JPS6033293B2 - AC regenerative vehicle transformer - Google Patents

AC regenerative vehicle transformer

Info

Publication number
JPS6033293B2
JPS6033293B2 JP54079607A JP7960779A JPS6033293B2 JP S6033293 B2 JPS6033293 B2 JP S6033293B2 JP 54079607 A JP54079607 A JP 54079607A JP 7960779 A JP7960779 A JP 7960779A JP S6033293 B2 JPS6033293 B2 JP S6033293B2
Authority
JP
Japan
Prior art keywords
winding
windings
transformer
power
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079607A
Other languages
Japanese (ja)
Other versions
JPS564222A (en
Inventor
昭鎚 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP54079607A priority Critical patent/JPS6033293B2/en
Publication of JPS564222A publication Critical patent/JPS564222A/en
Publication of JPS6033293B2 publication Critical patent/JPS6033293B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/04Fixed transformers not covered by group H01F19/00 having two or more secondary windings, each supplying a separate load, e.g. for radio set power supplies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】 交流電化が開始されサィリスタの実用化が実現して以来
、交流回生式車両の研究が開始された。
[Detailed Description of the Invention] Since the start of AC electrification and the practical use of thyristors, research on AC regeneration vehicles has begun.

交流回生式車両は、ブレーキごかける際に電気車駆動用
電動機を発電機として作用させ、発生した電力を電源側
へ返還することによりブレーキ力を得る方式である。こ
の方式は回生電力を有効に使用してくれる負荷がないと
ブレーキ力が得られず、かつ回生電力量も小さくなり、
メリットがうすれることから、前述の条件が比較的満た
される僅かな線区のみで実用化されていた。近年、エネ
ルギー資源の有限から再び交流回生式車両が見直されて
いるが、やはり回生電力量が少ないことが大きな障害と
なっている。一般に交流回生式車両用変圧器は、架線か
ら電力をとり入れる第1巻線と、電気車駆動用電動機に
電力を供給する第2巻線と、電気車内にある前記駆動用
電動機以外の電気機器(補機、暖房、食堂車などのサー
ビス電源などで第2巻線容量の10〜30%の容量を有
する電気機器)へ電力を供給する第3巻線とを備えてる
AC regenerative vehicles use the electric vehicle drive motor as a generator when applying the brakes, and obtain braking force by returning the generated power to the power source. With this method, braking force cannot be obtained unless there is a load that can effectively use the regenerated power, and the amount of regenerated power is also small.
Due to the lack of merit, it was put into practical use only in a few lines where the above conditions were relatively satisfied. In recent years, AC regenerative vehicles have been reconsidered due to limited energy resources, but the small amount of regenerated electricity remains a major obstacle. In general, an AC regenerative vehicle transformer has a first winding that takes in power from the overhead wire, a second winding that supplies power to the electric vehicle drive motor, and electrical equipment other than the drive motor inside the electric vehicle ( and a third winding that supplies power to electrical equipment (such as service power sources for auxiliary equipment, heaters, dining cars, etc.) having a capacity of 10 to 30% of the capacity of the second winding.

力行時には電力は第1図の矢印イ,口で示すように、第
1巻線1から第2巻線2および第3巻線3にそれぞれ供
給される。これが回生ブレーキ時には第2図の矢印ハ,
二に示すように、第2巻線2から第1巻線1及び第3巻
線3にそれぞれ電力が供給される。第1巻線1を経て回
生される電力量は、近くに力行中の車両がないか、ある
いは変電所から離れている場合には架線のインピーダン
スや変電所のインピーダンスが作用して小さい値となっ
てしまう。また従来は、力行時の矢印口の方向を重視し
て変圧器特性を決めていたため、第2巻線2と第3巻線
3間のインピーダンスが大きく、第2の矢印二の方向の
回生電力量が少なかった。本発明の目的は、上託した従
来技術の欠点を除去し、第3巻線の負荷に回生電力を有
効に供給する交流回生式車両用変圧器を提供するにある
During power running, electric power is supplied from the first winding 1 to the second winding 2 and the third winding 3, respectively, as shown by arrows A and I in FIG. During regenerative braking, this is indicated by the arrow C in Figure 2.
As shown in FIG. 2, power is supplied from the second winding 2 to the first winding 1 and the third winding 3, respectively. The amount of electric power regenerated through the first winding 1 will be small due to the impedance of the overhead wires and the impedance of the substation if there are no powered vehicles nearby or if it is far from the substation. I end up. In addition, in the past, transformer characteristics were determined with emphasis on the direction of the arrow during power running, so the impedance between the second winding 2 and the third winding 3 was large, and the regenerated power in the direction of the second arrow 2 was large. The quantity was small. SUMMARY OF THE INVENTION An object of the present invention is to provide an AC regenerative vehicle transformer that eliminates the drawbacks of the prior art and effectively supplies regenerated power to the load of the third winding.

この目的を達成するためまに、本発明は、架から電力の
供給を受ける第1巻線と、電気車を勤する電動機に電力
を供給する第2巻線と、電気車内にある駆動用電動機以
外の電気機器に電力を供給する第3巻線とを備えた交流
回生式車両用変圧器において、前記第3巻線を基準にし
た前記第2巻線と第3巻線間のパーセントリアクタンス
が前記第1巻線と第3巻線間のパーセントリアクタンス
よりも4・さくなるように第1巻線、第2巻線、第3巻
線をそれぞれ配置したことを特徴とする。第3図は、こ
の種車両用変圧器巻線の回路定数を示す図で、この図か
ら明らかなように、第2巻線から第3巻線への回生電力
量を増すためには、第2巻線のIJアクタンスX2、第
2巻線の抵抗R2、第3巻線のIJァクタンスX3、第
3巻線の抵抗R3を小さすればよい。
In order to achieve this object, the present invention provides a first winding that receives power from the rack, a second winding that supplies power to the electric motor that operates the electric car, and a drive electric motor that is inside the electric car. In an AC regenerative vehicle transformer equipped with a third winding that supplies power to other electrical equipment, the percent reactance between the second winding and the third winding with respect to the third winding is The first winding, the second winding, and the third winding are arranged so that the percent reactance between the first winding and the third winding is 4. Figure 3 is a diagram showing the circuit constants of this type of vehicle transformer winding.As is clear from this diagram, in order to increase the amount of regenerative power from the second winding to the third winding, It is sufficient to reduce the IJ actance X2 of the second winding, the resistance R2 of the second winding, the IJ actance X3 of the third winding, and the resistance R3 of the third winding.

前記R2,R3は一般にX2,X3に比べて非常に小さ
いからX2,X3を小さくする方が有利である。なお、
図中X,は第1巻線のりアクタンス、R,は第1巻線の
抵抗である。次に本発明のアルコールにおける各巻線の
配置状態を、従来のものと比較しながら説明する。
Since R2 and R3 are generally much smaller than X2 and X3, it is advantageous to make X2 and X3 smaller. In addition,
In the figure, X is the first winding glue actance, and R is the resistance of the first winding. Next, the arrangement of each winding in the alcohol of the present invention will be explained while comparing it with the conventional one.

第4図に示すように第2巻線2を2ーーと2一2に分割
した場合の各巻線の配置状態を第5図と第6図に示す。
第5図に示す如く従来の変圧器は、第1巻線1と第2巻
線2−1,2−2は近接しているが、第3巻線3は第1
巻線1と第1巻線1の間に介在されて、それぞれ第2巻
線2−1,2−2との間が離れている。これに対し本発
明の第1実施例の変圧器は第6図に示す如く、それぞれ
の第1巻線1の両側に第2巻線2−1,2−2が配置さ
れ、その外側に第3巻線3が順次配置されており、第2
巻線2一1,2−2と第3巻線3は近接状態にある。次
に第5図の変圧器における各巻線間のパーセントリアク
タンス(%IX)を示す。
When the second winding 2 is divided into 2- and 2-2 as shown in FIG. 4, the arrangement of each winding is shown in FIGS. 5 and 6.
As shown in FIG. 5, in the conventional transformer, the first winding 1 and the second windings 2-1, 2-2 are close to each other, but the third winding 3 is located close to the first winding 3.
It is interposed between the winding 1 and the first winding 1, and is spaced apart from the second windings 2-1 and 2-2, respectively. In contrast, in the transformer of the first embodiment of the present invention, as shown in FIG. 6, second windings 2-1 and 2-2 are arranged on both sides of each first winding 1, and a 3 windings 3 are arranged sequentially, and the second
The windings 2-1, 2-2 and the third winding 3 are in close proximity. Next, the percent reactance (%IX) between each winding in the transformer shown in FIG. 5 is shown.

第1巻線と第3巻線間の%IX,3^は下記【1’式に
よって求められる。ここで lm:巻線平均長 N3:第3巻線の巻数 h:巻線の径方向幅 (第7図参照) △1:第1巻線の軸万向幅 △3:第3巻線の軸方向幅 6,3:第1巻線と第3巻線の軸方向間隔k,3:ロゴ
スキ係数 E3:第3巻線の無負荷電圧 ら:第3巻線の定格電流 第2巻線と第3巻線間の%IX23^は下記■式によっ
て求められる。
The %IX,3^ between the first winding and the third winding is determined by the following formula [1']. where lm: average length of the winding N3: number of turns of the third winding h: radial width of the winding (see Figure 7) △1: axial width of the first winding △3: width of the third winding Axial width 6, 3: Axial spacing between the first and third windings k, 3: Rogowski coefficient E3: No-load voltage of the third winding et al.: Rated current of the third winding and the second winding The % IX23^ between the third windings is determined by the following formula (2).

ここで△2は第2巻線の軸方向幅、6,2は第1巻線と
第2巻線の藤方向間隔である(ともに第7図参照)。
Here, Δ2 is the axial width of the second winding, and 6 and 2 are the distances between the first and second windings in the width direction (see FIG. 7 for both).

なお、k,3は巻線構造によって若干変化するが、全体
への影響が小さいので同一として取扱った。△1±1.
2△2として前記川式の%IX,3Aと(2}式の%I
X幻^とを比較すると、義蹟舎=・十△まき季角十△事
葦毛さ.3 ‐‐‐(3}となり、%IX,3<%IX
23である。
Note that although k and 3 vary slightly depending on the winding structure, they are treated as the same because their influence on the whole is small. △1±1.
As 2△2, %IX, 3A of the above river formula and %I of the (2} formula
Comparing it with X-Gen^, Giseisha = Ju△MakiKikakuJu△KotoAshige. 3 ---(3}, %IX, 3<%IX
It is 23.

すなわち、従来の変圧器は、第2巻線と第3巻線間のパ
ーセントリアクタンスが、第1巻線と第3巻線間のパ−
セントリアクタンスよりも大きい。ついで第6図の変圧
器における各巻線間のパーセントIJァクタンスを示す
That is, in conventional transformers, the percent reactance between the second and third windings is the same as the percent reactance between the first and third windings.
larger than centripetance. Next, the percent IJ factor between each winding in the transformer of FIG. 6 is shown.

第1巻線と第3巻線時の%IX,3Bは下記(4}式に
よって、第2巻線と第3巻線間の%IX,3Bは下記{
5)式によってそれぞれ求められる。なお、△1,△2
,△3,6,2,6凶の各巻線寸法は第8図参照のこと
%IX, 3B between the 1st winding and the 3rd winding is the following (4), and %IX, 3B between the 2nd winding and the 3rd winding is the following {
5) are determined by the following equations. In addition, △1, △2
, △3, 6, 2, and 6-thickness winding dimensions are shown in Figure 8.

前記【4}式の%IX,38と{5ー式の%IX匁8と
を比較すると、参母事=・十2さまさる毒≦署誓23
‐‐‐‘6’となり、%IX,3B>%IX23Bで
ある。
Comparing the %IX, 38 of the [4} formula and the %IX momme 8 of the {5-formula], Sanboji = Twelve Monkey Poisons ≦ Signs Oath 23
---'6', and %IX,3B>%IX23B.

すなわち、本発明の変圧器は、第2巻線と第3巻線間の
パーセントリアクタンスが、第1巻線と第3巻線間のパ
ーセントリアクタンスよりも小さい。次に従来の変圧器
と本発明のものにおいて、第3巻線への回生電力に影響
をおよぼす%IX23^と%IX斑Bとを、6,3±6
凶として比較すれば‘7}式のようになる。
That is, in the transformer of the present invention, the percent reactance between the second winding and the third winding is smaller than the percent reactance between the first winding and the third winding. Next, in the conventional transformer and the one of the present invention, %IX23^ and %IX unevenness B, which affect the regenerative power to the third winding, are 6.3±6.
If you compare it as a bad thing, it will look like the '7} formula.

後援夢=・十2△芸≦箸芸;まき.3 ‐‐‐【71
この(7}式から%IX23B<%IX23^となり、
本発明の変圧器の方が第3巻線への回生電力量が大きい
ことが分かる。
Sponsored dream=・12△Gei≦Chopstick art; Maki. 3 --- [71
From this formula (7), %IX23B<%IX23^,
It can be seen that the transformer of the present invention has a larger amount of regenerated power to the third winding.

従来のこの種の変圧器は、第1巻線から第3巻線への特
性を重視するため両者を接近して配置していたが、第2
巻線と第3巻線との配置関係は考慮されていなかった。
In conventional transformers of this type, the characteristics of the first to third windings were placed close together in order to emphasize their characteristics.
The arrangement relationship between the winding and the third winding was not considered.

そこで本発明のように第2巻線と第3巻線とを接近して
配置するとともに、第1巻線と第3巻線を離せば、%I
X,3>%IX23となり、第2巻線から第3巻線への
回生電力量が大となる。次に第9図に示す如く第2巻線
が2−1から2−6までの6個に分割される場合につい
て述べる。
Therefore, as in the present invention, if the second winding and the third winding are arranged close to each other and the first winding and the third winding are separated, the %I
X,3>%IX23, and the amount of regenerated electric power from the second winding to the third winding becomes large. Next, the case where the second winding is divided into six parts 2-1 to 2-6 as shown in FIG. 9 will be described.

第10図は従来の変圧器の巻線配置を、第11図は本発
明の第2実施例に係る変圧器の巻線配置をそれぞれ示す
。第9図において、第2巻線の全電圧の5分の1が2一
3,2−4,2−5,2一6巻線にそれぞれ誘起され、
10分の1が2−1,2一2巻線にそれぞれ誘起される
ようになっている。
FIG. 10 shows a winding arrangement of a conventional transformer, and FIG. 11 shows a winding arrangement of a transformer according to a second embodiment of the present invention. In FIG. 9, one-fifth of the total voltage of the second winding is induced in the 2-3, 2-4, 2-5, and 2-6 windings, respectively,
1/10 is induced in the 2-1 and 2-2 windings, respectively.

第10図に示す従来の変圧器では、第3巻線3が第2巻
線の1個(2一6巻線)にしか近接配置しておらず、し
かも第3巻線3は2分された第1巻線1の間に挿入され
ている。
In the conventional transformer shown in Fig. 10, the third winding 3 is placed close to only one of the second windings (2-6 windings), and the third winding 3 is divided into two. The first winding 1 is inserted between the two first windings 1.

そのため%IX,3<%IX匁となり、第3巻線への回
生電力量が少ないことは明らかである。これに対し本発
明の第2実施例による変圧器の巻線配置は第11図に示
す如く、第1巻線1の両側に複数個の第2巻線2が配置
され、第3巻線3は第2巻線2−2と第2巻線2一4お
よび第2巻線2−3と第2巻線2−5の間にそれぞれ挿
入されている。従って第1巻線と第2巻線2との間なら
びに第2巻線2と第3巻線3の間がそれぞれ近接してお
り、しかも第3巻線3は第1巻線1から離れているため
%IX,3>%1×斑の関係になっている。なお、2分
割された第3巻線は直列、並列いずれに接続することも
可能で、変圧器のハードの面からその接続方式を決めれ
ばよい。本発明は前述のような構成になっており、電源
への回生電力量に加え、車内における橘機などへの回生
電力量が増加し、車両の省エネルギーを図ることができ
る。
Therefore, %IX,3<%IX momme, and it is clear that the amount of regenerated electric power to the third winding is small. In contrast, in the winding arrangement of the transformer according to the second embodiment of the present invention, as shown in FIG. 11, a plurality of second windings 2 are arranged on both sides of the first winding 1, and a third winding 3 are inserted between the second winding 2-2 and the second winding 2-4, and between the second winding 2-3 and the second winding 2-5, respectively. Therefore, the first winding 2 and the second winding 2 are close to each other, and the second winding 2 and the third winding 3 are close to each other, and the third winding 3 is separated from the first winding 1. Therefore, the relationship is %IX, 3 > %1 × spots. Note that the third winding divided into two can be connected either in series or in parallel, and the connection method can be determined based on the hardware of the transformer. The present invention has the above-described configuration, and in addition to the amount of regenerated electric power to the power source, the amount of regenerated electric power to the orange machine in the vehicle increases, thereby making it possible to save energy in the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は交流回生式車両用変圧器の力行時
および回生時における電力の供給方向を示す図、第3図
は該変圧器における巻線の回路定数を示す図、第4図は
交流回生式変圧器の接続図、第5図は第4図における従
来の変圧器の巻線配置図、第6図は第4図における本発
明の変圧器の巻線配置図、第7図は第5図における巻線
寸法図、第8図は第6図における巻線寸法図、第9図は
交流回生式変圧器の他の接続図、第10図は第9図にお
ける従来の変圧器の巻線配置図、第11図は第9図にお
ける本発明の変圧器の巻線配置図である。 1・・・…第1巻線、2,2−1〜2−6・・・・・・
第2巻線、3…・・・第3巻線。 第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図
Figures 1 and 2 are diagrams showing the direction of power supply during power running and regeneration of an AC regenerative vehicle transformer, Figure 3 is a diagram showing the circuit constants of the windings in the transformer, and Figure 4 is a connection diagram of an AC regenerative transformer, FIG. 5 is a winding layout diagram of the conventional transformer in FIG. 4, FIG. 6 is a winding layout diagram of the transformer of the present invention in FIG. 4, and FIG. is the winding dimension diagram in Figure 5, Figure 8 is the winding dimension diagram in Figure 6, Figure 9 is another connection diagram of the AC regenerative transformer, and Figure 10 is the conventional transformer in Figure 9. FIG. 11 is a winding layout diagram of the transformer of the present invention in FIG. 9. 1...First winding, 2, 2-1 to 2-6...
2nd winding, 3...3rd winding. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11

Claims (1)

【特許請求の範囲】 1 架線から電力の供給を受ける第1巻線と、電気車を
駆動する電動機に電力を供給する第2巻線と、電気車内
にある駆動用電動機以外の電気機器に電力を供給する第
3巻線とを備えた交流回生式車両用変圧器において、前
記第3巻線を基準にした前記第2巻線と第3巻線間のパ
ーセントリアクタンスが前記第1巻線と第3巻線間のパ
ーセントリアクタンスよりも小さくなるように第1巻線
、第2巻線、第3巻線をそれぞれ配置したことを特徴と
する交流回生式車両用変圧器。 2 特許請求の範囲第1項記載において、前記第1巻線
、第2巻線、第3巻線の配置が、第1巻線の両側に第2
巻線と第3巻線とが順次配置されていることを特徴とす
る交流回生式車両用変圧器。 3 特許請求の範囲第1項において、前記第1巻線、第
2巻線、第3巻線の配置が、第1巻線の両側にそれぞれ
複数の第2巻線を配置し、その第2巻線の間に第3巻線
を配置したことを特徴とする交流回生式車両用変圧器。
[Claims] 1. A first winding that receives power from the overhead wire, a second winding that supplies power to the electric motor that drives the electric car, and a second winding that supplies power to electric equipment other than the drive motor in the electric car. In the AC regenerative vehicle transformer, the percentage reactance between the second winding and the third winding with respect to the third winding is equal to that of the first winding. An AC regenerative transformer for a vehicle, characterized in that the first winding, the second winding, and the third winding are respectively arranged so that the percent reactance between the third windings is smaller than the percent reactance between the third windings. 2. In claim 1, the arrangement of the first winding, second winding, and third winding is such that second windings are arranged on both sides of the first winding.
An AC regenerative vehicle transformer characterized in that a winding and a third winding are arranged in sequence. 3. In claim 1, the arrangement of the first winding, the second winding, and the third winding is such that a plurality of second windings are arranged on both sides of the first winding, and the second winding is An AC regenerative vehicle transformer characterized in that a third winding is disposed between the windings.
JP54079607A 1979-06-26 1979-06-26 AC regenerative vehicle transformer Expired JPS6033293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54079607A JPS6033293B2 (en) 1979-06-26 1979-06-26 AC regenerative vehicle transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54079607A JPS6033293B2 (en) 1979-06-26 1979-06-26 AC regenerative vehicle transformer

Publications (2)

Publication Number Publication Date
JPS564222A JPS564222A (en) 1981-01-17
JPS6033293B2 true JPS6033293B2 (en) 1985-08-02

Family

ID=13694697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54079607A Expired JPS6033293B2 (en) 1979-06-26 1979-06-26 AC regenerative vehicle transformer

Country Status (1)

Country Link
JP (1) JPS6033293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308012A (en) * 1988-06-06 1989-12-12 Toshiba Corp Transformer for pwm converter

Also Published As

Publication number Publication date
JPS564222A (en) 1981-01-17

Similar Documents

Publication Publication Date Title
JP3361047B2 (en) Power supply for vehicles
Green et al. 10 kHz inductively coupled power transfer-concept and control
CN104221277B (en) Combined charging device and power plant
US5600222A (en) Thermal management using a hybrid spiral/helical winding geometry
Onar et al. A novel integrated magnetic structure based DC/DC converter for hybrid battery/ultracapacitor energy storage systems
CN1075277C (en) Improved EMI filter topology for power inverters
US5594317A (en) Inductive charger field shaping using nonmagnetic metallic conductors
CN101355341B (en) Electric motor systems
JPS6033293B2 (en) AC regenerative vehicle transformer
Masrur et al. Can an AC (alternating current) electrical system replace the present DC system in the automobile? An investigative feasibility study. I. System architecture
JPS5984512A (en) Transformer coil for ac regenerative type electric vehicle
JPS6260914B2 (en)
CN112825448B (en) Series-parallel excitation direct current motor
JPS59193008A (en) Transformer for ac regenerative vehicle
Kawaguchi et al. Feasibility Study of High-Frequency Transformer with High-Voltage Insulation Structure for SST Based Medium-Voltage Multi-Level Converter
WO2019223253A1 (en) Direct current motor
WO2020073405A1 (en) Direct current motor
JPH02184007A (en) Transformer for vehicle
CN213935896U (en) Double-high-voltage conversion transformer
JPH0419994Y2 (en)
RU2183166C2 (en) Live traction circuit including supply buses of electric locomotive
JPS607456Y2 (en) induction wire winding
JPH0199459A (en) Armature winding for charging generator
JPS6144389Y2 (en)
CN2236679Y (en) Low voltage coil of welder