JPS59194436A - Dry etching method and device therefor - Google Patents

Dry etching method and device therefor

Info

Publication number
JPS59194436A
JPS59194436A JP6843883A JP6843883A JPS59194436A JP S59194436 A JPS59194436 A JP S59194436A JP 6843883 A JP6843883 A JP 6843883A JP 6843883 A JP6843883 A JP 6843883A JP S59194436 A JPS59194436 A JP S59194436A
Authority
JP
Japan
Prior art keywords
light
etched
dry etching
electrode
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6843883A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
清 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP6843883A priority Critical patent/JPS59194436A/en
Publication of JPS59194436A publication Critical patent/JPS59194436A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To perform an anisotropic etching without setting complicated conditions by generating a plasma by the emission of a light and the application of a high frequency electric field to a substance to be etched, suppressing an isotropic etching and performing the anisotropic etching. CONSTITUTION:Relatively small high frequency power is applied from a high frequency power source 5 to electrodes 7, 10 under reaction gas of the prescribed pressure and under the emission of a light of the specific wavelength to generate a high frequency electric field between the electrode. Since a large difference occurs between the etching velocities due to a plasma at the position to be emitted with a light of absorption wavelength and the shaded position, and anisotropic etching is substantially performed.

Description

【発明の詳細な説明】 本発明は半導体製造工程に使用するドライエツチングに
関し、特に集積度か大さく、かつ微細化された回路をも
つ半導体基板のドライエツチング方法およびこの方法を
容易に実施でさる装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to dry etching used in semiconductor manufacturing processes, and in particular to a dry etching method for semiconductor substrates having large and finely integrated circuits, and a method that can be easily implemented. It is related to the device.

従来、集積度が太きく、かつ高M度で微細化した回路を
もつ半導体基板金工°ノチングするためには、一定方向
にのみエツチングが進行する異方性エツチングができる
反応性イオンエツチング装置が使用されている。この装
置は第1図に示すようにエッチジグチャンパー1内を排
気する排気装置2と自動圧力制御装置3およびエツチン
グチャンバー1内に反応ガスを供給するマスフローコン
トローラ4によってエツチングチャンバー1の円部圧力
を一定の減圧状態に保ち、エツチングチャンバー1の内
部に互に対向して設けた水平な平行平板電極の上部電極
6および下部電極7に高周波電源5から高周波電力を印
加して反応ガスのプラズマを発生させ、下部電極7の上
面に載置した半導体基板の被エツチング物8のエツチン
グ全行なうものである。
Conventionally, reactive ion etching equipment capable of anisotropic etching, in which etching progresses only in a certain direction, has been used to notch semiconductor substrates with large integration, high M degree, and miniaturized circuits. has been done. As shown in FIG. 1, this device controls the pressure in the circular part of the etching chamber 1 using an exhaust device 2 that evacuates the inside of the etching jig chamber 1, an automatic pressure control device 3, and a mass flow controller 4 that supplies a reaction gas into the etching chamber 1. While maintaining a constant reduced pressure state, high-frequency power is applied from a high-frequency power source 5 to an upper electrode 6 and a lower electrode 7, which are horizontal parallel plate electrodes provided opposite each other inside the etching chamber 1, to generate a plasma of a reactive gas. Then, the entire etching of the semiconductor substrate to be etched 8 placed on the upper surface of the lower electrode 7 is performed.

このような従来の装置でエツチングを行なうと、反応ガ
スとして複数種類のものを使用する場合が多く、これら
の反応ガスの流量や全体の圧力および印加する高周波電
力量の決定などで最適値を決めるために多くの時間と手
間が必要である。
When etching is performed using such conventional equipment, multiple types of reaction gases are often used, and the optimum value is determined by determining the flow rate of these reaction gases, the overall pressure, and the amount of high-frequency power to be applied. This requires a lot of time and effort.

上記高周波電力量の最適値を決定するために、もし高周
波電力の印加量を大きくすると強い陰極降下電界効果が
現われて、イオン衝撃によって結晶欠陥が生じ易く、こ
れを防ぐために反応ガスの圧力を高くするとサイドエッ
チの行われる等方性エツチングが現われて、微細な回路
の断線などの障害が現われて来る。また逆に高周波電力
の印加量を小さくすると複数の反応ガスのうちの何れか
の反応ガスによるデポジションによってエツチングが進
行しにくくなるばかりでなく、前記の等方性エツチング
が現われて来る。
In order to determine the optimal value of the above-mentioned high-frequency power amount, if the applied amount of high-frequency power is increased, a strong cathode falling field effect will appear and crystal defects are likely to occur due to ion bombardment, so in order to prevent this, the pressure of the reaction gas must be increased. Then, isotropic etching occurs where side etching occurs, and problems such as minute circuit breaks appear. On the other hand, if the amount of high-frequency power applied is reduced, etching will not only be difficult to progress due to the deposition of one of the plurality of reactive gases, but also the above-mentioned isotropic etching will appear.

また1枚の被エツチング面上でもその周辺部と中心部と
ではエツチング速度が異り、エツチングの均一性が悪い
という問題があるので、品質のそろったエツチングを行
なうための最適値の決定は前記のように極めて困難であ
る。
Furthermore, even on a single surface to be etched, the etching speed is different between the periphery and the center, resulting in poor etching uniformity. This is extremely difficult.

本発明はこのような問題点を解決するためになされたも
ので、簡単に条件を決定でき、かつ均一性の大きいエツ
チングを行なう方法ならびにこの方法を容易に行なえる
装置を提供するものである。
The present invention has been made to solve these problems, and it is an object of the present invention to provide a method for etching with high uniformity in which conditions can be easily determined, and an apparatus that can easily perform this method.

以下図面により詳細に説明する。This will be explained in detail below with reference to the drawings.

第2図および第6図は本発明の装置の構成図である。エ
ツチングチャンバー9内を一定の減圧状態に保つ−こと
は第1図の従来例と全く同一である。
FIGS. 2 and 6 are block diagrams of the apparatus of the present invention. Maintaining the inside of the etching chamber 9 at a constant reduced pressure is exactly the same as in the conventional example shown in FIG.

この工゛ノチ°ングチャンパー9の内部に互に対向して
設けた水平な平行平板電極のうち上面に被エツチング物
を載置するようになされ第一の電極(以下A電極という
)7は高周波電源5を介して接地してあり、前記平行平
板電極のうち前記A電極の上側で対向した第二の電極(
以下B電極という)10は環状平板であり、直接接地し
である。このB電極10の中央の開口部の上側に幻、投
光装置11が前記開口部を通してA電極7の上面に載置
した被エツチング物8を照射するように設けられている
。この投光装置11の内部には光源12.′光束調整器
13、フィルタ14が設けられている。第2図および第
6図の光束調整器13は凹レンズによる散光器であるが
、このほかに凸レンズによる集光器もしくは光源の反対
側に設け、平行な反射光を作る抛物面反射鏡であっても
良く、これらの選択は光の照射条件によって決まるもの
である。
The object to be etched is placed on the upper surface of the horizontal parallel plate electrodes provided inside the notching chamber 9 so as to face each other. A second electrode (which is grounded through a power source 5 and which faces above the A electrode among the parallel plate electrodes)
Reference numeral 10 (hereinafter referred to as B electrode) is an annular flat plate, which is directly grounded. A light projection device 11 is provided above the central opening of the B electrode 10 so as to illuminate the object to be etched 8 placed on the upper surface of the A electrode 7 through the opening. The light projecting device 11 includes a light source 12. 'A luminous flux adjuster 13 and a filter 14 are provided. The light flux adjuster 13 in FIGS. 2 and 6 is a diffuser using a concave lens, but it may also be a condenser using a convex lens or a parapet surface reflector installed on the opposite side of the light source to create parallel reflected light. These selections are often determined by the light irradiation conditions.

なお本実施例は投光装置、A電極およびB電極を垂直に
配置しであるか、第6図のように水平に配置しても良い
。この場合B電極側のA電極の面にはウェーハ8を保持
するようになされていることはもちろんである。
In this embodiment, the light projecting device, the A electrode and the B electrode may be arranged vertically, or they may be arranged horizontally as shown in FIG. In this case, it goes without saying that the wafer 8 is held on the surface of the A electrode on the B electrode side.

つぎに第2図および第6図の各部の動作を説明しながら
、本発明のエツチング方法について説明する。エツチン
グ開始前に排気装置2、自動圧力制御装置3およびマス
フローコントローラ4によってエツチングチャンバー9
の内部は所定の減圧状態に保持しておく。なお、この場
合の反応ガスは従来例と異り単純なガスを使用する。こ
のような状態になってから光源12を点灯し、所望の照
射状態になるように光束調整器を選択する。この選択は
被エツチング物8の全面を照射する場合は散光器を、中
央部分のみを照射する場合(はその照射範囲の大小によ
って抛物面反射鋭か、集光器の何れかを選べば良い。上
記中央部分のみを照射する理由は、一般的暉被エノチン
グ面の周辺部のエツチング速度が犬きく、中央部のエツ
チング速度が小さいので、これの均一を図るためである
Next, the etching method of the present invention will be explained while explaining the operation of each part shown in FIGS. 2 and 6. Before starting etching, the etching chamber 9 is
The inside of the unit is maintained at a predetermined reduced pressure. Note that, unlike the conventional example, a simple gas is used as the reaction gas in this case. After such a state is reached, the light source 12 is turned on, and the light flux adjuster is selected so as to achieve the desired irradiation state. When irradiating the entire surface of the object 8 to be etched, use a diffuser, and when only the central portion is to be irradiated, select either a mirror surface reflector or a condenser depending on the size of the irradiation range. The reason why only the central portion is irradiated is to make the etching rate uniform since the peripheral portion of the generally etched surface has a higher etching rate and the central portion has a lower etching rate.

またフィルタ14は被エツチング物質の吸収波長の光を
主に通過させるものを使用する。このことは被エツチン
グ物質のエツチングか終了した後に出て来る下地物質は
、その吸収波長が異るためにエツチングされにくいので
、オーバーエッチを防ぐものである。
Further, the filter 14 is one that mainly allows light having a wavelength absorbed by the material to be etched to pass through. This prevents over-etching since the underlying material that comes out after the etching of the etched material is completed is difficult to be etched because its absorption wavelength is different.

このように一定圧力の反応ガスと、特定波長の光の照射
のもとて比較的小ざい高周波電力を高周波電源5から対
向する電極7および1oに印加して電極間に高周波電界
を発生式ぜる。この場合の高周波電力の強度は従来例で
はプラズマが発生しにくい程度の弱いもので良い。
In this way, a relatively small high-frequency power is applied from the high-frequency power supply 5 to the opposing electrodes 7 and 1o under the irradiation of a reactant gas at a constant pressure and light of a specific wavelength, thereby generating a high-frequency electric field between the electrodes. Ru. In this case, the intensity of the high frequency power may be weak enough to make it difficult to generate plasma in the conventional example.

ここで、上記のように弱い高周波電力でプラズマが発生
する機構について説明する。一定の減圧状態のもとで、
被エツチング物質の吸収波長の光を被エツチング面に照
射すると、この面で気体分子が励起状態となる。このよ
うな励起状態の気体分子に高周波電界を与えると普通の
状態ではプラズマが発生しにくいような弱い電界でも容
易に励起された分子がプラズマ化し、引続いて近くの中
性の分子もプラズマ化されて行く。
Here, the mechanism by which plasma is generated by weak high-frequency power as described above will be explained. Under constant reduced pressure,
When a surface to be etched is irradiated with light having a wavelength absorbed by the material to be etched, gas molecules on this surface become excited. When a high-frequency electric field is applied to gas molecules in such an excited state, the excited molecules easily turn into plasma, even in a weak electric field that makes it difficult to generate plasma under normal conditions, and subsequently, nearby neutral molecules also turn into plasma. I'm going to be done.

このように被エツチング物質の面上で最もはげしくプラ
ズマ化するので、前記吸収波長の光の照射されている所
と、影になっている所での)0ラズマによるエツチング
速度に大きな差が出るので、サイドエッチはほとんど行
なわれず、実質的に異方性エツチングが行なわれるもの
である。また被エツチング物質の吸収波長の光による照
射であるので、被エツチング物質のエツチングが終了し
て下地物質が現われると、この下地物質の吸収波長は被
エツチング物質の吸収波長と異るために下地物質面上で
の気体の励起現象はほとんど起らず、局部的に強いプラ
ズマが発生しないので、全体の弱いプラズマによるエツ
チングしか行なわれない。
In this way, the most intense plasma formation occurs on the surface of the material to be etched, resulting in a large difference in the etching speed due to zero lasma between the area irradiated with the light of the absorption wavelength and the area in the shadow. , side etching is hardly performed, and substantially anisotropic etching is performed. In addition, since the irradiation is with light having the absorption wavelength of the material to be etched, when the etching of the material to be etched is completed and the underlying material appears, the absorption wavelength of this underlying material is different from that of the material to be etched, so the underlying material is Almost no gas excitation phenomenon occurs on the surface, and no locally strong plasma is generated, so that only weak plasma etching is performed overall.

さらに従来はエツチング速度、被エツチング物質と下地
物質とのエツチングの選択性、エツチングの異方性、エ
ツチングの均一性をそれぞれ満足するためには、それぞ
れに適した反応ガスを適量ずつ混合して使用していた。
Furthermore, conventionally, in order to satisfy each of the etching speed, etching selectivity between the material to be etched and the underlying material, etching anisotropy, and etching uniformity, appropriate amounts of reaction gases were mixed and used. Was.

このために反応ガスの種類によってはデポジション現象
が現われて、被エノチン゛グ面Kfヒ合物が堆積してエ
ツチングの進行を妨害することもあった。しかし本発明
の方法ニj、単純な°反応ガスしか使用せず、上記のエ
ツチング速度、選択性、異方性、均一性の確保には被エ
ツチング物質の吸収波長の光を照射するので、デポジシ
ョン現象か現われなく、エツチングの進行が妨害はれる
ことがない。
For this reason, depending on the type of reaction gas, a deposition phenomenon may occur, and Kf agglomerates may accumulate on the surface to be etched, thereby interfering with the progress of etching. However, the method of the present invention uses only a simple reaction gas, and in order to ensure the above-mentioned etching rate, selectivity, anisotropy, and uniformity, the device is irradiated with light at the absorption wavelength of the material to be etched. No position phenomenon appears and the progress of etching is not obstructed.

また印加する高周波′電力は小さいので、発生ずるプラ
ズマによるイオン衝撃によって被エツチング面に与える
ダメーゾはほとんどなく、これによる結晶欠陥が発生す
ることがない。
Furthermore, since the applied high-frequency power is small, there is almost no damage to the surface to be etched due to ion bombardment by the generated plasma, and no crystal defects are caused by this.

なお、反応ガスに塩素もしくは塩素系ガスを使用した場
合は、エツチング終了後に高周波電力を止め、真空度を
増して暫時波長の長い光を照射しておくと被エツチング
面上に付着している塩素もしくは塩素系ガスを蒸発きせ
ることか出来るので、被エツチング物をエツチングチャ
ンバーから取シ出した後も塩素等による腐食が発生しな
い。
If chlorine or chlorine-based gas is used as the reaction gas, turn off the high-frequency power after etching, increase the degree of vacuum, and irradiate the surface with long-wavelength light for a while to remove the chlorine adhering to the surface to be etched. Alternatively, since the chlorine-based gas can be evaporated, corrosion due to chlorine or the like will not occur even after the object to be etched is taken out from the etching chamber.

以上のように本発明の方法および装置によシエノチング
を実施すると、複雑な条件設定をすることなく、また被
エツチング物に結晶欠陥などのダメージを与えることな
く容易に異方性エツチングを行うことが出来るので、高
精度の、微細化した回路のエツチングが容易に行なうこ
とが出来、実用効果は極めて大きい。
As described above, when cyanotching is performed using the method and apparatus of the present invention, anisotropic etching can be easily performed without setting complicated conditions and without causing damage such as crystal defects to the object to be etched. Because of this, it is possible to easily perform etching of highly precise and miniaturized circuits, and the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のドライエツチング装置の構成図である。 第2図および第6図は本発明のドライエツチング装置の
構成図である。 図において、5は高周波電源、7はA電極、9はエツチ
ングチャンバー、10はB電極、11は投光装置でこの
内部の12は光源、13は光束調整器、14はフィルタ
である。 特許出願人 国際電気株式会社 代理人弁理士 山元俊仁
FIG. 1 is a block diagram of a conventional dry etching apparatus. FIGS. 2 and 6 are block diagrams of the dry etching apparatus of the present invention. In the figure, 5 is a high frequency power supply, 7 is an A electrode, 9 is an etching chamber, 10 is a B electrode, 11 is a light projection device, inside this is 12 a light source, 13 is a light flux adjuster, and 14 is a filter. Patent applicant: Toshihito Yamamoto, patent attorney representing Kokusai Denki Co., Ltd.

Claims (1)

【特許請求の範囲】 ■、集積度の大きい回路を有する半導体基板を高周波プ
ラズマにより高精度にエツチングするドライエンチング
方法において、特定波長バンドの光を被エツチング物質
面上例照射して、この面上での気体分子を励起状態とし
、この励起状態の気体分子に高周波電界を与えてプラズ
マを発生させ、等方性エツチングを抑制して異方性エツ
チングを行なうことを特徴とするドライエツチング方法
。 2、特許請求の範囲第1項記載のドライエツチング方法
において、特定波長バンドの光が被エツチング物質の吸
収波長の光である前記ドライエツチング方法。 3、゛特許請求の範囲第1項および第2項記載のドライ
エツチング方法において、吸収波長バンドの光を照射す
る範囲を被エンチング面の全面とした前記ドライエツチ
ング方法。 4、特許請求の範囲第1項および第2項記載のドライエ
ツチング方法において、吸ノ1又波長バンドの光を照射
する範囲を被エツチング面の一部とした@記ドライエツ
チング方法。 5、集積度の大きい回路を有する半導体基板を高周波プ
ラズマにより高精度にエツチングするドライエツチング
装置において、上面に被エツチング物を載置するようK
なされかつ水平に配置きれた第一の電極と、この第一の
電極のl IIIJに実質的に平行して対向しかつ中央
部に所j口コlSを設けしれた第二の電極と、前記第一
の電極上に載置された前記被エツチング物を前記第二の
電極の開口部の上側から特定波長バンドの光で照射する
投光装置とを設けたことを特徴とするドライエツチング
装置。 6、集積匿の大きい回路を有する半導波基板を高周波プ
ラズマにより高精度にエツチングするドライエツチング
装置において、側面に被エツチング物を保持するように
なされかつ垂直に配置された第一の電極と、この第一の
電極の前記被エツチング物を保持する而と実質的に平行
して対向しかつ中央部に開口部を設けた第二の電極と、
前記第一の電極の表面に保持でれた前記被エツチング物
を前記第二の電極の開口部を通して横方向から特定波長
バンドの光で照射する投光装置とを設けたことを特徴と
するドライエツチング装置。 7、特許請求の範囲第5項および第6項記載のドライエ
ツチング装置において、投光装置が光源と、光束調整器
と、前記特定波長バンドの光を通過させるフィルタとよ
り々る前記ドライエツチング装置。 8、特許請求の範囲第7項記載のドライエツチング装置
において、光束調整器が凸レンズよりなる集光器である
前記ドライエツチング装置。 9、特許請求の範囲第7項記載のドライエツチング装置
において、光束調整器が凹レンズよりなる散光器である
前記ドライエツチング装置。 10、特許請求の範囲第7項記載のドライエツチング装
置において、光束調整器が平行光線にする抛物面反射鏡
である前記ドライエツチング装置。
[Claims] (1) In a dry etching method in which a semiconductor substrate having a highly integrated circuit is etched with high precision using high-frequency plasma, the surface of the material to be etched is irradiated with light in a specific wavelength band. A dry etching method characterized by bringing the gas molecules above into an excited state, applying a high frequency electric field to the excited gas molecules to generate plasma, and performing anisotropic etching by suppressing isotropic etching. 2. The dry etching method according to claim 1, wherein the light in the specific wavelength band is light at a wavelength absorbed by the material to be etched. 3. The dry etching method according to claims 1 and 2, wherein the entire surface of the surface to be etched is irradiated with light in the absorption wavelength band. 4. The dry etching method according to claims 1 and 2, in which the area to be irradiated with light in one wavelength band is a part of the surface to be etched. 5. In a dry etching device that etches semiconductor substrates with highly integrated circuits with high precision using high-frequency plasma, the object to be etched is placed on the top surface.
a first electrode formed and arranged horizontally, a second electrode facing substantially parallel to the first electrode and provided with an opening at the center; A dry etching apparatus comprising: a light projection device for irradiating the object to be etched placed on the first electrode with light in a specific wavelength band from above the opening of the second electrode. 6. In a dry etching apparatus for etching a semiconductor waveguide substrate having a large integrated circuit with high precision using high frequency plasma, a first electrode is arranged vertically and is adapted to hold an object to be etched on a side surface; a second electrode facing substantially parallel to the first electrode holding the object to be etched and having an opening in the center;
A dryer comprising: a light projection device that irradiates the object to be etched held on the surface of the first electrode with light in a specific wavelength band from the lateral direction through the opening of the second electrode. Etching equipment. 7. The dry etching apparatus according to claims 5 and 6, wherein the light projection device includes a light source, a luminous flux adjuster, and a filter that passes the light in the specific wavelength band. . 8. The dry etching apparatus according to claim 7, wherein the light flux adjuster is a condenser made of a convex lens. 9. The dry etching apparatus according to claim 7, wherein the light flux adjuster is a diffuser comprising a concave lens. 10. The dry etching apparatus according to claim 7, wherein the light flux adjuster is a parapet surface reflector that converts the beam into parallel beams.
JP6843883A 1983-04-20 1983-04-20 Dry etching method and device therefor Pending JPS59194436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6843883A JPS59194436A (en) 1983-04-20 1983-04-20 Dry etching method and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6843883A JPS59194436A (en) 1983-04-20 1983-04-20 Dry etching method and device therefor

Publications (1)

Publication Number Publication Date
JPS59194436A true JPS59194436A (en) 1984-11-05

Family

ID=13373706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6843883A Pending JPS59194436A (en) 1983-04-20 1983-04-20 Dry etching method and device therefor

Country Status (1)

Country Link
JP (1) JPS59194436A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258761A (en) * 2013-05-02 2013-08-21 上海华力微电子有限公司 Plasma etching chamber for controlling temperature of wafer and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113329A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light dry etching
JPS5782475A (en) * 1980-11-12 1982-05-22 Toshiba Corp Dry etching method
JPS5798679A (en) * 1980-12-11 1982-06-18 Toshiba Corp Dry etching device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113329A (en) * 1979-02-23 1980-09-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Light dry etching
JPS5782475A (en) * 1980-11-12 1982-05-22 Toshiba Corp Dry etching method
JPS5798679A (en) * 1980-12-11 1982-06-18 Toshiba Corp Dry etching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258761A (en) * 2013-05-02 2013-08-21 上海华力微电子有限公司 Plasma etching chamber for controlling temperature of wafer and method thereof

Similar Documents

Publication Publication Date Title
US7504040B2 (en) Plasma processing apparatus and plasma processing method
US5877090A (en) Selective plasma etching of silicon nitride in presence of silicon or silicon oxides using mixture of NH3 or SF6 and HBR and N2
US4687544A (en) Method and apparatus for dry processing of substrates
US8263499B2 (en) Plasma processing method and computer readable storage medium
US7976673B2 (en) RF pulsing of a narrow gap capacitively coupled reactor
CN100373557C (en) Etch amount detection method, etching method, and etching system
KR20180046860A (en) Plasma processing apparatus
US5397433A (en) Method and apparatus for patterning a metal layer
JP3217875B2 (en) Etching equipment
US11276579B2 (en) Substrate processing method and plasma processing apparatus
JPS59194436A (en) Dry etching method and device therefor
KR20010021311A (en) Etching aluminum over refractory metal with successive plasmas
JPH0936103A (en) Etching of semiconductor wafer and resist removing method and device
JPH06104098A (en) Microwave plasma treatment device
JPS60198827A (en) Laser beam etching method
JPH0423416B2 (en)
JP3234812B2 (en) Method for manufacturing semiconductor device
JPH01278023A (en) Method and device for dry etching
JPS6354728A (en) Etching method
JPH0484429A (en) Electron beam excitation dry etching and its device
JPH0472722A (en) Electron beam excited dryetching process
JPH11145118A (en) Method and apparatus for etching
JPH0794482A (en) Dry etching method
JPH03177587A (en) Plasma treatment
JPS61150339A (en) Method for dry etching