JPS59194661A - Booster circuit - Google Patents

Booster circuit

Info

Publication number
JPS59194661A
JPS59194661A JP6968083A JP6968083A JPS59194661A JP S59194661 A JPS59194661 A JP S59194661A JP 6968083 A JP6968083 A JP 6968083A JP 6968083 A JP6968083 A JP 6968083A JP S59194661 A JPS59194661 A JP S59194661A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
fet
terminal
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6968083A
Other languages
Japanese (ja)
Inventor
Minoru Hamada
濱田 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6968083A priority Critical patent/JPS59194661A/en
Publication of JPS59194661A publication Critical patent/JPS59194661A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider

Abstract

PURPOSE:To reduce a voltage loss by employing a depletion type as an FET of the first stage for performing rectifying action. CONSTITUTION:The source of an N-channel depletion type MOSFETQ21 is connected to the drain and gate of an N-channel enhancement type MOSFETQ22 connected in a diode, a capacitor C21 is connected to the node 25 to form a Cockcroft-Walton type field circuit. A pulse voltage is applied from an input terminal 23 through the capacitor C21. The complementary voltage of the pulse voltage is applied to the gate terminal 26 of the FETQ21. The source of the FETQ22 becomes the output terminal 22, is connected to the capacitor C22, and the other terminal of the capacitor C22 is grounded.

Description

【発明の詳細な説明】 本発明はM I S jし集積回路中に構成する汁圧回
路に関し、更に詳述すれば′、4Li、田損失の少いコ
ックロフト・ウオルトン型昇圧回路を提案するものであ
る。
[Detailed Description of the Invention] The present invention relates to a booster circuit configured in an integrated circuit, and more specifically, proposes a Cockroft-Walton type booster circuit with low loss. It is something.

例えば不揮発性メモリの書込電圧として用いるためVこ
、又はMOS F ETスイッチのオン抵抗を低くすべ
くそのゲートに印加するために、回路に与えられる電源
4匝よりも高い゛、匡圧が必要とされる場合がある。こ
のために集積回路中に昇圧回路を構成する必要を生じる
。MIS形集積回路においては第1図に示す叩きコック
ロフト・ウオルトン型昇圧回路が用いられてきた。第1
図においてQo r Q+zはnチャネル型エンハンス
〆ントクイプのMOSFETであって、閾値がVtE(
〉O)であり、夫々のゲートとドレインとが接続された
ダイオード接続となっておす、FETQll のソース
とQ1□のドレインとを接続してなるノード15及びF
E′rQ+□のソースにはコンデンサc、、 l C1
2が大々接抗されている。FETQllのドレインVi
電源端子11(電源′電圧VDD )、FETQ+□の
ソースは出力端子12としてあシコンデンサC11の他
端は入力端子+3、コンデン?C,□の他端】4は接地
電位としている。FET Qu 、 Q12はダイオー
ド接続となっているのでドレイン屯田がソース電圧+■
tEより高い場合はドレインからソースに向かって電流
が流れ、ドレイン電圧がそれより低くなるとこれらのF
ETはオフとなる。
For example, in order to use V as a write voltage for non-volatile memory, or to apply it to the gate of a MOS FET switch to lower its on-resistance, a voltage higher than the 4 liters of power supplied to the circuit is required. It may be said that For this reason, it becomes necessary to construct a booster circuit in the integrated circuit. In MIS type integrated circuits, a Cockroft-Walton type booster circuit shown in FIG. 1 has been used. 1st
In the figure, Qor Q+z is an n-channel type enhanced terminal MOSFET with a threshold value of VtE (
〉O), and the gate and drain of each are connected in a diode connection, and the node 15 and F are connected to the source of FETQll and the drain of Q1□.
At the source of E′rQ+□, there is a capacitor c,, l C1
2 is being closely contested. Drain Vi of FETQll
Power supply terminal 11 (power supply voltage VDD), the source of FETQ+□ is output terminal 12, and the other end of capacitor C11 is input terminal +3, capacitor? C, □Other end] 4 is set to ground potential. FET Qu and Q12 are diode-connected, so the drain is connected to the source voltage +■
When the voltage is higher than tE, current flows from the drain to the source, and when the drain voltage is lower than that, these F
ET is turned off.

第2図(イ)、(ロ)及びe)v′i夫々入力端子13
、ノード15及び出力端子12の電位の変イとを示して
いる。
Fig. 2 (a), (b) and e) v'i input terminal 13 respectively
, changes in the potentials of the node 15 and the output terminal 12 are shown.

入力端子13に0ボルト(!:vDDボルトとの間で変
化するパルスLti圧が印加されると0ボルトの期間t
1においては電源端子11からFETQ+□を経て流入
する電流によってノード15はVI)り −vtEO市
圧に達する。入力端子がVDDポルトとなる期間t2に
おいてはノード15の電位は2 X VDD −VtE
とな9、FETQuはオフとなる。
When a pulse Lti pressure that changes between 0 volts (!: vDD volts) is applied to the input terminal 13, the 0 volt period t
1, the current flowing from the power supply terminal 11 through the FETQ+□ causes the node 15 to reach the voltage VI) -vtEO. During period t2 when the input terminal is at VDD port, the potential of node 15 is 2 x VDD - VtE
9, FETQu is turned off.

一方出力端子12の電圧がノード15の電圧−vtEよ
り低い場合はFETQ+□はオンするので電流はノード
15からFETQ、□を経て出力端子12へ流れ、これ
によってコンデンサC12が充電されていき、ノード1
5からの電流の流出が十分小さい限シ出力喘子12の゛
電位ぼ2XVDD  2XVtEまで達することとなる
On the other hand, when the voltage at the output terminal 12 is lower than the voltage -vtE at the node 15, FETQ+□ is turned on, and current flows from the node 15 through FETQ and □ to the output terminal 12, thereby charging the capacitor C12, and the node 1
If the current outflow from the output panel 12 is sufficiently small, the potential of the output pantrator 12 reaches 2XVDD 2XVtE.

而してこの回路構成においてはダイオード1段につきV
tEずつの重圧降下を生じるという難点がある。しかも
VtEの値は基板バイアス幼宋によってFETのソース
電圧の上昇につれて大きくなり、またFETのダイオー
ド接続においてドレイン電圧とソース′市圧との差がV
IEに近ずくとダイオードの誤方向゛4流は急速に小さ
くなることのために、電流負荷を駆動する場合には昇圧
出力は2XVDD−2XVtEよりも遥かに低い1直と
なる。
Therefore, in this circuit configuration, V per stage of diode
There is a drawback that a heavy pressure drop of tE occurs. Moreover, the value of VtE increases as the source voltage of the FET increases due to the low body bias, and the difference between the drain voltage and the source voltage in the diode connection of the FET increases to VtE.
Because the diode's misdirection current rapidly decreases as it approaches IE, the boost output becomes much lower than 2XVDD-2XVtE when driving a current load.

本釦明はこのような欠点を解消すべくなされたものであ
って、整流作用を営む@1段のFETとしてデプリーシ
ョン型のものを用いることによって上述した如き′重圧
損失の難点を解消した昇圧回路を提供することを目的と
する。
This booster circuit was developed to eliminate these drawbacks, and uses a depletion type FET as the first-stage FET that performs the rectification function, thereby eliminating the drawback of heavy pressure loss as described above. The purpose is to provide

以下本発明をその実施例を示す図面に基き具体的に説明
する。
The present invention will be specifically described below based on drawings showing embodiments thereof.

第3図は本発明に係るコックロフト・フォルトン型の昇
圧回路の回路図を示し、nチャネル型デプリーションタ
イプのfviOS F ET Q71 のソースはダイ
オ−ド接続したnチャネル型エンハンスメントタイプの
MOS F ET QP2のドレイン、ゲートに接続さ
れ、このノード25にはコンデンfC2□ が接続され
ている。このコンデンサC2□の他端は入力端子23と
なっており第4図((イ)に示す如き0ポルトとVDD
ボルトとの間で変化するパルス電圧が印加される。FE
TQp+のドレインは電源端子21としてあシ、FET
Q21のゲート端子26には第4図(イ)に示すパルス
電圧の相補電圧〔第4図(ロ)〕を印加する。FETQ
22のソースは出力端子22とすると共にコンデンサc
psに接続し、コンデンサC2□の他端24は接地電位
としている。
FIG. 3 shows a circuit diagram of a Cockroft-Forton type booster circuit according to the present invention, in which the source of an n-channel depletion type fviOS FET Q71 is a diode-connected n-channel enhancement type MOS FET. It is connected to the drain and gate of ET QP2, and a capacitor fC2□ is connected to this node 25. The other end of this capacitor C2□ is the input terminal 23, and the 0 port and VDD as shown in Figure 4 ((a))
A pulsed voltage varying between volts is applied. FE
The drain of TQp+ is connected to the power supply terminal 21, and the FET
A complementary voltage [FIG. 4(B)] to the pulse voltage shown in FIG. 4(A) is applied to the gate terminal 26 of Q21. FETQ
The source of 22 is the output terminal 22 and the capacitor c
ps, and the other end 24 of the capacitor C2□ is at ground potential.

このように本発明の回路は第1図に示した従来の回路と
、第1段のFETの種類がデプリーション型になった点
、及びこのFETをダイオード接続せず、ゲートを引出
してこれに1」部用電圧を印加するようにした点におい
て異っている。
As described above, the circuit of the present invention differs from the conventional circuit shown in FIG. The difference is that a voltage is applied to the section.

次にこの回路の動作を説明する。入力端子23及びゲー
ト端子26夫々に第4図(イ)(ロ)に示す如きパルス
(圧を印加すると、入力端子23がOポルトの期間【1
には電源端子21及びゲート端子26はVDDである(
D テFETQttはオンとなる。FETQ21Vよデ
プリーション型トランジスタであるのでこれがオフする
条件はFETQy+のゲート電圧がソース電圧+vtD
より低く゛なった場合である。従ってノード25がVD
Dに達してもゲート′(圧はセットオフ条件より−Vt
D(Vto > 0 )だけ大きいので大きな光重1d
/&をC21に対して流すことがIIJ能となる。
Next, the operation of this circuit will be explained. When the input terminal 23 and the gate terminal 26 are applied with pulses (pressures) as shown in FIGS.
In this case, the power supply terminal 21 and the gate terminal 26 are at VDD (
DTE FETQtt is turned on. Since FETQ21V is a depletion type transistor, the condition for turning it off is that the gate voltage of FETQy+ is the source voltage +vtD.
This is the case if it becomes lower. Therefore, node 25 is VD
Even if D is reached, the gate' (pressure is -Vt from the set-off condition)
Since it is large by D (Vto > 0), the light weight is large 1d
Flowing /& to C21 becomes IIJ function.

このようにしてノード25は第4図(ハ)に示すように
VDDに達することになる。
In this way, node 25 reaches VDD as shown in FIG. 4(c).

従って次に入力端子28がVDDポルトになる期1副t
2においてはノード25の′電圧は2×vDDまで上昇
する。
Therefore, next time the input terminal 28 becomes VDD port.
At 2, the voltage at node 25 rises to 2×vDD.

一方、出力端子22の′電圧がノード25の電圧VtE
より低い場合はFETQ22はオンし、電流はFET0
7gを経て出力端子22へ流れ、これによってコンデン
サC2□が充′屯されていき、出力端子22の電位は第
4図に)に示すように2 x Vl)o −vtEまで
達することになる。この間FETQ21はソース、ドレ
イン共にVDD以上になり、ゲートは0ポルトであるの
でオフ状1島になり、電流の逆流は防止される。
On the other hand, the voltage at the output terminal 22 is the voltage VtE at the node 25.
If lower, FETQ22 turns on and the current flows to FET0
7g to the output terminal 22, thereby charging the capacitor C2□, and the potential at the output terminal 22 reaches 2 x Vl)o -vtE as shown in Fig. 4). During this time, both the source and drain of FET Q21 become higher than VDD, and since the gate is at 0 port, it becomes an off-state island, and reverse current flow is prevented.

以上詳述した如く本発明に係る昇圧回路はMIS集積回
路中にFET及びコンデンサを用いて構成するコツクロ
7ト・フォルトン型昇圧回路において整流作用を営む第
1段のFETとしてデプリーション型のものを用い、整
流1作における逆方向パイアスVこ対してlよオフ伏1
みとし、順方向バイアスに対してVよオン状啓とすべく
該FETのゲートを制御する(構成としたものであるの
で、従来の回路に比して少くともVtE分だけ高い昇圧
出力が痔られる。
As detailed above, the booster circuit according to the present invention uses a depletion type FET as the first stage FET that performs the rectification function in a Kotukuro-Forton type booster circuit configured using FETs and capacitors in an MIS integrated circuit. , in the rectification 1 operation, the reverse bias V is opposed to l and off 1
As a result, the gate of the FET is controlled so that it is turned on by VtE with respect to the forward bias. It will be done.

そして第1段目の充′市″市流が大きいために最終到達
電圧(2×Vl)D  VtE)近くになった時にも負
荷電流Vこよる1血圧i年下が′回避されることになシ
、実1スには従来回路に比してVtg以上の出力電圧差
を得ることができる。
In addition, since the first stage's charging current is large, even when the final voltage (2 x Vl)D VtE) approaches, the 1 drop in blood pressure i caused by the load current V can be avoided. In fact, it is possible to obtain an output voltage difference of more than Vtg compared to the conventional circuit.

なお本発明においてr′i端子23.26へ与える2相
のパルス電圧が必要となるが、発振回路には逆オ目の信
号が存在するのが一般的であり、また外圧回路の3段以
上のものは必ず2相の入力が必要であるので2相のパル
ス電圧を必要とすること自体回路構成を特に復籍化する
ものではない。
Although the present invention requires two-phase pulse voltages to be applied to the r'i terminals 23 and 26, it is common for the oscillation circuit to have an inverted O-square signal, and for three or more stages of the external pressure circuit. Since the above type always requires two-phase input, the fact that two-phase pulse voltages are required does not necessarily restore the circuit configuration.

なお上述の凭IFiA″cはFETばnチャネルノψと
したがpチャネル型の場合にも同様に構成でさる仁とは
、1うまでもない。
Although the above-mentioned IFiA''c is an FET n-channel type, it goes without saying that a p-channel type can also have a similar configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回路図、第2図v1その動作説明のため
の波形図、第3図は本発明の回路図、第4図はその制作
説(7)のだめの波形図である。 Cb+ * Q22・FET  C21,C2□−・・
コンデンサ特許出J貝大  三洋軍機株式会社 代理人 弁理士  河 野 登 犬
FIG. 1 is a conventional circuit diagram, FIG. 2 is a waveform diagram for explaining its operation, FIG. 3 is a circuit diagram of the present invention, and FIG. 4 is a waveform diagram of the production theory (7). Cb+ * Q22・FET C21, C2□−・・
Capacitor Patent Issued by J Kaidai Sanyo Gunki Co., Ltd. Patent Attorney Noboru Kono Inu

Claims (1)

【特許請求の範囲】[Claims] 1、  MIS形集積回路中にFET及びコンデンサを
用いて構1戊するコツクロ7ト・ウオルトン型昇圧回路
において、整流作用を営む第1段のFE’rとしてデプ
リーション型のものを用い、歪流動作における逆方向ノ
くイアスに対してば:t7状gとし、111方向ノくイ
アスに対してはオン状はとすべく該FETのゲートを−
Jsする構成としたことを特徴とする昇圧回路。
1. In a Kotsukuro-Walton type booster circuit using FETs and capacitors in an MIS type integrated circuit, a depletion type is used as the first stage FE'r that performs rectification, and distorted current operation is performed. For the reverse direction of the IA, the gate of the FET is set to t7 and g, and for the 111 direction of the IA, the gate of the FET is set to -.
A booster circuit characterized in that it has a configuration in which Js is applied.
JP6968083A 1983-04-19 1983-04-19 Booster circuit Pending JPS59194661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6968083A JPS59194661A (en) 1983-04-19 1983-04-19 Booster circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6968083A JPS59194661A (en) 1983-04-19 1983-04-19 Booster circuit

Publications (1)

Publication Number Publication Date
JPS59194661A true JPS59194661A (en) 1984-11-05

Family

ID=13409812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6968083A Pending JPS59194661A (en) 1983-04-19 1983-04-19 Booster circuit

Country Status (1)

Country Link
JP (1) JPS59194661A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006539A2 (en) * 1985-04-30 1986-11-06 Hughes Aircraft Company Voltage multiplier circuit
JP2007202389A (en) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd Charge pump circuit and semiconductor device comprising it
KR101333749B1 (en) * 2005-12-27 2013-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Charge pump circuit and semiconductor device having the same
JP2017042009A (en) * 2015-08-21 2017-02-23 新日本無線株式会社 Charge pump circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006539A2 (en) * 1985-04-30 1986-11-06 Hughes Aircraft Company Voltage multiplier circuit
JP2007202389A (en) * 2005-12-27 2007-08-09 Semiconductor Energy Lab Co Ltd Charge pump circuit and semiconductor device comprising it
KR101333749B1 (en) * 2005-12-27 2013-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Charge pump circuit and semiconductor device having the same
JP2017042009A (en) * 2015-08-21 2017-02-23 新日本無線株式会社 Charge pump circuit

Similar Documents

Publication Publication Date Title
KR100684244B1 (en) Charge pump circuit
US6476666B1 (en) Bootstrapped charge pump
JP5354625B2 (en) Semiconductor device
US6418040B1 (en) Bi-directional architecture for a high-voltage cross-coupled charge pump
US8013642B2 (en) Output drive circuit
JPS598962B2 (en) CMOS Sadou Zou Fukuki Cairo
JPH01288010A (en) Driver circuit
JP3227946B2 (en) Level conversion circuit
JPS59194661A (en) Booster circuit
JP4066231B2 (en) Switching regulator
US6191624B1 (en) Voltage comparator
US6424202B1 (en) Negative voltage generator for use with N-well CMOS processes
US7102416B2 (en) High side switching circuit
US20210067034A1 (en) Charge pump circuit
US6127875A (en) Complimentary double pumping voltage boost converter
JP2788890B2 (en) Level shift circuit
US20240007104A1 (en) Universal power fet driver ic architecture
JP3681731B2 (en) Drive circuit
KR960015319B1 (en) Semiconductor memory device of voltage conversion circuit
JP2904326B2 (en) Complementary field effect transistor logic circuit
JPH02209011A (en) Gaas semiconductor circuit
JP4501497B2 (en) Gate drive circuit
JP2601399Y2 (en) Boost circuit
JPH0348519A (en) Power-on reset circuit
WO2004066500A1 (en) Waveform shaping circuit