用
する各受波センサー出力信号のサンプルタイミングを時
間遅延に相当した分だけずらすことによって、サンプリ
ング周期を入力信号周波数に対して十分高くしたのと同
等の時間遅延精度を得ることを特徴としている。
The beamforming circuit of the present invention further divides the basic sampling period of the delivery sensor signal into smaller time segments,
By shifting the sample timing of each receiving sensor output signal used for beamforming within one basic sampling period by an amount equivalent to the time delay, the time delay is equivalent to making the sampling period sufficiently high relative to the input signal frequency. It is characterized by obtaining precision.

次に本発明の実施例について図面を参照して説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図に示すような、円筒上に配列した受波センサ一群
で、←方向のビームフォーミングを考えると、各受波セ
ンサーに到達する音響信号はセンサー4を基準としてd
L d2、d:3の時間遅延を生じているため、ビーム
フォーミング回路では各受波センサー信号の時間遅延を
電気的に補正して位相を合わせ合成する。ディジタルビ
ームフォーミング回路では、所望の時間遅延を得るため
、各受波センサー信号を時間軸でシーケンシャルにサン
プルしてA/D変換したデータ群の中から、時間遅延に
相当したサンプルデータを取シ出して合成する。この時
、各受波センサー信号を同一時刻でサンプルすれば、時
間遅延の精度はサンプリング周期で決定されてしまう。
Considering beamforming in the ← direction with a group of receiving sensors arranged on a cylinder as shown in Figure 1, the acoustic signal reaching each receiving sensor is d with respect to sensor 4.
Since a time delay of L d2, d:3 occurs, the beamforming circuit electrically corrects the time delay of each received sensor signal, matches the phases, and synthesizes the signals. In order to obtain the desired time delay, the digital beamforming circuit extracts sample data corresponding to the time delay from among the data group that sequentially samples each received sensor signal on the time axis and A/D converts it. and synthesize. At this time, if each receiving sensor signal is sampled at the same time, the accuracy of the time delay will be determined by the sampling period.

そこで、1す/プリング周期内で時間遅延に柾轟した分
だけ、各受波センサー信号のサンプリング時刻を調整し
てやることによって、時間遅延の精度がサンプリング周
期によって影響されることがカ<、時間遅延の量子化誤
差は無視できる。このことを第2図のタイムチャートで
説明する。第1図の受波センサー4を基準として、各受
渡センサーの時間遅延量を次の様に表わす。
Therefore, by adjusting the sampling time of each receiving sensor signal by the amount of time delay within one pull cycle, it is possible to prevent the accuracy of time delay from being affected by the sampling cycle. The quantization error of is negligible. This will be explained using the time chart shown in FIG. Based on the wave receiving sensor 4 in FIG. 1, the time delay amount of each delivery sensor is expressed as follows.

dl =n I T+d’1 d2=n2T+d’2 d3−H3T−+ (1’3 dn−nnT十d′。dl = n I T + d’1 d2=n2T+d'2 d3-H3T-+ (1'3 dn-nnT1d'.

ここで、di(i=1〜n);基準センサーからの時間
遅延量 T   ;基本サンプル周期 nl(i=1〜n);0.1.2、・・・・・・の正整
数 d’1(i=l〜n);基本サンプル周期内での時間遅
延量 上式の中のd′iは基本サンプル周期内の各受波センサ
ーの時間遅延量を表わもている。
Here, di (i = 1 to n); time delay amount T from the reference sensor; basic sampling period nl (i = 1 to n); positive integer d' of 0.1.2, ... 1 (i=l to n); Amount of time delay within the basic sampling period d'i in the above equation represents the amount of time delay of each wave receiving sensor within the basic sampling period.

従って1サンプル周期を時間遅延の量子化誤差が無視で
きる程度に分割してd′iのタイミングを作9、各受波
センサー信号をこのタイミングでサンプルする。さらに
真の時間遅延diを得るために各受波センサー信号にn
iTに相当する時間遅延を与える。これはnl段のレジ
スタで実現できる。一般にはniは数段程度のオーダー
である。
Therefore, the timing of d'i is created by dividing one sampling period to such an extent that the quantization error of time delay can be ignored, and each receiving sensor signal is sampled at this timing. Furthermore, in order to obtain the true time delay di, each receiving sensor signal is
Give a time delay corresponding to iT. This can be realized with nl stages of registers. Generally, ni is on the order of several stages.

第2図のタイムチャートで(a)は基本サンプル信号を
表わし、第1図の机、4受波センサ一信号のサンプリン
グに使用される。同様に(b)はNo、3及びNo、5
受波センサ一信号のサンプリングに使用され、(C)は
No、2及びNo、6受波センサ一信号のサンプリング
に使用され、(d)はNo、’l及びNo、7受波セン
サ一信号のサンプリングに使用される。
In the time chart of FIG. 2, (a) represents a basic sample signal, which is used for sampling the signals of the desk and four wave receiving sensors of FIG. Similarly, (b) is No, 3 and No, 5
(C) is used to sample the No, 2, and No. 6 reception sensor signals; (d) is the No., 'l, and No. 7 reception sensor signal. used for sampling.

第3図は本発明の一実施例のブロック構成図である。図
中受波センサー出力は、サンプルアンドホールド回路1
の各入力へ接続され、各受波センサー信号はdtiのタ
イミングでサンプルされ、マルチプレクサ回路2で多重
化されて、A/D変換器3でディジタル信号に変換され
る。変換された各センサー信号はレジスタ回路4で前記
のniTに相当する遅延量が与えられ、加算器5によっ
てビーム出力が合成される。タイミング回路6はサンプ
リングパルスd′i及びこれに関連した各部のタイミン
グ発生回路であシ、メモリで構成する。
FIG. 3 is a block diagram of an embodiment of the present invention. In the figure, the output of the receiving sensor is sample-and-hold circuit 1.
Each received sensor signal is sampled at dti timing, multiplexed by a multiplexer circuit 2, and converted into a digital signal by an A/D converter 3. Each converted sensor signal is given a delay amount corresponding to the above-mentioned niT in a register circuit 4, and a beam output is combined in an adder 5. The timing circuit 6 is a timing generating circuit for the sampling pulse d'i and various parts related thereto, and is composed of a memory.

メモリ・アクセスの一周期は基本サンプリング周期と一
致して幹り、そのメモリ・ステップは時間遅延の量子化
精度によって決める。
One period of memory access coincides with the basic sampling period, and its memory steps are determined by the quantization precision of the time delay.

本発明は以上説明したように、ビームフォーミングのだ
めの時間遅延の量子化精度はサンプリング周期に依存し
ないため、サンプリング周期をナイキストサンプリング
レート近くまで落しても、十分々ビームフォーミング特
性を得ることができる。例えばタイミング回路にNワー
ドのメモリを使用し、このメモリの一周のアクセス時間
をサンプリング周期Tとした場合、ビームフォーミング
のだめの時間遅延量子化精度がN倍になったのと等価に
なる。通常のビームフォーミング回路では入力信号に対
するサンプリングレートは数十倍必要とするが、この場
合前記のメモリは数十ワード程度のごく小量で実現でき
る。さらに、メモリをRAMで構成しておけば、外部よ
りメモリ内容を゛変更することによシ、例えばビームフ
ォーミングの音速補正等がダイナミックに実現でき、最
適ビームフォーミング制御が行える。
As described above, in the present invention, the quantization accuracy of the time delay for beamforming does not depend on the sampling period, so even if the sampling period is reduced to near the Nyquist sampling rate, sufficient beamforming characteristics can be obtained. For example, if an N-word memory is used in the timing circuit, and the access time for one round of this memory is taken as the sampling period T, this is equivalent to increasing the time delay quantization accuracy of beamforming by N times. A normal beamforming circuit requires a sampling rate several tens of times higher than the input signal, but in this case, the memory described above can be realized with a very small amount of about several tens of words. Furthermore, if the memory is configured with a RAM, by changing the contents of the memory from the outside, it is possible to dynamically realize, for example, sound velocity correction for beamforming, and optimal beamforming control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は本発明の詳細な説明するだめの図、第
3図は本発明の一実施例を示すビームフォーミング回路
のブロック図である。 1・・・・・・サンプルアンドホールド回路、2・・・
・・・マルチプレクサ回路、3・・・・・・A/D変換
器、4・・・・・・レジスタ回路、5・・・・・・加算
回路、6・・・・・・タイミング回路。 代理人 弁理士  内 原   晋、・゛。 ゛、−7−ノ
1 and 2 are diagrams for explaining the present invention in detail, and FIG. 3 is a block diagram of a beamforming circuit showing one embodiment of the present invention. 1...Sample and hold circuit, 2...
...multiplexer circuit, 3...A/D converter, 4...register circuit, 5...addition circuit, 6...timing circuit. Agent: Susumu Uchihara, patent attorney.゛、-7-ノ

Claims (1)

【特許請求の範囲】[Claims] n個(nは正の整数)の受波センサーアレイからの信号
にそれぞれ所定の時間遅延を与えることによシ受信ビー
ムを合成するビームフォーミング回路において、前記受
波センサープレイからの信号をサンプルするサンプルア
ンドホールド回路とこのサンプルされた信号を多重化す
るマルチプレクサ回路と、このマルチプレクサ回路から
の出力アナログ信号をディジタル信号に変換するA/D
変換器と、A/D変換されたデータを一定時間保持する
だめのレジスタ回路とn個のA/D変換されたデータを
加算する加算回路と、前記n個の受波センサー信号のサ
ンプル時期を調整する回路とを備えることにより、サン
プリング周波数に関係なく入力信号周波数に対して十分
な時間遅延精度が得ることを特徴とするビームフォーミ
ング回路。
In a beamforming circuit that synthesizes a reception beam by giving a predetermined time delay to each of the signals from n reception sensor arrays (n is a positive integer), the signal from the reception sensor array is sampled. A sample-and-hold circuit, a multiplexer circuit that multiplexes this sampled signal, and an A/D that converts the output analog signal from this multiplexer circuit into a digital signal.
A converter, a register circuit for holding A/D converted data for a certain period of time, an addition circuit for adding n pieces of A/D converted data, and a sample timing of the n pieces of reception sensor signals. What is claimed is: 1. A beamforming circuit comprising: a beamforming circuit for adjusting a beamforming circuit, and thereby obtaining sufficient time delay accuracy for an input signal frequency regardless of a sampling frequency.
JP7049183A 1983-04-21 1983-04-21 Beam forming circuit Pending JPS59195170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7049183A JPS59195170A (en) 1983-04-21 1983-04-21 Beam forming circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7049183A JPS59195170A (en) 1983-04-21 1983-04-21 Beam forming circuit

Publications (1)

Publication Number Publication Date
JPS59195170A true JPS59195170A (en) 1984-11-06

Family

ID=13433035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7049183A Pending JPS59195170A (en) 1983-04-21 1983-04-21 Beam forming circuit

Country Status (1)

Country Link
JP (1) JPS59195170A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267016A (en) * 2005-03-25 2006-10-05 Honda Elesys Co Ltd Radar apparatus
WO2010113926A1 (en) * 2009-03-31 2010-10-07 日本電気株式会社 Measurement device, measurement system, measurement method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204477A (en) * 1981-06-12 1982-12-15 Hitachi Medical Corp Receiving device
JPS5811586A (en) * 1981-07-14 1983-01-22 大部 貞利 Substance for making coal liquefaction easy and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204477A (en) * 1981-06-12 1982-12-15 Hitachi Medical Corp Receiving device
JPS5811586A (en) * 1981-07-14 1983-01-22 大部 貞利 Substance for making coal liquefaction easy and its preparation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006267016A (en) * 2005-03-25 2006-10-05 Honda Elesys Co Ltd Radar apparatus
WO2010113926A1 (en) * 2009-03-31 2010-10-07 日本電気株式会社 Measurement device, measurement system, measurement method, and program
JP5664869B2 (en) * 2009-03-31 2015-02-04 日本電気株式会社 Measuring apparatus, measuring system, measuring method, and program
US9035820B2 (en) 2009-03-31 2015-05-19 Nec Corporation Measurement device, measurement system, measurement method, and program

Similar Documents

Publication Publication Date Title
US7508737B1 (en) Ultrasound receive beamformer
JP3759769B2 (en) Ultrasonic beam former
US5544128A (en) Multi-beam digital beamforming method and apparatus
US5369624A (en) Digital beamformer having multi-phase parallel processing
US7817076B2 (en) Multiple mode digitization system for a non-destructive inspection instrument
US5184623A (en) Method of and apparatus for the examination of objects by ultrasonic echography
US5477859A (en) Ultrasound imaging system having spatial filtering preprocessor
US5831168A (en) Ultrasound signal processor
US7993270B2 (en) Digital receive-focusing apparatus using analogue multiplexers
JP2001099913A (en) Method of forming reception beam, device for forming reception beam, and matched filter
US4336607A (en) Beamformer having random access memory delay
JP2575603B2 (en) Scanning device
JPH03123879A (en) Ultrasonic echo graph apparatus
JP2010063875A (en) Delay adjustment module and ultrasonic receiving beam forming apparatus
JPS59195170A (en) Beam forming circuit
US5515727A (en) Ultrasound signal processor
JPH09224937A (en) Ultrasonic diagnostic device
US10761208B2 (en) Beam forming device and system including the same
JP2832619B2 (en) Digital RF type ultrasonic diagnostic equipment
JPH0210470Y2 (en)
JPS6284748A (en) Ultrasonic receiving and phasing circuit
US4525816A (en) Sonar arrangements
JPH0819537A (en) Received wave phasing circuit of ultrasonic device
JPH1033534A (en) Ultrasonic device
JPH05184567A (en) Ultrasonic diagnostic device