JPS5919386A - Gas circulation type gas laser - Google Patents

Gas circulation type gas laser

Info

Publication number
JPS5919386A
JPS5919386A JP12940082A JP12940082A JPS5919386A JP S5919386 A JPS5919386 A JP S5919386A JP 12940082 A JP12940082 A JP 12940082A JP 12940082 A JP12940082 A JP 12940082A JP S5919386 A JPS5919386 A JP S5919386A
Authority
JP
Japan
Prior art keywords
gas
laser
laser gas
high temperature
absorption type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12940082A
Other languages
Japanese (ja)
Inventor
Akira Egawa
明 江川
Akira Okamoto
晃 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP12940082A priority Critical patent/JPS5919386A/en
Publication of JPS5919386A publication Critical patent/JPS5919386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve the energy efficiency by disposing an evaporator of diffusion absorption type cooler which uses as a heat source a laser gas passed through a discharging unit in a circulation passage of the gas laser. CONSTITUTION:Laser gas sealed on a housing 1 is fed under pressure by blowers 2, 3 in a direction designated by an arrow, and discharging energy is received between discharging units 7 and 8 to perform laser oscillation. High temperature laser gas which is passed through the discharging units 7, 8 heats coolant gas generators 9, 10, and generated high temperature and high pressure gas is fed to a separator 12. Coolant gas from the separator 12 is fed through a condenser 14 to evaporators 4a, 4b, 4c, thereby cooling the laser gas. Since the cooler in which the high temperature laser gas is used as a heat source is used in this manner, the energy efficiency is improved.

Description

【発明の詳細な説明】 本発明は、ガス循環形ガスレーザ装置に関する。[Detailed description of the invention] The present invention relates to a gas circulation type gas laser device.

ガス循環形ガスレーザ装置は、放電部でレーザガスに放
電エネルギーを与えてレーザ発振させるとともに、該放
電部全通過した上記レーザガスを熱交換器によって冷却
し友のち再び上記放電部に移送するように構成されてお
り、その出力Pは次式のようにあられされる。
A gas circulation type gas laser device is configured to apply discharge energy to a laser gas in a discharge section to cause laser oscillation, and the laser gas that has completely passed through the discharge section is cooled by a heat exchanger and then transferred to the discharge section again. The output P is expressed as follows.

P OCT−” ことで、Tは放電部に移送される直前のレーザガスの温
度(絶対温度;K)である。
P OCT-'' where T is the temperature (absolute temperature; K) of the laser gas just before it is transferred to the discharge section.

上式から明らかなとおり、上記ガス循環形ガスレーザ装
置におけるレーザ発振の効率を高めるためには、上記温
度Tを低下させればよい。そこで、上記熱交換器として
熱交換量の大きいものを使用することが考えられるが、
これは熱交換器で消費される電力を増大させることにな
ることから装置全体からみたエネルギー効率が低下する
という不都合を伴う。
As is clear from the above equation, in order to increase the efficiency of laser oscillation in the gas circulation type gas laser device, it is sufficient to lower the temperature T. Therefore, it is possible to use a heat exchanger with a large amount of heat exchange as the above heat exchanger.
This increases the power consumed by the heat exchanger, resulting in a disadvantage that the energy efficiency of the entire device decreases.

本発明の目的は、かかる状況に鑑み、装置全体としての
エネルギー効率を低下させることなくレーザ出力を向上
し得るガス循環形ガスレーザ装置を提供することにある
In view of this situation, an object of the present invention is to provide a gas circulation type gas laser device that can improve laser output without reducing the energy efficiency of the device as a whole.

本発明は、かかる目的を達成するために、放電部を通過
した直後のレーザガスの熱エネルギーを利用してレーザ
ガスを冷却するようにしている。
In order to achieve this object, the present invention uses the thermal energy of the laser gas immediately after passing through the discharge section to cool the laser gas.

以下、添附図面を参照しながら本発明の詳細な説明する
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は、本発明に係るガス循環形ガスレーザ装置の一
実施例を示す概念図である。同図において、筐体1には
炭酸ガス等のレーザガスが封入されており、該レーザガ
スは上記筺体1の下部に設けた送風器2および3によっ
て矢印方向に圧送される。
FIG. 1 is a conceptual diagram showing an embodiment of a gas circulation type gas laser device according to the present invention. In the figure, a housing 1 is filled with laser gas such as carbon dioxide gas, and the laser gas is forced in the direction of the arrow by blowers 2 and 3 provided at the bottom of the housing 1.

気化器4a、4bおよび4cは、第2図に示す拡散吸収
形冷却器100を構成するもので、管材を上記筺体1の
奥ゆき方向に往復屈曲させて形成している。
The vaporizers 4a, 4b, and 4c constitute the diffusion absorption type cooler 100 shown in FIG.

案内板5および6は、上記レーザガスを放電電極7およ
び8に案内するためのものであり、上記筺体1の上下方
向に沼って対向配置されている。
The guide plates 5 and 6 are for guiding the laser gas to the discharge electrodes 7 and 8, and are disposed facing each other in the vertical direction of the housing 1.

この案内板5および6の下部には、管材を筺体1の奥ゆ
き方向に往復屈曲して形成した、上記拡散吸収形冷却器
100の冷媒ガス発生器9お工び10がそれぞれ設けら
れている。
At the bottom of the guide plates 5 and 6, the refrigerant gas generators 9 and 10 of the diffusion absorption type cooler 100, which are formed by reciprocally bending tubes in the depth direction of the housing 1, are provided.

第2図は、本実施例に適用している拡散吸収形冷却器1
00の一例を示す概念図である。なお、この冷却器の構
成は公知である。同図において、上記発生器9.10に
はアンモニアガス等の冷媒を水等の溶媒に溶解させ几冷
媒溶液が注入されている。
Figure 2 shows the diffusion absorption type cooler 1 applied to this embodiment.
00 is a conceptual diagram showing an example. Note that the configuration of this cooler is known. In the figure, a coolant solution made by dissolving a refrigerant such as ammonia gas in a solvent such as water is injected into the generator 9.10.

上記送風器2.3によって放電電極7,8間に送り込ま
れたレーザガスは、該電極の放電エネルギー金堂けてレ
ーザ発振し、同時に加熱されて高温のガスとなる。
The laser gas sent between the discharge electrodes 7 and 8 by the blower 2.3 causes laser oscillation due to the discharge energy of the electrodes, and is simultaneously heated and becomes a high-temperature gas.

したがって、上記発生器9 、1o1i−h記放電部7
゜8を通過した高温のレーザガスによって加熱され、上
記冷媒溶液が沸騰する。この結果、高温高圧のアンモニ
アガスおよび水蒸気が発生し、これらのアンモニアガス
および水蒸気は導管11ヲ介して分離器12に導かれる
Therefore, the generator 9, 1o1i-h discharge unit 7
The refrigerant solution is heated by the high temperature laser gas that has passed through the temperature of 8°C and boils. As a result, high temperature and high pressure ammonia gas and water vapor are generated, and these ammonia gas and water vapor are led to the separator 12 via the conduit 11.

該分離器12は、上記水蒸気全液化してアンモニアガス
と分離させるものであり、分離されたアンモニアガス法
導管13全介して凝縮器14に導かれる。
The separator 12 is for completely liquefying the water vapor and separating it from ammonia gas, and the water vapor is led to a condenser 14 through the entire separated ammonia gas method conduit 13.

凝縮器14は、上記筺体1の奥ゆき方向に往復屈曲させ
た管材に複数の冷却用羽根を設けた構成をもち、上記筺
体1の外側上部に配置されている。
The condenser 14 has a configuration in which a plurality of cooling blades are provided on a tube bent back and forth in the depth direction of the housing 1, and is disposed on the outer upper part of the housing 1.

上記アンモニアガスは、該凝縮器14で冷却液化され、
この液化したアンモニアガスはキャピラリチューブ15
i介して減圧された後に、上記気化器4a 、4bおよ
び4cに導かれる。
The ammonia gas is cooled and liquefied in the condenser 14,
This liquefied ammonia gas is transferred to the capillary tube 15.
After being depressurized through i, it is introduced into the vaporizers 4a, 4b and 4c.

該気化器4m 、4bおよび4cにおいては、上記液化
し之アンモニアガスが該気化器4a、4bおよび4cに
接触するレーザガスから気化熱を吸収して気化する。し
たがって、上記発生器9.10を加熱したのち筺体1の
上方に圧送されたレーザガスは、この気化器4m、4b
および4cによって冷却されたのち、上記案内板5.6
に案内されて再び上記放電電極7.8に送り込まれる。
In the vaporizers 4m, 4b and 4c, the liquefied ammonia gas absorbs the heat of vaporization from the laser gas in contact with the vaporizers 4a, 4b and 4c and is vaporized. Therefore, the laser gas pumped above the housing 1 after heating the generators 9 and 10 is transferred to the vaporizers 4m and 4b.
and 4c, the guide plate 5.6
and is again sent to the discharge electrode 7.8.

上記気化器4a、4bおよび4c’z通過した後のアン
モニアガスは受液槽16i介して吸収器17に導かれる
。上記吸収器17には上記分離器12において分離され
た水が導管18を介して流入しており、したがって、該
吸収器17において上記アンモニアガスが上記水に8%
する。これによって冷媒溶液が上記受液槽16に貯溜さ
れ、この冷媒溶液は上記発生器9.10に供給される。
After passing through the vaporizers 4a, 4b and 4c'z, the ammonia gas is led to the absorber 17 via the liquid receiving tank 16i. The water separated in the separator 12 flows into the absorber 17 via a conduit 18, so that in the absorber 17 the ammonia gas is added to the water by 8%.
do. A refrigerant solution is thereby stored in the receiving tank 16, and this refrigerant solution is supplied to the generator 9.10.

そして、発生器9゜10に供給された冷媒m液は再び上
記した冷却作用を繰り返す。
Then, the refrigerant liquid supplied to the generators 9 and 10 repeats the above cooling action again.

なお、上述したようなアンモニアガスの流路を設定する
丸め、高圧部すなわち凝縮器14と低圧部すなわち気化
器4m、4bおよび46との圧力差をつり合わせるに足
る圧力を有した気体例えば水素ガスが、上記気化器4m
、4bおよび4Cに封入されており、吸収器17と気化
器4m+4bおよび4cとを連結する管路19は、上記
水素ガスを循環させる作用をなす。
In addition, for setting the ammonia gas flow path as described above, a gas having a pressure sufficient to balance the pressure difference between the high pressure section, that is, the condenser 14, and the low pressure section, that is, the vaporizers 4m, 4b, and 46, such as hydrogen gas, is used. However, the above vaporizer 4m
, 4b and 4C, and connects the absorber 17 and the vaporizers 4m+4b and 4c, a pipe line 19 serves to circulate the hydrogen gas.

上記実施例においては、放電電極7.8を中空に形成し
、上記発生器9.10の一部として使用している。換言
すれば発生器9,10の一部を放電電極7.8として利
用している。かくすれば、発生器9.10の加熱効率金
より高めることができる。
In the embodiment described above, the discharge electrode 7.8 is formed hollow and is used as part of the generator 9.10. In other words, part of the generators 9, 10 is used as the discharge electrode 7.8. In this way, the heating efficiency of the generators 9.10 can be further increased.

また、上述した実施例においては、レーザガスを拡散吸
収形冷却器のみで冷却するようにしているが、例えば、
拡散吸収形冷却器の気化器を41のみとし、他の気化器
4b 、4eの位置に従来の熱交換器を設けた態様でも
本発明を実施し得る。
Furthermore, in the embodiments described above, the laser gas is cooled only by the diffusion absorption type cooler, but for example,
The present invention can also be practiced in an embodiment in which only the vaporizer 41 of the diffusion absorption type cooler is provided, and conventional heat exchangers are provided at the positions of the other vaporizers 4b and 4e.

以上説明したように、本発明においては放電電極全通過
した後の高温のレーザガスを拡散吸収形冷却器における
発生器の熱源とし、上記拡散吸収形冷却器によって放電
電極に移送されるレーザガスを冷却しているので、放電
電極を冷却するエネルギーが不要でかつ能率のよいレー
ザガスの冷却を行なうことができる。したがって、従来
装置に比してレーザガス冷却効率が高く、それによって
、装置全体における効率全向上させることができるとい
う利点を有する。
As explained above, in the present invention, the high temperature laser gas after passing through the discharge electrode is used as the heat source of the generator in the diffusion absorption type cooler, and the laser gas transferred to the discharge electrode is cooled by the diffusion absorption type cooler. Therefore, energy for cooling the discharge electrode is not required and the laser gas can be efficiently cooled. Therefore, the laser gas cooling efficiency is higher than that of the conventional device, which has the advantage that the efficiency of the entire device can be completely improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係るガス循環形ガスレーザ装置の一
実施例金示す概念図、第2図は、第1図に示した装置に
適用した拡散吸収形冷却器を例示する概念図。 4m、4b、40−気化器、9 、10・・・発生器、
100・・・拡散吸収形冷却器。
FIG. 1 is a conceptual diagram illustrating an embodiment of a gas circulation type gas laser device according to the present invention, and FIG. 2 is a conceptual diagram illustrating a diffusion absorption type cooler applied to the device shown in FIG. 1. 4m, 4b, 40-vaporizer, 9, 10...generator,
100... Diffusion absorption type cooler.

Claims (1)

【特許請求の範囲】[Claims] 放電部を通過したレーザガスを熱交換器によって冷却し
たのち前記放電部へ再度移送するガス循環形ガスレーザ
装置において、拡散吸収形冷却器を設け、前記放電部を
通過したレーザガスを前記拡散吸収形冷却器の発生器用
熱源として使用し、かつ、前記拡散吸収形冷却器の気化
器を前記レーザガスの循環路内に配置し友ことを特徴と
するガス循環形ガスレーザ装置。
In a gas circulation type gas laser device in which the laser gas that has passed through the discharge section is cooled by a heat exchanger and then transferred to the discharge section again, a diffusion absorption type cooler is provided, and the laser gas that has passed through the discharge section is cooled by the diffusion absorption type cooler. A gas circulation type gas laser device, which is used as a heat source for a generator, and a vaporizer of the diffusion absorption type cooler is disposed in a circulation path of the laser gas.
JP12940082A 1982-07-23 1982-07-23 Gas circulation type gas laser Pending JPS5919386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12940082A JPS5919386A (en) 1982-07-23 1982-07-23 Gas circulation type gas laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12940082A JPS5919386A (en) 1982-07-23 1982-07-23 Gas circulation type gas laser

Publications (1)

Publication Number Publication Date
JPS5919386A true JPS5919386A (en) 1984-01-31

Family

ID=15008622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12940082A Pending JPS5919386A (en) 1982-07-23 1982-07-23 Gas circulation type gas laser

Country Status (1)

Country Link
JP (1) JPS5919386A (en)

Similar Documents

Publication Publication Date Title
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JPH0228232B2 (en)
US4546620A (en) Absorption machine with desorber-resorber
CN114322354A (en) Absorption type circulating refrigeration system and process thereof
JPS597862A (en) Absorption type heat pump system
JPS5919386A (en) Gas circulation type gas laser
KR890004393B1 (en) Air cooling type absorption cooler
US5373709A (en) Absorption type refrigerator
JPH0446339B2 (en)
US5899092A (en) Chiller
JPH0237262A (en) Device for utilizing waste heat of fuel battery
US3441380A (en) Acid producing plant
JP7444356B2 (en) Cooling system
JPH04138671A (en) Fuel cell
US3580001A (en) Absorption refrigeration machine with concentration control tank
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
JPH05114411A (en) Fuel cell power generation system
JPH062981A (en) Fuel cell refrigerator integral system
JPH05263610A (en) Power generating facility
CN100513934C (en) Absorption chiller-heater and generator
JPH0760031B2 (en) Double-effect multistage pressure absorption refrigerator and its system
JPS6044778A (en) Absorption type cold and hot medium obtaining device
JPH10122698A (en) Absorption refrigerating apparatus
BR102019006134B1 (en) SYSTEM WITH STORAGE OF THERMAL WASTE FROM FUEL CELLS INTEGRATED WITH ADSORPTION REFRIGERATORS
JPH07318196A (en) Absorption type refrigerating equipment