JPH07318196A - Absorption type refrigerating equipment - Google Patents

Absorption type refrigerating equipment

Info

Publication number
JPH07318196A
JPH07318196A JP6115663A JP11566394A JPH07318196A JP H07318196 A JPH07318196 A JP H07318196A JP 6115663 A JP6115663 A JP 6115663A JP 11566394 A JP11566394 A JP 11566394A JP H07318196 A JPH07318196 A JP H07318196A
Authority
JP
Japan
Prior art keywords
air
burner
refrigerant
gas
fuel mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6115663A
Other languages
Japanese (ja)
Other versions
JP2806798B2 (en
Inventor
Hideyuki Jinno
秀幸 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP6115663A priority Critical patent/JP2806798B2/en
Publication of JPH07318196A publication Critical patent/JPH07318196A/en
Application granted granted Critical
Publication of JP2806798B2 publication Critical patent/JP2806798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To enlarge the amount of heat of a burner in a small-sized generator, to reduce production of a nitrogen oxide even in the case of a high-load operation and to attain a high thermal efficiency by forming a mixing flow passage along which an air-fuel mixture supplied from an air introducing passage circulates through a circular passage formed between an inside casing and a burner housing and enters the inside casing from an inside-outside communication port. CONSTITUTION:An air-fuel mixture to be supplied to a burner 6 is supplied along a mixing flow passage 9 along which the mixture is made to circulate through a circular passage 90 provided between an inside casing 8 and a burner housing 64 and enters the inside casing 8 from the inside-outside communication port 83. Therefore the mixing flow passage 9 can be formed to be long for the burner 6 of a compact structure and the air-fuel mixture can be mixed sufficiently, while the air-fuel mixture can be preheated efficiently. As the result/partial, occurrence of the part of the air-fuel mixture having a small air-fuel ratio and being gas-rich can be prevented and the air-fuel mixture being uniform, having a large air-fuel ratio and being thin can be used. Therefore a combustion temperature can be lowered and production of a nitrogen oxide is reduced, while a thermal efficiency is improved by preheating of the air-fuel mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、アンモニア、リチウ
ム・ブロマイドなどの水溶液を作動液として用いた吸収
式冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigeration system using an aqueous solution of ammonia, lithium bromide or the like as a working fluid.

【0002】[0002]

【従来の技術】アンモニア、リチウム・ブロマイドなど
の水溶液(作動液)を用いた吸収式冷凍装置は、水溶液
を発生器で加熱してアンモニアなど冷媒の蒸気を発生さ
せ、この冷媒の蒸気を分縮器で液化させ、膨張弁を経て
低圧の蒸発器に流し込み、冷凍作用を行わせる。蒸発器
で再び蒸発した冷媒は、吸収器において、冷媒の蒸発に
より希薄になった作動液を発生器から吸収液として供給
して吸収器内で吸収させる。この冷媒(アンモニアガ
ス)の吸収により高濃度となった作動液をポンプで前記
発生器に循環させる。
2. Description of the Related Art An absorption refrigerating apparatus using an aqueous solution (working fluid) of ammonia, lithium bromide, etc., heats the aqueous solution with a generator to generate a vapor of a refrigerant such as ammonia, and the vapor of the refrigerant is condensed. It is liquefied in a vessel and poured into a low-pressure evaporator through an expansion valve to perform a refrigerating action. In the absorber, the refrigerant evaporated again in the evaporator is supplied with the working fluid diluted by the evaporation of the refrigerant as an absorbing liquid from the generator to be absorbed in the absorber. The working fluid having a high concentration due to the absorption of the refrigerant (ammonia gas) is circulated to the generator by a pump.

【0003】[0003]

【発明が解決しようとする課題】この吸収式冷凍装置
は、吸収式冷凍装置を高負荷化、小型化して家庭用の空
調・給湯装置に適用することが望まれているが、発生器
の加熱源としてバーナを使用する。高負荷化のためバー
ナの発熱量を大きくすると窒素酸化物の発生が増大する
問題が生じる。この場合において、窒素酸化物の発生を
低減させる方法は、バーナの燃焼温度を低く保つことが
有効であり、この為には出来るだけ空燃比を大きくして
希薄な混合気で燃焼させることが有効である。この発明
の目的は、小型の発生器でバーナの発熱量を大きくし高
負荷運転した場合にも窒素酸化物の発生が低減でき、高
い熱効率が得られる吸収式冷凍装置の提供にある。
It is desired that the absorption refrigerating apparatus be applied to a home air conditioner / water heater by increasing the load and downsizing of the absorption refrigerating apparatus. Use burner as a source. When the calorific value of the burner is increased to increase the load, there arises a problem that the generation of nitrogen oxides increases. In this case, the method of reducing the generation of nitrogen oxides is effective to keep the combustion temperature of the burner low. For this purpose, it is effective to increase the air-fuel ratio as much as possible and burn it with a lean air-fuel mixture. Is. An object of the present invention is to provide an absorption type refrigerating apparatus which can reduce the generation of nitrogen oxides even when the burner is heated by a small generator to increase the amount of heat generated and the load is operated at high load.

【0004】[0004]

【課題を解決するための手段】この発明の吸収式冷凍装
置は、冷媒と吸収液とを混合した加熱容器内の作動液を
バーナで加熱して冷媒と吸収液の混合作動液蒸気を発生
させる発生器を備えた吸収式冷凍装置において、前記バ
ーナは、燃焼板と、外壁に空気導入通路が設けられると
ともに前記燃焼板を保持するバーナハウジングと、該バ
ーナハウジングへの燃料ガス供給手段と、前記燃焼板の
下面を囲んで前記バーナハウジング内に配設されるとと
もに内外連通口を有する内側ケーシングと、前記内外連
通口と前記空気導入通路との短絡を阻止する短絡阻止手
段とからなり、前記空気導入通路から内側ケーシングと
バーナハウジングとの間の環状流路を周回して前記内外
連通口から内側ケーシング内に入る混合流路を形成した
ことを特徴とする。
In the absorption type refrigerating apparatus of the present invention, the working fluid in the heating container in which the refrigerant and the absorbing fluid are mixed is heated by the burner to generate the mixed working fluid vapor of the refrigerant and the absorbing fluid. In an absorption refrigerating apparatus including a generator, the burner includes a combustion plate, a burner housing having an outer wall provided with an air introduction passage and holding the combustion plate, a fuel gas supply unit to the burner housing, An inner casing having an inner / outer communication port and disposed in the burner housing surrounding the lower surface of the combustion plate; and a short-circuit prevention unit for preventing a short circuit between the inner / outer communication port and the air introduction passage. It is characterized in that a mixing flow passage is formed so as to circulate an annular flow passage between the introduction passage and the inner casing and the burner housing and enter the inner casing from the inner and outer communication ports.

【0005】請求項2に記載の構成においては、短絡阻
止手段を、内側ケーシングとバーナハウシングとの間に
設けられた仕切り壁で構成した。この仕切り壁は、内側
ケーシングまたはバーナハウシングの鋳造時に一体成形
することが有利である。請求項3に記載の構成において
は、空気導入通路はバーナハウシングの側壁に接線方向
に設けられ、燃料ガス供給手段は、前記空気導入通路に
交差する方向に取り付けられたノズル管との下流側に列
設された複数のガス噴出穴で形成した。
According to the second aspect of the present invention, the short-circuit prevention means is constituted by the partition wall provided between the inner casing and the burner housing. Advantageously, this partition wall is integrally formed during the casting of the inner casing or the burner housing. In the structure according to claim 3, the air introduction passage is provided tangentially to the side wall of the burner housing, and the fuel gas supply means is provided downstream of the nozzle pipe attached in a direction intersecting with the air introduction passage. It was formed by a plurality of gas ejection holes arranged in a row.

【0006】[0006]

【発明の作用・効果】この吸収式冷凍装置では、バーナ
に供給される混合気を内側ケーシングとバーナハウシン
グとの間に設けた環状流路を周回して、内外連通口から
内側ケーシング内に入る混合流路を経て供給している。
このためコンパクトな体格のバーナで混合流路が長く形
成でき、混合気の混合が十分にできるとともに混合気の
予熱が効率良くできる。この結果、部分的に空燃比が小
さくガスリッチな混合気の部分が発生することを防止で
き、均一で大きい空燃比の希薄な混合気が使用できるの
で燃焼温度の低減が可能となり、窒素酸化物の発生が低
減するとともに混合気の予熱により熱効率が向上する。
請求項2の構成では、簡単な構成で距離の長い混合流路
が形成できる。請求項3の構成では、燃料ガスの燃焼用
空気への分散が効率よくできる。
In this absorption refrigerating apparatus, the air-fuel mixture supplied to the burner goes around the annular flow path provided between the inner casing and the burner housing, and enters the inner casing from the inner / outer communication port. It is supplied through the mixing channel.
For this reason, a compact burner can form a long mixing flow path, the mixture can be sufficiently mixed, and the preheating of the mixture can be efficiently performed. As a result, it is possible to prevent the generation of a gas-rich air-fuel mixture part with a small air-fuel ratio, and it is possible to use a lean air-fuel mixture with a uniform and large air-fuel ratio, so it is possible to reduce the combustion temperature and Generation is reduced and thermal efficiency is improved by preheating the air-fuel mixture.
According to the structure of claim 2, the mixing channel having a long distance can be formed with a simple structure. With the configuration according to claim 3, the fuel gas can be efficiently dispersed in the combustion air.

【0007】[0007]

【実施例】図8および図9は、アンモニア水溶液を作動
液とする吸収式冷凍装置100を用いた冷暖房給湯装置
を示す。この発明の吸収式冷凍装置100は、アンモニ
アガスを発生させる発生器1、冷房運転時には分縮器と
して作用し、暖房運転時には蒸発器として作用する熱源
側熱交換器11、冷房運転時には蒸発器として作用し、
暖房運転時には分縮器として作用する利用側熱交換器
3、および吸収器4を備える熱源側熱交換器11と利用
側熱交換器3との間には、液冷媒とガス冷媒とを熱交換
させる冷媒間熱交換器2が配設されている。発生器1の
上方には順に精留器12および分縮器(凝縮器)13が
重ねて設けられている。
EXAMPLE FIG. 8 and FIG. 9 show a cooling and heating hot water supply apparatus using an absorption type refrigerating apparatus 100 using an aqueous ammonia solution as a working fluid. The absorption refrigeration system 100 of the present invention includes a generator 1 that generates ammonia gas, a heat source side heat exchanger 11 that acts as a demultiplexer during cooling operation, and acts as an evaporator during heating operation, and an evaporator during cooling operation. Acting,
A liquid refrigerant and a gas refrigerant are heat-exchanged between the heat source side heat exchanger 11 including the use side heat exchanger 3 that functions as a demultiplexer during the heating operation and the absorber 4 and the use side heat exchanger 3. An inter-refrigerant heat exchanger 2 is provided. Above the generator 1, a rectifier 12 and a partial condenser (condenser) 13 are sequentially stacked.

【0008】これら機器は作動液流通路で連結され、分
縮器(凝縮器)13、熱源側熱交換器11、冷媒間熱交
換器2、利用側熱交換器3を連結する作動液流通路には
流路切換のための第1四路切換弁21および第2四路切
換弁22が介装されている。冷媒間熱交換器2は、内管
2aと外管2bとからなる二重管式熱交換器であり、内
管2a内は液冷媒専用流通路とされ、外管2b内はガス
冷媒専用流通路となっている。
These devices are connected by a working liquid flow passage, and a working liquid flow passage that connects the dephlegmator (condenser) 13, the heat source side heat exchanger 11, the inter-refrigerant heat exchanger 2, and the use side heat exchanger 3. A first four-way switching valve 21 and a second four-way switching valve 22 for switching the flow path are provided in the. The inter-refrigerant heat exchanger 2 is a double-tube heat exchanger composed of an inner pipe 2a and an outer pipe 2b. The inner pipe 2a has a liquid refrigerant dedicated flow passage, and the outer pipe 2b has a gas refrigerant dedicated flow. It is a road.

【0009】第1四路切換弁21は、冷房運転時には発
生器1からのガス冷媒を熱源側熱交換器11へ流入さ
せ、かつ冷媒間熱交換器の外管2bからのガス冷媒を吸
収器4へ流入させる。暖房運転時には、切り換えられ
て、発生器1からのガス冷媒を利用側熱交換器3へ流入
させ、且つ熱源側熱交換器11からのガス冷媒を吸収器
4側へ流入させる。第2四路切換弁22は、冷房運転時
には利用側熱交換器3からのガス冷媒を冷媒間熱交換器
の外管2b側へ流入させ、かつ冷媒間熱交換器の外管2
bからガス冷媒を吸収器4へ流入させる。暖房運転時に
は、切り換えられて、発生器1からのガス冷媒を利用側
熱交換器3へ流入させ、かつ冷媒間熱交換器の外管2b
からのガス冷媒を吸収器4へ流入させる。
The first four-way switching valve 21 allows the gas refrigerant from the generator 1 to flow into the heat source side heat exchanger 11 during cooling operation, and absorbs the gas refrigerant from the outer pipe 2b of the inter-refrigerant heat exchanger. Inflow to 4. During the heating operation, the gas refrigerant from the generator 1 is switched into the utilization side heat exchanger 3 and the gas refrigerant from the heat source side heat exchanger 11 is caused to flow into the absorber 4 during the heating operation. The second four-way switching valve 22 allows the gas refrigerant from the usage-side heat exchanger 3 to flow into the outer pipe 2b side of the inter-refrigerant heat exchanger during the cooling operation, and the outer pipe 2 of the inter-refrigerant heat exchanger.
The gas refrigerant is caused to flow into the absorber 4 from b. During heating operation, the gas refrigerant from the generator 1 is switched to flow into the utilization side heat exchanger 3 and the outer tube 2b of the inter-refrigerant heat exchanger is switched during the heating operation.
The gas refrigerant from is flowed into the absorber 4.

【0010】発生器1は、図1〜図3に示す如く、加熱
容器5およびガスバーナ6を備える。加熱容器5は、希
溶液となっているアンモニア水溶液(アンモニア希溶
液)を10〜20気圧、200℃程度に加熱して沸騰さ
せ、アンモニアと水の混合蒸気を発生させる。加熱容器
5は、上方が全面開口して後述する精留器に連通させる
縦型円筒体51と、該円筒体51の下部に溶接された底
板52とを備える。
The generator 1 comprises a heating vessel 5 and a gas burner 6 as shown in FIGS. The heating container 5 heats an aqueous ammonia solution (ammonia dilute solution), which is a dilute solution, to about 200 ° C. at 10 to 20 atmospheres to boil and generate a mixed vapor of ammonia and water. The heating container 5 is provided with a vertical cylindrical body 51 which is opened at the entire upper surface and communicates with a rectifier described later, and a bottom plate 52 welded to the lower portion of the cylindrical body 51.

【0011】底板52は、上方に膨出した中央球殻部5
aと、該中央球殻部5aの外周から下方に延設された円
筒部5bと、該円筒部5bの下端から外側に展長された
鍔状部5cからなり、該鍔状部5cの外周が円筒体51
の下部内周壁に溶接されている。なお、底板52の中央
部を球殻状に形成したのは、薄い肉厚で加熱容器内の高
圧に耐えるためである。加熱容器5の中心にはアンモニ
ア希溶液を流出させ、吸収器4に供給するための希溶液
流出管20が上方から底部にまで差し込まれている。
The bottom plate 52 has a central spherical shell 5 bulging upward.
a, a cylindrical portion 5b extending downward from the outer periphery of the central spherical shell portion 5a, and a collar-shaped portion 5c extending outward from the lower end of the cylindrical portion 5b, the outer periphery of the collar-shaped portion 5c. Is the cylindrical body 51
Is welded to the lower inner wall of the. The center of the bottom plate 52 is formed in a spherical shell shape in order to withstand the high pressure in the heating container with a thin wall thickness. A dilute solution outflow pipe 20 for letting out the ammonia dilute solution and supplying it to the absorber 4 is inserted from the top to the bottom of the heating container 5.

【0012】底板52の下は、前記ガスバーナ6の燃焼
室60となっており、燃焼室60の底部には強制送風式
の全予混合燃焼板式ガスバーナ6が装着されている。ガ
スバーナ6は、図1、図4〜図6に示す如く、多数の炎
孔が所定のパターンで開けられたセラミック製で円形の
燃焼板61と、該燃焼板61を前記円筒体51の下端に
取り付けるための燃焼板保持枠62と、該燃焼板保持枠
62を載置するバーナハウジング64とを備える。
Below the bottom plate 52 is a combustion chamber 60 of the gas burner 6, and at the bottom of the combustion chamber 60 is installed a forced air blowing premixed combustion plate type gas burner 6. The gas burner 6 is, as shown in FIGS. 1 and 4 to 6, a ceramic circular combustion plate 61 having a large number of flame holes formed in a predetermined pattern, and the combustion plate 61 at the lower end of the cylindrical body 51. A combustion plate holding frame 62 for attachment and a burner housing 64 on which the combustion plate holding frame 62 is mounted are provided.

【0013】燃焼板保持枠62は、中心部に燃焼板嵌め
込み用円筒部6Aが設けられ、外周は前記円筒体51の
下端面に設けたフランジ57への締結縁6Bとなってい
る。燃焼板嵌め込み用円筒部6Aへは、燃焼板61およ
びその下方に混合気の均一分布を図る多孔板63が嵌め
込まれ、燃焼板61の上面の縁は円環状の縁金6Cで押
さえている。燃焼板61の上方には、前記円筒体51を
貫通して、点火用電極Sおよび失火検出用フレームロッ
ドFが装着されている。
The combustion plate holding frame 62 is provided with a combustion plate fitting cylindrical portion 6A at the center, and the outer periphery thereof is a fastening edge 6B to a flange 57 provided on the lower end surface of the cylindrical body 51. A combustion plate 61 and a perforated plate 63 for achieving a uniform distribution of the air-fuel mixture are fitted into the combustion plate fitting cylindrical portion 6A, and the upper edge of the combustion plate 61 is pressed by an annular rim 6C. Above the combustion plate 61, an ignition electrode S and a misfire detection frame rod F are mounted so as to penetrate the cylindrical body 51.

【0014】燃焼板保持枠62は、燃焼用空気と燃料ガ
スとの混合管を兼ねた円筒容器状のバーナハウジング6
4に載置されている。バーナハウジング64には接線方
向に矩形筒状の空気導入通路65が突設され、該空気導
入通路65には下流側に複数のガス噴出穴66が列設さ
れたガスノズル管67が交差するように差し込まれてい
る。空気導入通路65にはブロワBから燃焼用空気が供
給され、ガスノズル管67にはガス源Gから燃料ガスが
供給される。
The combustion plate holding frame 62 is a cylindrical container-shaped burner housing 6 which also serves as a mixing pipe for combustion air and fuel gas.
4 is mounted. The burner housing 64 is provided with a rectangular cylindrical air introduction passage 65 protruding in a tangential direction, and the air introduction passage 65 is intersected with a gas nozzle pipe 67 in which a plurality of gas ejection holes 66 are arranged on the downstream side. It is plugged in. Combustion air is supplied from the blower B to the air introduction passage 65, and fuel gas is supplied from the gas source G to the gas nozzle pipe 67.

【0015】バーナハウジング64内には、前記燃焼板
61の下面を塞ぎ上側開口81を有するカップ状部82
と、該カップ状部82の側壁に開口した内外連通口83
と、該内外連通口83の縁から外側に突設された縦板状
の仕切り壁84とを備えた内側ケーシング8が嵌め込ま
れている。仕切り壁84は、前記空気導入通路65の内
外連通口83側の一方の壁縁に接触して仕切り、空気導
入通路65と内外連通口83との短絡を阻止する短絡阻
止手段となっている。
In the burner housing 64, a cup-shaped portion 82 which closes the lower surface of the combustion plate 61 and has an upper opening 81 is formed.
And an inner / outer communication port 83 opened on the side wall of the cup-shaped portion 82.
An inner casing 8 having a vertical plate-shaped partition wall 84 protruding outward from an edge of the inner / outer communication port 83 is fitted therein. The partition wall 84 serves as a short-circuit prevention means for preventing a short circuit between the air introduction passage 65 and the inner / outer communication port 83 by contacting one wall edge of the air introduction passage 65 on the inner / outer communication port 83 side.

【0016】仕切り壁84によりバーナハウジング64
内には、空気導入通路65から内外連通口83に至る環
状流路90がカップ状部82の外周壁とバーナハウジン
グ64の内周壁との間に形成される。このため、バーナ
ハウジング64内には、空気導入通路65から供給され
た混合気は、環状流路90を一周して内外連通口83か
らカップ状部82内に入り、前記多孔板63を通過して
燃焼板61の下面に到る混合流路9が形成される。
The burner housing 64 is formed by the partition wall 84.
Inside, an annular flow passage 90 from the air introduction passage 65 to the inner / outer communication port 83 is formed between the outer peripheral wall of the cup-shaped portion 82 and the inner peripheral wall of the burner housing 64. Therefore, in the burner housing 64, the air-fuel mixture supplied from the air introduction passage 65 goes around the annular flow path 90 into the cup-shaped portion 82 from the inner / outer communication port 83 and passes through the perforated plate 63. As a result, the mixing channel 9 reaching the lower surface of the combustion plate 61 is formed.

【0017】混合流路9は、環状流路90により長い流
路となっており、バーナハウジング64の全内容積を占
めており容積が最大限に利用されている。このため、予
混合気は十分に混合されるとともに、ガスバーナ6の発
熱が、燃焼板61、燃焼板保持枠62、バーナハウジン
グ64、内側ケーシング8から混合気に伝達されて混合
気が効率よく予熱されるとともにバーナハウジング64
自身の冷却も行われる。
The mixing flow passage 9 is a longer flow passage due to the annular flow passage 90, and occupies the entire inner volume of the burner housing 64, so that the volume is maximized. Therefore, the premixed gas is sufficiently mixed, and the heat generated by the gas burner 6 is transmitted from the combustion plate 61, the combustion plate holding frame 62, the burner housing 64, and the inner casing 8 to the premixed gas to efficiently preheat the mixture. Burner housing 64
It also cools itself.

【0018】また、ガスノズル管67が空気導入通路6
5に交差するとともに、ガスノズル管67には空気導入
通路65の下流側に向けて複数のガス噴出穴66が列設
されているため、燃料ガスは燃焼用空気内に効率よく分
散して噴射され、予混合が十分になされる。この結果、
部分的に空燃比の小さい(ガスリッチな)部分が発生せ
ず、均一な空燃比の希薄な混合気による燃焼が可能とな
り、窒素酸化物の発生が少なくなるとともに、混合気の
予熱により熱効率が向上する。前記混合気の予熱による
窒素酸化物の増加はほとんど無視でき、混合気の混合の
促進による窒素酸化物の減少効果は極めて著しい。
Further, the gas nozzle pipe 67 is connected to the air introduction passage 6
5 and a plurality of gas ejection holes 66 are provided in the gas nozzle pipe 67 toward the downstream side of the air introduction passage 65, the fuel gas is efficiently dispersed and injected in the combustion air. , The premixing is sufficient. As a result,
There is no part with a small air-fuel ratio (gas rich), combustion with a lean air-fuel mixture with a uniform air-fuel ratio is possible, nitrogen oxides are reduced, and preheating of the air-fuel mixture improves thermal efficiency. To do. The increase of nitrogen oxides due to the preheating of the air-fuel mixture is almost negligible, and the effect of reducing nitrogen oxides by promoting the mixing of the air-fuel mixture is extremely remarkable.

【0019】図7は、空燃比と窒素酸化物の発生の測定
データを示す。(イ)は環状流路90を備えず、短い混
合流路のガスバーナ6の場合であり、(ロ)は本発明の
混合流路を備えたガスバーナ6の場合を示す。このグラ
フから、空燃比の大きい混合気ほど窒素酸化物の発生は
少ないことが判明するとともに、本発明のガスバーナ6
は、熱効率が向上しているために空燃比の小さい領域で
燃焼を行うようにしても窒素酸化物の発生を少なくでき
ることが判る。このため、空気過剰率が1.0に近い燃
焼条件において窒素酸化物の発生を低い水準に維持でき
る。
FIG. 7 shows measured data of air-fuel ratio and generation of nitrogen oxides. (A) shows the case of the gas burner 6 having a short mixing flow path without the annular flow path 90, and (B) shows the case of the gas burner 6 having the mixing flow path of the present invention. From this graph, it is found that the higher the air-fuel ratio, the less the generation of nitrogen oxides in the air-fuel mixture, and the gas burner 6 of the present invention.
It can be seen that since the thermal efficiency is improved, the generation of nitrogen oxides can be reduced even if the combustion is performed in the region where the air-fuel ratio is small. Therefore, the generation of nitrogen oxides can be maintained at a low level under the combustion condition where the excess air ratio is close to 1.0.

【0020】この実施例では、短絡阻止手段としての仕
切り壁84は、カップ状部82と鋳造により一体成形し
ており、この方法が最も経済的であるが、仕切り壁84
をバーナハウジング64と一体成形してもよく、仕切り
壁を別体で形成して組み付けてもよい。さらに、短絡阻
止手段は、空気導入通路65と内外連通口83との短絡
を阻止できるものなら、壁以外の構造を有する部材であ
ってもよい。
In this embodiment, the partition wall 84 as the short-circuit preventing means is formed integrally with the cup-shaped portion 82 by casting. This method is the most economical, but the partition wall 84
May be integrally formed with the burner housing 64, or the partition wall may be formed separately and assembled. Further, the short-circuit prevention means may be a member having a structure other than a wall as long as it can prevent a short circuit between the air introduction passage 65 and the inside / outside communication port 83.

【0021】前記底板の円筒部5bの外周と円筒体51
の内周との間の円環状の空間は、作動液によって満たさ
れており、前記燃焼室60の外周を囲むウォータージャ
ケット50となっている。このウォータージャケット5
0は、円筒体51を覆うことによって燃焼ガスの放熱ロ
スを小さくして熱効率を向上させる作用を有する。
The outer periphery of the cylindrical portion 5b of the bottom plate and the cylindrical body 51
An annular space between the inner periphery of the combustion chamber 60 and the inner periphery of the combustion chamber 60 is filled with hydraulic fluid to form a water jacket 50 surrounding the outer periphery of the combustion chamber 60. This water jacket 5
0 has the effect of reducing the heat radiation loss of the combustion gas by covering the cylindrical body 51 and improving the thermal efficiency.

【0022】底板52の中央球殻部5aには、4重の同
心円上に等間隔で8個づつ、計32個の下側穴53が開
けられている。縦型円筒体51の上部側壁には上下4段
に等間隔で8個づつ、計32個上側穴54が開けられて
いる。この実施例の如く、上側穴54を上下4段に等間
隔で8個づつ形成することにより、管同士の間隔を適正
に維持しながら配管スペースのコンパクト化および管径
の増大(熱交換面積の増大)が可能になる。
In the central spherical shell portion 5a of the bottom plate 52, a total of 32 lower holes 53 are formed on the quadruple concentric circles, eight at equal intervals. On the upper side wall of the vertical cylindrical body 51, eight upper holes 54 are formed in four rows vertically, eight at equal intervals. As in this embodiment, by forming eight upper holes 54 at equal intervals in upper and lower four stages, the pipe space can be made compact and the pipe diameter can be increased (heat exchange area can be increased while maintaining proper intervals between pipes). Increase) is possible.

【0023】加熱容器5の外周には、該加熱容器5の外
周に円筒状閉空間70を形成する外筒7が同軸的に設け
られている。外筒7は、筒体71と、その上端を塞ぐ環
状上板72、下端を塞ぐ環状下板73とからなり、筒体
71の内周壁には断熱材74が張られている。筒体71
および断熱材74の下端には円筒状閉空間70に設けた
後述の燃焼ガス滞留通路77の下端に連通される排気穴
75が開けられ、排気筒76が水平方向に突設されてい
る。なお、排気口75は環状下板73に設けて排気筒7
6を下方に突設してもよい。
On the outer periphery of the heating container 5, an outer cylinder 7 forming a cylindrical closed space 70 is coaxially provided on the outer periphery of the heating container 5. The outer cylinder 7 includes a cylindrical body 71, an annular upper plate 72 that closes the upper end of the cylindrical body 71, and an annular lower plate 73 that closes the lower end of the cylindrical body 71. A heat insulating material 74 is stretched on the inner peripheral wall of the cylindrical body 71. Cylinder 71
Further, an exhaust hole 75 communicating with a lower end of a combustion gas retention passage 77, which will be described later, provided in the cylindrical closed space 70 is opened at the lower end of the heat insulating material 74, and an exhaust pipe 76 is horizontally provided so as to project. The exhaust port 75 is provided on the annular lower plate 73 so that the exhaust pipe 7
You may project 6 downward.

【0024】断熱材74の内周壁と加熱容器5の外周壁
との間は環状の燃焼ガス滞留通路77となっている。加
熱容器5の外周壁の中間部には吸熱フィンとしてのコル
ゲートフィン56が、半ピッチをずらして上下方向に5
段にろう付け等で接合されて燃焼ガス滞留通路77内に
位置している。加熱容器5内には、逆L字形に曲げられ
た32本の燃焼ガス流路管55が垂直に並設されてい
る。各燃焼ガス流路管55は、下端が下側穴53に溶接
され上端が上側穴54に溶接されて、燃焼室60と燃焼
ガス滞留通路77の上部との間を連通している。
An annular combustion gas retention passage 77 is formed between the inner peripheral wall of the heat insulating material 74 and the outer peripheral wall of the heating container 5. Corrugated fins 56 as heat absorption fins are provided in the middle of the outer peripheral wall of the heating container 5 in the vertical direction by shifting a half pitch.
It is located in the combustion gas retention passage 77 joined to the step by brazing or the like. In the heating container 5, 32 combustion gas passage tubes 55 bent in an inverted L shape are vertically arranged in parallel. Each combustion gas passage pipe 55 has a lower end welded to the lower hole 53 and an upper end welded to the upper hole 54, and communicates between the combustion chamber 60 and the upper portion of the combustion gas retention passage 77.

【0025】この発生器1では、ガスバーナ6の全一次
燃焼による燃焼ガスが、燃焼室60から、32本の燃焼
ガス流路管55を通過して燃焼ガス滞留通路77の上部
に流通される。燃焼ガス滞留通路77に入った燃焼ガス
はコルゲートフィン56に接触しながら通って降下し、
排気穴75から排気筒76を経て外部に排出される。こ
の間において、ガスバーナ6での発熱は、加熱容器の底
板52を介して内部の作動液に伝達され、つぎに燃焼ガ
ス流路管55の管壁を介して作動液を加熱し、残余の熱
エネルギーはコルゲートフィン56および円筒体51に
吸熱されて作動液に供給される。このように発生器1
は、小さな体格で極めて大きい伝熱面積を有するととも
に、燃焼ガスと伝熱面との接触時間が大きくとれるた
め、熱効率を最大80%程度にまで高めることができ
る。従って、小型の発生器で高負荷運転でき、冷凍装置
として高い冷凍能力が得られる。
In this generator 1, the combustion gas produced by the entire primary combustion of the gas burner 6 flows from the combustion chamber 60 to the upper portion of the combustion gas retention passage 77 through the 32 combustion gas passage pipes 55. The combustion gas that has entered the combustion gas retention passage 77 descends while coming into contact with the corrugated fins 56,
It is discharged from the exhaust hole 75 to the outside through the exhaust pipe 76. In the meantime, the heat generated in the gas burner 6 is transmitted to the internal working fluid via the bottom plate 52 of the heating container, and then the working fluid is heated via the tube wall of the combustion gas passage pipe 55, so that the remaining thermal energy is generated. Is absorbed by the corrugated fins 56 and the cylindrical body 51 and supplied to the hydraulic fluid. Thus the generator 1
Has a very small heat transfer area and a large contact time between the combustion gas and the heat transfer surface, so that the thermal efficiency can be increased up to about 80%. Therefore, a small generator can be operated under high load, and a high refrigerating capacity as a refrigerating device can be obtained.

【0026】つぎに、冷暖房給湯装置の作動を説明す
る。ガスバーナ6によって発生器1の加熱容器5内の作
動液を加熱すると、該作動液から冷媒であるアンモニア
と吸収液である水との混合蒸気が発生し、この混合蒸気
が精留器12を通って上昇する。この精留器12では、
5段の貯液棚1A〜1Eが形成されており、吸収器4か
ら発生器1に供給される作動液(アンモニア濃溶液)が
上段の貯液部から順次下段の貯液棚へ流下する。
Next, the operation of the cooling / heating water heater will be described. When the working fluid in the heating container 5 of the generator 1 is heated by the gas burner 6, a mixed vapor of ammonia as a refrigerant and water as an absorbing fluid is generated from the working fluid, and the mixed vapor passes through the rectifier 12. Rise. In this rectifier 12,
Five storage shelves 1A to 1E are formed, and the working liquid (ammonia concentrated solution) supplied from the absorber 4 to the generator 1 flows down from the upper storage portion to the lower storage shelf in sequence.

【0027】精留器12では、下方から上昇するアンモ
ニアと水の混合蒸気が各貯液棚を通過するたびに、温度
降下と上方からのアンモニア濃溶液との接触とにより混
合蒸気中のアンモニア濃度が上昇する。そして精留器1
2で濃縮された混合蒸気は、さらに上段の分縮器13で
吸熱され、水が凝縮して分離されて約99.8%のアン
モニアガスとなる。
In the rectifier 12, each time the mixed vapor of ammonia and water rising from below passes through each storage rack, the temperature drop and the contact with the concentrated ammonia solution from above cause the concentration of ammonia in the mixed vapor. Rises. And rectifier 1
The mixed vapor concentrated in 2 is further endothermic by the upper partial condenser 13, and water is condensed and separated to become about 99.8% ammonia gas.

【0028】〔冷房運転〕図8に示す如く、このガス冷
媒は矢印Lで示すように第1四路切換弁21を経て分縮
器として作用する熱源側熱交換器11へ供給される。熱
源側熱交換器11では、ファンFにより空冷されて凝縮
熱を放出して液化しアンモニア液(液冷媒)となる。こ
の液冷媒は、冷媒間熱交換器の内管2aを通って減圧機
構として作用するキャピラリーチューブ23で減圧され
た後、二重管構造の利用側熱交換器(蒸発器として作用
する)3へ流入する。
[Cooling Operation] As shown in FIG. 8, this gas refrigerant is supplied to the heat source side heat exchanger 11 acting as a partial condenser through the first four-way switching valve 21 as shown by an arrow L. In the heat source side heat exchanger 11, it is air-cooled by the fan F and releases the heat of condensation to be liquefied and become ammonia liquid (liquid refrigerant). This liquid refrigerant passes through the inner tube 2a of the heat exchanger between refrigerants and is decompressed by the capillary tube 23 which functions as a decompression mechanism, and then to the utilization side heat exchanger (acting as an evaporator) 3 having a double tube structure. Inflow.

【0029】液冷媒は、利用側熱交換器3で室内機から
ポンプP1 の駆動により利用側熱媒体流路31を介して
供給される利用側熱媒体(本実施例では、水)と熱交換
して蒸発し(水は冷却されて冷房用冷熱源となる)、再
度ガス冷媒となる。このガス冷媒は、第2四路切換弁2
2を通って冷媒間熱交換器の外管2bに送られ、そこで
熱源側熱交換器11からの液冷媒(内管2a内を通る)
を予冷し且つ自らは予熱された後、第1四路切換弁21
および第2四路切換弁22を経て、吸収器4へ送給され
る。
The liquid refrigerant exchanges heat with the use side heat medium (in this embodiment, water) supplied from the indoor unit through the use side heat medium passage 31 in the use side heat exchanger 3 by driving the pump P1. Then, it evaporates (water is cooled and becomes a cooling heat source for cooling), and again becomes a gas refrigerant. This gas refrigerant is used in the second four-way switching valve 2
2 is sent to the outer pipe 2b of the inter-refrigerant heat exchanger, where the liquid refrigerant from the heat source side heat exchanger 11 (passes through the inner pipe 2a)
After being pre-cooled and self-heated, the first four-way switching valve 21
And it is sent to the absorber 4 via the second four-way switching valve 22.

【0030】このガス冷媒は、吸収器4において発生器
1から吸収器4に供給された作動液中に再度吸収させ
る。すなわち、吸収器4の吸収器容器41内の最上段部
には作動液の散布器42が設けられており、散布器42
に対して矢印L1 で示すように発生器1から精留器内熱
交換器26で冷却され減圧機構として作用するキャピラ
リーチューブ24を介して作動液(3%アンモニア希溶
液)が供給される。
This gas refrigerant is again absorbed in the working fluid supplied from the generator 1 to the absorber 4 in the absorber 4. That is, a sprayer 42 for the working fluid is provided at the uppermost step in the absorber container 41 of the absorber 4, and the sprayer 42
On the other hand, as shown by an arrow L1, the working liquid (3% ammonia dilute solution) is supplied from the generator 1 through the capillary tube 24 which is cooled by the heat exchanger 26 in the rectifier and acts as a pressure reducing mechanism.

【0031】このアンモニア希溶液は吸収器容器41内
で散布器42から散布され、利用側熱交換器3から吸収
器容器41内に供給されるガス冷媒を吸収して吸収器容
器41の底部にある液溜まり43に落下する。液溜まり
43の作動液(アンモニア濃溶液)は、ポンプP2 によ
り図8中の矢印L2 、L3 で示すように圧送される。こ
の間において、分縮器13の熱交換器25および吸収熱
回収用の吸収器4内の熱交換器44で熱交換して加熱さ
れたあと、精留器12内の最上段の貯液棚1Aへ供給さ
れる。
This dilute ammonia solution is sprayed from the sprayer 42 in the absorber container 41, absorbs the gas refrigerant supplied from the utilization side heat exchanger 3 into the absorber container 41, and reaches the bottom of the absorber container 41. It falls into a certain liquid pool 43. The working liquid (concentrated ammonia solution) in the liquid pool 43 is pumped by the pump P2 as indicated by arrows L2 and L3 in FIG. During this period, heat is exchanged and heated in the heat exchanger 25 of the partial condenser 13 and the heat exchanger 44 in the absorber 4 for absorption heat recovery, and then the uppermost storage shelf 1A in the rectifier 12 is heated. Is supplied to.

【0032】〔暖房運転〕図9に示す如く、第1四路切
換弁21および第2四路切換弁22が切り換わり、冷凍
回路を流通するガス冷媒(アンモニアガス)の流れ方向
が切り換えられる。分縮器13で生成されたガス冷媒
(濃度99.8%)は矢印L4 で示すように第1四路切
換弁21および第2四路切換弁22を通って分縮器とし
て作用する利用側熱交換器3に流入し、利用側熱媒体流
路31を通って室内機から供給される利用側熱媒体(本
実施例では、水)と熱交換して凝縮する。水はこれによ
り加熱され、室内機での暖房用熱源となる。
[Heating Operation] As shown in FIG. 9, the first four-way switching valve 21 and the second four-way switching valve 22 are switched to switch the flow direction of the gas refrigerant (ammonia gas) flowing through the refrigeration circuit. The gas refrigerant (concentration 99.8%) generated in the dephlegmator 13 passes through the first four-way switching valve 21 and the second four-way switching valve 22 as shown by an arrow L4, and serves as a decompressor. The heat flows into the heat exchanger 3, passes through the use-side heat medium passage 31, exchanges heat with the use-side heat medium (water in this embodiment) supplied from the indoor unit, and condenses. The water is heated by this and becomes a heat source for heating in the indoor unit.

【0033】利用側熱交換器3で液化した冷媒は、キャ
ピラリーチューブ23で減圧されたあと、冷媒間熱交換
器の内管2aを通って蒸発器として作用する熱源側熱交
換器11に供給されて蒸発し、さらに第1四路切換弁2
1、冷媒間熱交換器の外管2b、第2四路切換弁22を
経て吸収器4に供給される。なお、発生器1などでの水
−アンモニア混合蒸気の発生・精留・分縮と、吸収器に
おけるアンモニアガス冷媒の吸収とは、図8に示す冷房
運転時と同様であり、その間の作動液(アンモニア濃溶
液とアンモニア希溶液)の流れも図8と同様である。
The refrigerant liquefied in the use side heat exchanger 3 is decompressed by the capillary tube 23, and then is supplied to the heat source side heat exchanger 11 acting as an evaporator through the inner tube 2a of the inter-refrigerant heat exchanger. Vaporize, and then the first four-way switching valve 2
1, the outer pipe 2b of the inter-refrigerant heat exchanger, and the second four-way switching valve 22 are supplied to the absorber 4. The generation, rectification, and partial condensation of the water-ammonia mixed vapor in the generator 1 and the absorption of the ammonia gas refrigerant in the absorber are the same as those during the cooling operation shown in FIG. The flow of the concentrated ammonia solution and the diluted ammonia solution is the same as in FIG.

【0034】この実施例では、吸収器4内には前記吸収
熱回収用の熱交換器44のほかに、給湯などの熱源用の
熱交換器45および冷暖兼用熱交換器46が設けてあ
る。給湯など熱源用の熱交換器45は、給湯タンク1
4、風呂15、浴室乾燥器16などにポンプP3 を介し
て接続されて湯を熱媒体とした給湯サイクルを構成して
いる。
In this embodiment, in addition to the heat exchanger 44 for recovering the absorbed heat, a heat exchanger 45 for a heat source such as hot water supply and a heat exchanger 46 for both cooling and heating are provided in the absorber 4. The heat exchanger 45 for a heat source such as hot water supply is the hot water supply tank 1
4, a bath 15, a bathroom dryer 16 and the like are connected via a pump P3 to form a hot water supply cycle using hot water as a heat medium.

【0035】冷暖兼用熱交換器46の入口側と出口側と
には、利用側熱交換器3の出口における利用側熱媒体流
路31から三方切換弁V1 を介して分岐された分岐往路
32と、三方切換弁V1 の下流側に合流する分岐復路3
3側とがそれぞれ接続されている。また、放熱用熱交換
器34およびポンプP4 を接続する冷却水流路35にお
けるポンプP4 の出口側は、分岐往路32に対して三方
切換弁V2 を介して接続される一方、前記冷却水流路3
5における放熱用熱交換器34の入口側は、分岐復路3
3に対して三方切換弁V3 を介して接続されている。
On the inlet side and the outlet side of the cooling / heating combined heat exchanger 46, there are a branch outward path 32 branched from the use side heat medium flow path 31 at the exit of the use side heat exchanger 3 via the three-way switching valve V1. , Branch return path 3 that joins the downstream side of the three-way switching valve V1
3 side is connected respectively. The outlet side of the pump P4 in the cooling water flow path 35 connecting the heat radiating heat exchanger 34 and the pump P4 is connected to the branch outward path 32 via the three-way switching valve V2, while the cooling water flow path 3 is connected.
The inlet side of the heat dissipation heat exchanger 34 in FIG.
3 is connected via a three-way switching valve V3.

【0036】ここで三方切換弁V2 、V3 は、冷房運転
時においては図8に示すように、冷却水流路35側が
開、分岐往路32および分岐復路33側が閉となり、暖
房運転時においては図9に示すように、冷却水流路35
側が閉、分岐往路32および分岐復路33が開となるよ
うに制御されることとなっている。従って、冷房運転時
においては、冷暖兼用吸収器内の熱交換器46へは利用
側熱媒体は供給されず、放熱用熱交換器34からの冷却
水が供給され、暖房運転時においては、熱交換器46へ
は利用側熱媒体が供給され、放熱用熱交換器34からの
冷却水は供給されない。
The three-way switching valves V2 and V3 are opened on the cooling water flow path 35 side and closed on the branch outward path 32 and branch return path 33 sides during the cooling operation as shown in FIG. As shown in FIG.
It is controlled so that the side is closed and the branch outward path 32 and the branch return path 33 are opened. Therefore, during the cooling operation, the heat medium 46 on the utilization side is not supplied to the heat exchanger 46 in the cooling / heating absorber, but the cooling water is supplied from the heat radiating heat exchanger 34, and the heat is not generated during the heating operation. The utilization side heat medium is supplied to the exchanger 46, and the cooling water from the heat dissipation heat exchanger 34 is not supplied.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる吸収式冷凍装置の発生器の正
面断面図である。
FIG. 1 is a front sectional view of a generator of an absorption refrigerating apparatus according to the present invention.

【図2】加熱容器の上部の斜視図である。FIG. 2 is a perspective view of an upper portion of the heating container.

【図3】図1のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】図1のB−B断面図である。FIG. 4 is a sectional view taken along line BB of FIG.

【図5】ガスバーナの組付図である。FIG. 5 is an assembly diagram of a gas burner.

【図6】バーナハウジングの斜視図である。FIG. 6 is a perspective view of a burner housing.

【図7】ガスバーナの窒素酸化物の発生量のデータを示
すグラフである。
FIG. 7 is a graph showing data on the amount of nitrogen oxides generated in a gas burner.

【図8】吸収式冷凍装置を用いた冷暖房装置の概略構成
図である。
FIG. 8 is a schematic configuration diagram of a cooling / heating apparatus using an absorption refrigeration apparatus.

【図9】吸収式冷凍装置を用いた冷暖房装置の概略構成
図である。
FIG. 9 is a schematic configuration diagram of a cooling / heating apparatus using an absorption refrigeration apparatus.

【符号の説明】[Explanation of symbols]

1 発生器 2 冷媒間熱交換器 3 利用側熱交換器 4 吸収器 5 加熱容器 6 ガスバーナ 7 外筒 8 内側ケーシング 9 混合流路 11 熱源側熱交換器 12 精留器 13 分縮器 61 燃焼板 64 バーナハウジング 65 空気導入通路 66 ガス噴出口 67 ガスノズル管 75 排気穴 77 燃焼ガス滞留通路 83 内外連通口 84 仕切り壁(短絡阻止手段) 90 環状流路 100 吸収式冷凍装置 G ガス源 1 Generator 2 Refrigerant Heat Exchanger 3 Utilization Side Heat Exchanger 4 Absorber 5 Heating Container 6 Gas Burner 7 Outer Cylinder 8 Inner Casing 9 Mixing Flow Path 11 Heat Source Side Heat Exchanger 12 Fractionator 13 Fractionator 61 Combustion Plate 64 burner housing 65 air introduction passage 66 gas jet 67 gas nozzle tube 75 exhaust hole 77 combustion gas retention passage 83 internal / external communication opening 84 partition wall (short-circuit preventing means) 90 annular flow passage 100 absorption type refrigeration system G gas source

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒と吸収液とを混合した加熱容器内の
作動液をバーナで加熱して冷媒と吸収液の混合作動液蒸
気を発生させる発生器と、該混合作動液蒸気を精留して
冷媒成分を濃縮する精留器と、該濃縮された混合作動液
蒸気のガス冷媒成分を凝縮させる凝縮器と、該凝縮器で
凝縮させた液冷媒を蒸発させる蒸発器と、該蒸発器で蒸
発した冷媒蒸気を希作動液中に吸収させる吸収器とを備
えた吸収式冷凍装置において、 前記バーナは、燃焼板と、外壁に空気導入通路が設けら
れるとともに前記燃焼板を保持するバーナハウジング
と、該バーナハウジングへの燃料ガス供給手段と、前記
燃焼板の下面を囲んで前記バーナハウジング内に配設さ
れるとともに内外連通口を有する内側ケーシングと、前
記内外連通口と前記空気導入通路との短絡を阻止する短
絡阻止手段とからなり、 前記空気導入通路から内側ケーシングとバーナハウジン
グとの間の環状流路を周回して前記内外連通口から内側
ケーシング内に入る混合流路を形成したことを特徴とす
る吸収式冷凍装置。
1. A generator for generating a mixed working fluid vapor of a refrigerant and an absorbing liquid by heating a working fluid in a heating container in which a refrigerant and an absorbing fluid are mixed with a burner; and rectifying the mixed working fluid vapor. A rectifier for concentrating the refrigerant component, a condenser for condensing the gas refrigerant component of the concentrated mixed working fluid vapor, an evaporator for evaporating the liquid refrigerant condensed by the condenser, and an evaporator In an absorption type refrigerating apparatus including an absorber that absorbs evaporated refrigerant vapor in a diluted hydraulic fluid, the burner is a combustion plate, and a burner housing that holds an air introduction passage on an outer wall and holds the combustion plate. A fuel gas supply means to the burner housing, an inner casing surrounding the lower surface of the combustion plate and disposed in the burner housing and having an inner / outer communication port, the inner / outer communication port and the air introduction passage. Short circuit A short-circuit prevention means for stopping, wherein a circular flow path between the air introduction passage and the inner casing and the burner housing is circulated to form a mixing flow passage that enters the inner casing from the inner and outer communication ports. Absorption refrigeration equipment.
【請求項2】 請求項1において、前記短絡阻止手段
は、内側ケーシングとバーナハウジングとの間に設けた
仕切り壁であることを特徴とする吸収式冷凍装置。
2. The absorption type refrigerating apparatus according to claim 1, wherein the short-circuit prevention means is a partition wall provided between the inner casing and the burner housing.
【請求項3】 請求項1において、前記空気導入通路は
前記内側ケーシングの側壁に接線方向に設けられ、前記
燃料ガス供給手段は、前記空気導入通路に交差する方向
に取り付けられたノズル管と、該ノズル管の下流側に列
設された複数のガス噴出穴からなることを特徴とする吸
収式冷凍装置。
3. The air introduction passage according to claim 1, wherein the air introduction passage is provided tangentially to a side wall of the inner casing, and the fuel gas supply means is provided with a nozzle tube attached in a direction intersecting with the air introduction passage. An absorption refrigeration system comprising a plurality of gas ejection holes arranged in a row on the downstream side of the nozzle tube.
JP6115663A 1994-05-27 1994-05-27 Absorption refrigeration equipment Expired - Fee Related JP2806798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6115663A JP2806798B2 (en) 1994-05-27 1994-05-27 Absorption refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6115663A JP2806798B2 (en) 1994-05-27 1994-05-27 Absorption refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH07318196A true JPH07318196A (en) 1995-12-08
JP2806798B2 JP2806798B2 (en) 1998-09-30

Family

ID=14668227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6115663A Expired - Fee Related JP2806798B2 (en) 1994-05-27 1994-05-27 Absorption refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2806798B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017587A1 (en) * 1998-09-24 2000-03-30 Osaka Gas Co., Ltd. Regenerator for ammonia absorbing refrigerating machine
CN109307379A (en) * 2018-10-11 2019-02-05 浙江力巨热能设备有限公司 Ultralow nitrogen lithium bromide absorption refrigerating set
CN109654770A (en) * 2019-01-29 2019-04-19 浙江佑伏能源科技有限公司 A kind of high-efficiency generator for absorption type cold-hot unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017587A1 (en) * 1998-09-24 2000-03-30 Osaka Gas Co., Ltd. Regenerator for ammonia absorbing refrigerating machine
GB2346434A (en) * 1998-09-24 2000-08-09 Osaka Gas Co Ltd Regenerator for ammonia absorbing refrigerating machine
US6357255B1 (en) 1998-09-24 2002-03-19 Osaka Gas Co., Ltd. Regenerator for use in ammonia absorption refrigerator
CN109307379A (en) * 2018-10-11 2019-02-05 浙江力巨热能设备有限公司 Ultralow nitrogen lithium bromide absorption refrigerating set
CN109654770A (en) * 2019-01-29 2019-04-19 浙江佑伏能源科技有限公司 A kind of high-efficiency generator for absorption type cold-hot unit
CN109654770B (en) * 2019-01-29 2023-05-30 上海佑伏科技有限公司 Efficient generator for absorption type cold and hot unit

Also Published As

Publication number Publication date
JP2806798B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US6694772B2 (en) Absorption chiller-heater and generator for use in such absorption chiller-heater
JP2806798B2 (en) Absorption refrigeration equipment
KR19990023967A (en) Absorption Chiller
JP2627381B2 (en) Absorption refrigerator
KR890004393B1 (en) Air cooling type absorption cooler
JP2728362B2 (en) Absorption refrigeration equipment
JPH07318195A (en) Absorption type refrigerating equipment
JPH09318184A (en) Absorption type refrigerating machine
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP2806797B2 (en) Absorption refrigeration equipment
JPH10122688A (en) Chiller
US3514970A (en) Absorption refrigeration machine
JPH07318194A (en) Absorption type refrigerating equipment
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
CN100513934C (en) Absorption chiller-heater and generator
KR100213794B1 (en) Ammonia absorption type cooler
KR0168716B1 (en) Double effect water cooling absorptive airconditioner
KR200147715Y1 (en) Absorption type cooler
KR100305081B1 (en) Indoor Cooling System
KR19990055409A (en) Generator of Absorption Heat Pump
JP3178678B2 (en) Hydrogen gas discharge device of absorption refrigerator
JPH09303901A (en) Absorption freezer device
KR20030061128A (en) High Temperature Generator of The Absorption Chiller and Heater
JPH04236078A (en) Absorption type refrigerating machine
KR19990008915A (en) Analyzer structure of ammonia absorption system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees