JPS59193008A - Transformer for ac regenerative vehicle - Google Patents
Transformer for ac regenerative vehicleInfo
- Publication number
- JPS59193008A JPS59193008A JP6631483A JP6631483A JPS59193008A JP S59193008 A JPS59193008 A JP S59193008A JP 6631483 A JP6631483 A JP 6631483A JP 6631483 A JP6631483 A JP 6631483A JP S59193008 A JPS59193008 A JP S59193008A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- transformer
- electric power
- electric
- windings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は交流回生式車両用変圧器に係り、特にその各巻
線の配置構成に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an AC regenerative vehicle transformer, and particularly to the arrangement of each winding thereof.
交流電化が開始されサイリスクの実用化が実現して以来
、交流回生式車両の研究か開始された。Since the start of AC electrification and the practical application of Cyrisk, research has begun on AC regenerative vehicles.
交流回生式車両は、ブレーキをかける際に電気車駆動用
電動機を発電機として作用させ、発生した電力を′畦源
側へ返還することによりブレーキ力を得る方式である。AC regenerative vehicles use the electric car drive motor as a generator when applying the brakes, and generate braking force by returning the generated power to the ridge source.
この方式は回生′電力を有効に使用してくれる負荷がな
いとブレーキ力が得られず、かつ回生電力量も小さくな
り、メリットがうすれることから、前述の条件か比較的
満たされる僅かな線区のみで実用化されていた。近年、
エネルギー資源の有限から再び交流回生式車両が見直さ
れているが、やはり回生電力量か少ないことが大きな障
害となっている。This method cannot obtain braking force unless there is a load that can effectively use the regenerated electric power, and the amount of regenerated electric power is also small, which negates the benefits. It was put into practical use only in the ward. recent years,
AC regenerative vehicles are being reconsidered due to limited energy resources, but the small amount of regenerated electricity remains a major obstacle.
一般に交流回生式車両用変圧器は、架趙から電力をとり
入れる第1巻誤と、市′気車1駆励用粘動伝に電力を供
給するム;2巻惺と、電気車内にある前記実動用軍動機
以外の電気憬器(仙イ・幾、暖房、食堂車などのサービ
ス電諒などで第2巻、詠各厄の10〜加%の容−+)を
有する電気機器)へ電ノフを供給する第3巻線とを備え
ている。カ行時には奄カは第1図の矢印48口で示すよ
うに、第1巻謬1がら第2巻刷2及び第3巻線3にそれ
ぞれ供給される。In general, an AC regenerative vehicle transformer consists of a first winding that takes in power from the vehicle, a second winding that supplies power to the viscosity transmission for driving the first commercial train, and a second winding that takes power from the electric train. Electrical equipment other than military equipment for actual use (electrical equipment with capacity -+ of 10 to 10% of each misfortune) and a third winding that supplies the nof. During the winding, the windings are supplied from the first winding 1 to the second winding 2 and the third winding 3, respectively, as shown by arrows 48 in FIG.
これが回生ブレーキ時には第2し[の矢印ハ、二に示す
ように、第2巻嶽2がら第1巻線1及び第3巻翻3にそ
れぞれ電力が供紬される。しかしながら、回生ブレーキ
時に変電所から離れていて、かつ近くに力行中の車両が
ない場合には、第1巻耐1を経て回生される電力量は、
架線のインピータンスや変電所のインピーダンスが作用
して小さい値となってしまう。また、従来の巻重配置は
、第3巻線3の電圧変動率を小さくするために、第5図
に示すようK、第1巻線1と第3巻線3を近接させて配
置する構造としていたため、第2巻株2と第3巻線3間
のインピーダンスが大きく、第2の矢印二の方向の回生
電力量が少なかった。During regenerative braking, electric power is supplied from the second winding 2 to the first winding 1 and the third winding 3, respectively, as shown by the arrows C and 2 of the second winding. However, if you are far from the substation during regenerative braking and there are no powered vehicles nearby, the amount of electric power regenerated through the first volume resistance 1 will be:
The impedance of the overhead wires and the impedance of the substation act to reduce the value. In addition, in the conventional winding arrangement, in order to reduce the voltage fluctuation rate of the third winding 3, the first winding 1 and the third winding 3 are arranged close to each other as shown in FIG. Therefore, the impedance between the second winding 2 and the third winding 3 was large, and the amount of regenerated electric power in the direction of the second arrow 2 was small.
本発明の目的は、上記した従来技術の欠点を除き、第3
巻線の電圧変動率を増加することなく、第2巻線から第
3巻線への回生′電力を増加させ得る交流回生式車両用
変圧器を提供することにある。The purpose of the present invention is to eliminate the drawbacks of the prior art described above, and to
An object of the present invention is to provide an AC regenerative transformer for a vehicle that can increase regenerative power from a second winding to a third winding without increasing the voltage fluctuation rate of the winding.
この目的を達成するため、本発明は、架線から電力の供
給を受ける第1巻顧と、I0気車を駆動する電動機に電
力を供給する第2巻線と、電気沖内にある駆動用’tJ
f、 lJ機以外の電気機器に軍力な供給する第3巻線
とを備えた交流回生式車両用変圧器において、前記第1
巻線の両側にそれぞれ前記第3巻線と第2巻線を順次配
置したことを%徴とする。To achieve this objective, the present invention provides a first winding that receives power from the overhead wire, a second winding that supplies power to the electric motor that drives the I0 train, and a drive motor that is located within the electric train. tJ
In the AC regenerative vehicle transformer equipped with a third winding that supplies electrical equipment to electrical equipment other than f and lJ machines, the first
It is assumed that the third winding and the second winding are sequentially arranged on both sides of the winding.
第3図は、この釉車両用変圧器巻急の回路定数を示す図
で、Xl、I’llは第1巻線のりアクタンス及び抵抗
、X2−11(2は第2巻ルのリアクタンス及び抵抗、
X3.R,は第3巻輪のリアクタンス及び抵抗である。Figure 3 is a diagram showing the circuit constants of this glazed vehicle transformer, where Xl and I'll are the reactance and resistance of the first winding, and X2-11 (2 is the reactance and resistance of the second winding). ,
X3. R is the reactance and resistance of the third winding ring.
この図がらみて、第2巻線から第3巻線への回生電力量
には、第2巻線のリアクタンスX2及び抵抗鵬と第3巻
株のりアクタンスX、及び抵抗攬が影竹し、また第3巻
線の電圧変動率には、第1巻ルーのリアクタンスX1及
び抵抗へと第3巻忽のリアクタンスX3及び抵抗R2が
影響することが判る。Considering this diagram, the amount of regenerated power from the second winding to the third winding is affected by the reactance X2 and resistance of the second winding, the reactance X of the third winding, and the resistance. It can be seen that the reactance X3 and resistance R2 of the third winding affect the reactance X1 and resistance of the first winding, as well as the reactance X3 and resistance R2 of the third winding.
なお、抵抗へ〜塊はリアクタンスX、〜X、に比べて非
常に小さいので、特にリアクタンスX、〜X、IIC展
目する必要がある。In addition, since the resistance mass is very small compared to the reactance X, ~X, it is necessary to pay particular attention to the reactances X, ~X, and IIC.
次に本発明の実施例における各巻線の配置状態を、従来
のものと比較しながら説ゆ]する。第4図に示すように
第2巻線2を2−1と2−2に分割した場合の各巻線の
配置状態を第5図と第6図に示す。第5図に示す如〈従
来の変圧器は、第1巻線1と第2巻線2−.1.2−2
は近接して(・るか、第3巻線3は第1巻線1と第1巻
株1の間に介在されて、それぞれ第2巻線2−1.2−
2との間が離れている。これに対し本発明の実施例の変
圧器では第6図に示す如く、それぞれの第1巻線1の両
側に第3巻線3が配置され、その外側に扼2巻緋2−1
.2−2が順次配置されており、第3巻線3は第1巻線
1及び第2巻勝2−1.2−2と近接状態にある。Next, the arrangement of each winding in the embodiment of the present invention will be explained while comparing it with the conventional arrangement. When the second winding 2 is divided into 2-1 and 2-2 as shown in FIG. 4, the arrangement of each winding is shown in FIGS. 5 and 6. As shown in FIG. 5, a conventional transformer has a first winding 1, a second winding 2-. 1.2-2
The third winding 3 is interposed between the first winding 1 and the first winding 1, and the second winding 2-1, 2-
There is a distance between the two. On the other hand, in the transformer according to the embodiment of the present invention, as shown in FIG. 6, the third windings 3 are arranged on both sides of each of the first windings 1.
.. 2-2 are arranged in sequence, and the third winding 3 is in close proximity to the first winding 1 and the second winding 2-1, 2-2.
以下、この実施例の巻顧配置により、第3巻線の電圧変
動率を増加することなく、第2巷線から楽3巻線への回
生電力を増加させ得ることを、各巻線間のパーセントリ
アクタンス(以下%IXと表わす)Kよってi脱明する
。Hereinafter, it will be explained that the winding arrangement of this embodiment can increase the regenerative power from the second side wire to the third winding without increasing the voltage fluctuation rate of the third winding. i is eliminated by the reactance (hereinafter expressed as %IX) K.
第5図の変圧器における第1巻顧と第3巻線間の%IX
、、Aは下記(1)式によって求められる。%IX between the first and third windings in the transformer shown in Figure 5
,,A are determined by the following equation (1).
ここで ム :巻線平均長
N、:第3巻線の巻数
に+s :ロゴスキー係数
E、:第3巻線の無負荷電圧
■3:第3巻線の定格電流
第2巻線と第3巻線間の%IX2.Aは下記(2)式に
よって求められる。Here, M: average winding length N,: number of turns of the third winding +s: Rogowski coefficient E,: no-load voltage of the third winding ■3: rated current of the third winding %IX between 3 windings2. A is determined by the following equation (2).
・・・・・・(2)
ここでΔ2は第2巻線の軸方向幅、δI2は第1巻線と
第2巻)腺のtlQf1方向間隔である(ともに81!
7図参照)。なお、k13は巻線構造によって若干変化
するが、全体への影響が小さいので同一として取扱った
。(2) Here, Δ2 is the axial width of the second winding, and δI2 is the interval in the tlQf1 direction between the first and second windings (both 81!
(See Figure 7). Although k13 varies slightly depending on the winding structure, it is treated as the same because it has little effect on the whole.
ついで第6図の変圧器における各巻lj間のバーセント
リアクタンスを示す。第1巻線と第3巻線時の%lX1
3”は下記(3)式によって、藁2巻服と第3巻線間の
%IX、sBは下記(4)式によってそれぞれ求められ
る。Next, the percent reactance between each winding lj of the transformer shown in FIG. 6 is shown. %lX1 for 1st winding and 3rd winding
3'' is determined by the following equation (3), and the %IX and sB between the two straw windings and the third winding are determined by the following equation (4).
・・・・・・(3)
・・・・・・(4)
なお、Δ1.Δ2.Δ3.δ、2.δ2.の各巻線寸法
は第8図参照のこと。......(3) ......(4) In addition, Δ1. Δ2. Δ3. δ, 2. δ2. See Figure 8 for the dimensions of each winding.
ここで、前記(1)式の%I X、奇と(3)式の%I
X、3”とを比較すると、%I X13A”’%I
X、、”、となっていることが判る。Here, %I X of the above formula (1), odd and %I of the formula (3)
Comparing X, 3", %I X13A"'%I
It can be seen that "X...".
また、(2)式の%i X23Aと(4)式の%IX、
、″とを、δ1.キδ23として比較すれは(5)式の
ようになる。In addition, %i X23A of formula (2) and %IX of formula (4),
,'' are compared as δ1.kiδ23, and the result is equation (5).
この(5)式から%I X23A>%IX、”と7よっ
ていることが判る。From this equation (5), it can be seen that %IX23A>%IX,"7 follows.
このように、本実力1!i例の巻琢配置によれは、%I
X、3が従来と変らないので、第3巻線の電圧変動率(
%I X、、にほぼ比例する)が従来より増加すること
はない。一方、%I X、、は従来よりも小さくなるの
で、吊2イーシ曝から第3巻?腺への回生′電力量を増
加さセることができる。In this way, real ability 1! Depending on the volume arrangement of example i, %I
Since X and 3 are the same as before, the voltage fluctuation rate of the third winding (
%I (approximately proportional to On the other hand, %I The amount of regenerative power to the gland can be increased.
以上説明したように、本発明によれば、第3巻がの電圧
変動率を増加することなく、gIs 2巻線から第3巻
銖への回生電力量を増加させることかできる。その結果
、第3巻線の容量を増加することなく、同−電気車内の
補機なとの′岨気機器への回生電力量を増加させ、その
効率を良くして電気工の省エネルギ化を図ることができ
る。As explained above, according to the present invention, it is possible to increase the amount of regenerated electric power from the gIs 2 winding to the third winding without increasing the voltage fluctuation rate of the third winding. As a result, without increasing the capacity of the third winding, the amount of regenerated electricity to the auxiliary equipment in the same electric train can be increased, improving its efficiency and helping electricians save energy. can be achieved.
第1図および第2図は交流回生式変圧器のカ行時および
回生時における電力の供給方向を示すブロック図、第3
図は該変圧器における巻線の回路定数を示す等価回路図
、第4図は交流回生式変圧器の接続図、第5図は第4図
における従来の変圧器の巻線配置図、第6図は化4図に
おける本発明の一実施例忙係る変圧器の巻線配置図、第
7図は第5図における巻線寸法図、第8図は第6図にお
ける巻朦寸法図である。
1・・・・・・第1巻線、2.2−1〜2−6・・・・
・・第2巻線、3・・・・・・第3巻線。
第1図
第2図
第3図 第4図
第5図 第6図
第7ri!J 第8図Figures 1 and 2 are block diagrams showing the direction of power supply when the AC regenerative transformer is running and regenerating.
The figure is an equivalent circuit diagram showing the circuit constants of the windings in the transformer, Figure 4 is a connection diagram of an AC regenerative transformer, Figure 5 is a winding arrangement diagram of the conventional transformer shown in Figure 4, and Figure 6 is a diagram showing the circuit constants of the windings in the transformer. The drawings are a winding layout diagram of a transformer according to an embodiment of the present invention in FIG. 4, a winding dimensional diagram in FIG. 5, and FIG. 8 a winding dimensional diagram in FIG. 6. 1...First winding, 2.2-1 to 2-6...
...Second winding, 3...Third winding. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7ri! J Figure 8
Claims (1)
駆動する電動機に電力を供給する第2巻線と、電気車内
にある駆動用電動株以外の電気機器に屯力な供給する第
3合線とを備えた交流回生式車両用変圧器において、前
記第1巻線の両側にそれぞれ前記第3巻線と第2巻線を
順次配置したことを特徴とする交υIL回生式車両用俊
圧器。1 The first winding that receives power from the rakusho, the second winding that supplies power to the motor that drives the electric car, and the second winding that supplies power to electrical equipment other than the driving electric stock in the electric car. An alternating current regenerative vehicle transformer comprising three coupling wires, characterized in that the third winding and the second winding are sequentially arranged on both sides of the first winding. Pressurizer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6631483A JPS59193008A (en) | 1983-04-16 | 1983-04-16 | Transformer for ac regenerative vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6631483A JPS59193008A (en) | 1983-04-16 | 1983-04-16 | Transformer for ac regenerative vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59193008A true JPS59193008A (en) | 1984-11-01 |
Family
ID=13312238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6631483A Pending JPS59193008A (en) | 1983-04-16 | 1983-04-16 | Transformer for ac regenerative vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59193008A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0243738A2 (en) * | 1986-04-26 | 1987-11-04 | Deutsche Thomson-Brandt GmbH | Transformer for a regulated switched-mode power supply |
-
1983
- 1983-04-16 JP JP6631483A patent/JPS59193008A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0243738A2 (en) * | 1986-04-26 | 1987-11-04 | Deutsche Thomson-Brandt GmbH | Transformer for a regulated switched-mode power supply |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9120390B2 (en) | Apparatus for transferring energy using onboard power electronics and method of manufacturing same | |
CN103201930B (en) | Vehicle-mounted dynamo-electric machine system | |
CN104691343B (en) | Braking system of electric locomotive based on high-power inverter | |
US5546295A (en) | Electrical power converter, power supply, and inverter with series-connected switching circuits | |
CN106183841A (en) | Railway vehicle traction system and rail vehicle | |
JP2012085447A (en) | Ac-dc converter | |
SHIGEEDA et al. | Feeding-loss Reduction by Higher-voltage DC Railway Feeding System with DC-to-DC Converter | |
JPH0888908A (en) | Charger for electric railcar | |
JPS59193008A (en) | Transformer for ac regenerative vehicle | |
CN213676389U (en) | Traction transmission power supply system of motor train unit | |
JPS5984512A (en) | Transformer coil for ac regenerative type electric vehicle | |
CN112825448B (en) | Series-parallel excitation direct current motor | |
WO2019223253A1 (en) | Direct current motor | |
JPS6033293B2 (en) | AC regenerative vehicle transformer | |
WO2020073405A1 (en) | Direct current motor | |
CN112825449A (en) | Parallel-series excitation direct current motor | |
US20240250566A1 (en) | Power tool and method for operating a power tool | |
CN213583173U (en) | Enameled rectangular copper wire for unmanned vehicle motor winding | |
KR101601536B1 (en) | Inductor for high side DC/DC convertor | |
CN216959339U (en) | Electrified railway traction substation compensation arrangement based on three-phase structure | |
JPH02184007A (en) | Transformer for vehicle | |
CN112825447B (en) | Parallel-series excitation direct current motor | |
JPS62131862A (en) | Alternating current electric locomotive | |
RU2136515C1 (en) | Method and device for feeding electrified transport | |
KR20150084594A (en) | Power Supply Apparatus and Power Transmission Apparatus Using Same |