JPS59191806A - Denitrating combustion of pulverized coal and burner thereof - Google Patents

Denitrating combustion of pulverized coal and burner thereof

Info

Publication number
JPS59191806A
JPS59191806A JP58064518A JP6451883A JPS59191806A JP S59191806 A JPS59191806 A JP S59191806A JP 58064518 A JP58064518 A JP 58064518A JP 6451883 A JP6451883 A JP 6451883A JP S59191806 A JPS59191806 A JP S59191806A
Authority
JP
Japan
Prior art keywords
pulverized coal
combustion
exhaust gas
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58064518A
Other languages
Japanese (ja)
Inventor
Shigeki Morita
茂樹 森田
Tadahisa Masai
政井 忠久
Toshio Uemura
俊雄 植村
Hitoshi Migaki
三垣 仁志
Fumio Koda
幸田 文夫
Kiichi Itagaki
喜一 板垣
Shigeto Nakashita
中下 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58064518A priority Critical patent/JPS59191806A/en
Publication of JPS59191806A publication Critical patent/JPS59191806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the production of unburnt content in ash and NOX in exhaust gas without increasing the size of a device, by a method wherein fuel, indicating a fuel ratio equivalent to or less than that of pulverized coal, is injected under atmosphere containing recycling combustion exhaust gas. CONSTITUTION:More fine pulverized coal 4, which is auxiliary fuel and fed through an auxiliary fuel feed pipe 5 by means of recycling combustion exhaust gas, is injected through an auxiliary injection nozzle 7 in a lower furnace 17 at a speed higher than that of pulverized coal conveyed by the air after passing through an auxiliary fuel pipe 6. As a result of the auxiliary fuel after injection being heated by means of ambient main combustion flame and the radiant heat of a furnace, it produces a volatile component, but the volatile component is present under atmosphere of recycling combustion gas being low in an O2 partial pressure, whereby combustion lag occurs and the volatile component is burnt as production and disappearance of a carbon hydride series radial is repeated. This enables reduction in production of an unburnt content in ash and NOX in exhaust gas without increasing the size of a device.

Description

【発明の詳細な説明】 ° 本発明は微粉炭脱硝燃焼方法に係シ、特に排ガス中
の窒素酸化物(以下、NOxと称する)を低減するに好
適な石炭焚き用ボイラ装置の燃焼方法およびバーナに関
するものである。
Detailed Description of the Invention ° The present invention relates to a pulverized coal denitrification combustion method, and in particular to a combustion method and burner for a coal-fired boiler device suitable for reducing nitrogen oxides (hereinafter referred to as NOx) in exhaust gas. It is related to.

NO,は光化学オキシダントや酸性雨の原因物質の1つ
とされているため、その発生を効果的に抑制する燃焼法
の開発が要望されている。このような目的に沿った燃焼
法として(1)排ガス再循環法、(2)二段燃焼法およ
び(3)還元燃焼法(脱硝燃焼法)が知られている。排
ガス再循環法は、排ガスを混入することによシO!分圧
を低下させた空気を燃焼用ガスとして使用し、緩やかな
燃焼を行うことによfiNO,を低減させる方法である
。二段燃焼法は、一般にバーナを多段に設け、前段のバ
ーナでNOx低減化にとって有利な低空気比下の第1次
燃焼を行い、次いで該燃焼により生じた未燃分をバーナ
の後流に設けたアフタエアロから構成される装置の存在
下で再燃焼させるものである。また、還元燃焼法は上記
二段燃焼法と同様な装置を用いて行われるが、この方法
は、多段バーナ内の下流側に燃料大過剰の燃焼領域を形
成し、該領域で発生する還元ラジカルによシ上流側のバ
ーナ部で発生するNO,をN2に還元し、一方、未燃分
については上記二段燃焼法の場合と同様にアフタエアロ
から供給される空気の存在下で完全燃焼させるものであ
る。これらの燃焼法は、LNGや重油等の流体燃料を燃
焼する場合にはすぐれた方法であるが、窒素化合物の含
有量が大きくかつ燃料比が相対的に大きい微粉炭に適用
する場合には、下記するような種々の欠点がある。第1
の欠点は、緩慢な燃焼条件を採用しているため、灰中未
燃分が増大し未燃損失が避けられないことでちる。第2
の欠点は、緩慢な燃焼条件を採用していることおよびア
フタエアによる完全燃焼域を設けていること等によシ火
炉寸法の過大化が避けられないことである。まだ、第3
の欠点は、特に高燃料比炭の燃焼時には、NO工の増大
とともに未燃分も増大することである。
Since NO is considered to be one of the causative substances of photochemical oxidants and acid rain, there is a demand for the development of a combustion method that effectively suppresses its generation. As combustion methods for such purposes, (1) exhaust gas recirculation method, (2) two-stage combustion method, and (3) reduction combustion method (denitrification combustion method) are known. The exhaust gas recirculation method works by mixing exhaust gas! This is a method of reducing fiNO by using air with a reduced partial pressure as a combustion gas and performing slow combustion. In the two-stage combustion method, burners are generally arranged in multiple stages, and the first stage burner performs the first combustion at a low air ratio, which is advantageous for reducing NOx, and then the unburned matter produced by the combustion is sent to the wake of the burner. Reburning occurs in the presence of a device consisting of an after-aero system. In addition, the reduction combustion method is carried out using the same equipment as the two-stage combustion method, but in this method, a combustion region with a large excess of fuel is formed on the downstream side of the multi-stage burner, and the reduction radicals generated in the region are NO, which is generated in the upstream burner section, is reduced to N2, while unburned components are completely combusted in the presence of air supplied from the after-air system, as in the case of the two-stage combustion method described above. It is. These combustion methods are excellent when burning fluid fuels such as LNG and heavy oil, but when applied to pulverized coal that has a large nitrogen compound content and a relatively large fuel ratio, There are various drawbacks as described below. 1st
The disadvantage of this method is that it uses slow combustion conditions, which increases the amount of unburned matter in the ash and unavoidably causes unburned losses. Second
The disadvantage of this method is that it is inevitable to increase the size of the furnace due to the adoption of slow combustion conditions and the provision of a complete combustion zone due to after air. Still, the third
The disadvantage of this is that, especially when high fuel ratio coal is combusted, the unburned content also increases with the increase in NO emissions.

本発明の目的は、上記した従来技術の欠点を゛なくシ、
装置の大型化を要することなく灰中未燃分と排ガス中の
NO□を低減できる微粉炭の燃焼方法    ″を提供
することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art;
The object of the present invention is to provide a pulverized coal combustion method that can reduce unburned content in ash and NO□ in exhaust gas without requiring an enlarged device.

上記の目的を達成するため、本発明は、バーナの燃料噴
出口から空気搬送の微粉炭を火炉内へ噴射させて燃焼を
行う方法において、上記燃料噴叶口の少くとも1部から
上記微粉炭の燃焼域を貫通してその後流側に達するよう
に、上記微粉炭と同一以下の燃料比を示す燃料を再循環
燃焼排ガスを含む雰囲気下で噴射することを特徴とする
In order to achieve the above object, the present invention provides a method for injecting air-borne pulverized coal into a furnace from a fuel nozzle of a burner to inject the pulverized coal from at least a part of the fuel nozzle to the furnace. The present invention is characterized in that a fuel exhibiting a fuel ratio equal to or lower than that of the pulverized coal is injected in an atmosphere containing recirculated combustion exhaust gas so as to penetrate the combustion zone of the pulverized coal and reach its downstream side.

上記の構成とすることによシ、燃料噴出口(以下、主噴
出口と称する)の1部(以下、副吹出口と称する)から
空気搬送微粉炭よシ高速で噴射された燃料(以下、副燃
料と称する)は、周囲の微粉炭燃焼炎(以下、主燃焼炎
と称する)や火炉の輻射熱によシ加熱されて揮発成分を
発生するが、この揮発成分は02分圧の低い再循環燃焼
排ガスの雰囲気下にあるため燃焼遅れを生じ、主燃焼炎
の後流側において流速低下にともない該燃焼炎の排ガス
との混合が可能となる段階になって始めて該排ガス中の
残存02と反応し、炭化水素系ラジカル(・HC)の生
成、消滅を繰シ返しながら燃焼することとなる(下記(
1)および(2)式等参照)。その際、主燃焼炎排ガス
中のNOと炭化水素系ラジカルとは下記(2)および(
3)式の反応を繰シ返すため、所謂炉内脱硝燃焼がバー
ナ毎に進行することになシ、NO工の低減化が良好に達
成される。
With the above configuration, the air-borne pulverized coal is injected at high speed from a part (hereinafter referred to as the sub-outlet) of the fuel outlet (hereinafter referred to as the main outlet) (hereinafter referred to as the main outlet). The pulverized coal combustion flame (hereinafter referred to as the main combustion flame) and the radiant heat of the furnace heat the pulverized coal combustion flame (hereinafter referred to as the main combustion flame) and generate volatile components. Because it is in the atmosphere of combustion exhaust gas, combustion is delayed, and as the flow velocity decreases on the downstream side of the main combustion flame, it does not react with the residual 02 in the exhaust gas until it becomes possible to mix with the exhaust gas of the combustion flame. However, it burns while repeatedly generating and extinguishing hydrocarbon radicals (HC) (see below (
1) and (2), etc.). At that time, NO and hydrocarbon radicals in the main combustion flame exhaust gas are defined as (2) and (2) below.
Since the reaction of equation 3) is repeated, so-called in-furnace denitrification combustion does not proceed for each burner, and a reduction in NO emissions can be achieved satisfactorily.

■・C+02→・uc 十K −−−−−=−−−−−
−−−−−−−−−<1>。HC+NO−+。NH+ 
P  ・・・・・・・・・・・・・・・・−・・・・(
2)。NH+ No −’) N2+ P  ・・・・
・・・・・・・・・・・・・・・・・・・・(3)(上
記各式中、H−Cは揮発炭化水素成分、PはCOl・O
H,I(20等の生成物を示す)本発明において、主燃
焼炎の形成はできるだけ良好なものとすることが望まし
く、これによシ空気搬送微粉炭の燃焼が好適に達成され
、未燃損失の防止が可能となる。また、副燃料は空気搬
送微粉炭と同一以下の燃料比を示す燃料とすべきである
が、これはNO還元に必要な揮発成分の生成を有利に達
成するためと未燃損失の増大を避けるためである。
■・C+02→・uc 1K −−−−−=−−−−−
−−−−−−−−−<1>. HC+NO-+. NH+
P ・・・・・・・・・・・・・・・・・・・・・(
2). NH+ No -') N2+ P...
・・・・・・・・・・・・・・・・・・・・・(3) (In each of the above formulas, H-C is a volatile hydrocarbon component, P is COl・O
H, I (representing a product such as 20) In the present invention, it is desirable that the formation of the main combustion flame be as good as possible, so that the combustion of the air-borne pulverized coal is suitably achieved, and the unburned Loss can be prevented. In addition, the auxiliary fuel should be a fuel that exhibits a fuel ratio equal to or lower than that of air-borne pulverized coal, but this is done in order to advantageously achieve the production of volatile components necessary for NO reduction and to avoid increasing unburned losses. It's for a reason.

このような副燃料の例としては、空気搬送微粉炭と同一
以下の燃料比を示す微粉炭、LNG等の気体燃料および
重質等の液体燃料があげられる。
Examples of such auxiliary fuels include pulverized coal having a fuel ratio equal to or lower than that of air-borne pulverized coal, gaseous fuels such as LNG, and liquid fuels such as heavy fuels.

なお、副燃料として用いる微粉炭は、空気搬送微粉炭よ
シ微細なものとすることが好ましく、このようにするこ
とによシ表面積が増大し、揮発成分の発生が一層良好に
なる。再循環燃焼排ガスの使用量は、一般に全燃焼ガス
量の2〜15%(容量)が好ましい。
The pulverized coal used as the auxiliary fuel is preferably finer than the air-borne pulverized coal. By doing so, the surface area of the pulverized coal increases, and the generation of volatile components becomes even better. The amount of recirculated flue gas used is generally preferably 2 to 15% (by volume) of the total amount of flue gas.

本発明は従来の火炉用微粉炭バーナに広く適用可能であ
る。従来のバーナは一般に、中心部から外周へ向けて順
次、主噴出口、二次空気噴出口および三次空気噴出口等
を備えだ構成となっているが、本発明のバーナは、この
ようなバーナの上記主噴出口の1部に副燃料を再循環燃
焼排ガスの雰囲気下で噴出させるだめの副吹出口を1個
以上設けることにより容易に裏作可能である2、副吹出
口は副燃料を主燃焼炎を貫通してその後流側に案内可能
な限υ主噴出口の任意位置に設け得るが)通常複数個の
副噴出口を主噴出口の中心点を回乞回転方向に沿って離
島状または分割状に設けることが好ましい。
The present invention is widely applicable to conventional pulverized coal burners for furnaces. Conventional burners generally have a structure in which a main air outlet, a secondary air outlet, a tertiary air outlet, etc. are sequentially arranged from the center toward the outer periphery. This can be easily reversed by providing one or more sub-outlets in one part of the above-mentioned main outlet to eject the auxiliary fuel in an atmosphere of recirculated combustion exhaust gas. Usually, a plurality of auxiliary nozzles are arranged around the center point of the main nozzle in the form of isolated islands along the rotational direction. Alternatively, it is preferable to provide it in a divided manner.

上記主噴出口および副噴出口の形状は一般に円形である
が、正方形、長方形または環状等としてもよい。
The shapes of the main ejection port and the sub-ejection port are generally circular, but may also be square, rectangular, or annular.

なお、二次空気噴出口に到る二次空気通路を形成する外
筒体の外周に耐火材体を設ける場合には、その輻射熱効
果により主燃焼炎の根元が高温に保持され、燃焼が一層
良好に達成されるので未燃損失防止上好ましい。上記耐
火材体は、スロート内径の1/12以上の厚みとするこ
とが望ましい。
In addition, if a fireproof material is provided around the outer periphery of the outer cylinder that forms the secondary air passage leading to the secondary air outlet, the root of the main combustion flame will be maintained at a high temperature due to its radiant heat effect, making combustion even more effective. Since this can be achieved satisfactorily, it is preferable in terms of preventing unburned losses. The thickness of the refractory material body is preferably 1/12 or more of the inner diameter of the throat.

以下、図面に示す実施例によシ本発明をさらに詳しく説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

第1図および第2図に示すバーナは、中心部から外周へ
向けて順次設けられた、外周近傍の対象位置に2個の離
島状円形副噴出ロアを有する円形の主噴出口3と、二次
空気噴出口10と、三次空気噴出口13とから主に構成
される。
The burner shown in FIGS. 1 and 2 includes a circular main ejection port 3 having two isolated island-shaped circular sub-ejection lowers at target positions near the outer periphery, which are sequentially provided from the center toward the outer periphery. It is mainly composed of a secondary air outlet 10 and a tertiary air outlet 13.

上記構成のバーナにおいて、空気搬送の微粉炭1は主燃
料管(通路)z内を送られたのち主項°出口3から火炉
17内へ噴射され、別途二次空気噴出口10および三次
空気噴出口13から噴射されるそれぞれ二次空気および
三次空気との接触下に燃焼される。なお、上記二次およ
び三次用空気は、FDP (押込送風機)によシ供給さ
れたのち分岐管や風量調整用ダンノ<(以上いずれも図
示省略)′を経て風箱壁15とコーン状スロート(伝熱
壁)16とで囲われる風箱14に導入され、二次空気に
ついては二次レジスタ8により風量調節と旋回力を与え
られたのち二次旋回室9でさらに発達した旋回流とされ
、一方三次空気については三次レジスタ11によシ風量
調節と旋回力を与えられたのち三次旋回室12でさらに
発達した旋回流とされ、次いでそれぞれ二次空気噴出口
10および三次空気噴出口13から火炉17内へ噴射さ
れる。
In the burner configured as described above, the air-carried pulverized coal 1 is sent through the main fuel pipe (passage) z and then injected into the furnace 17 from the main fuel outlet 3, and is separately injected into the furnace 17 through the secondary air injection port 10 and the tertiary air injection port 10. It is combusted in contact with secondary air and tertiary air, respectively, which are injected from the outlet 13. The above-mentioned secondary and tertiary air is supplied to an FDP (forced blower), and then passes through a branch pipe and an air volume adjustment device (all of which are not shown) to the wind box wall 15 and the cone-shaped throat ( The secondary air is introduced into a wind box 14 surrounded by a heat transfer wall (heat transfer wall) 16, and the secondary air is adjusted in air volume and given a swirling force by a secondary register 8, and then further developed into a swirling flow in a secondary swirling chamber 9. On the other hand, the tertiary air is subjected to air volume adjustment and swirling force by the tertiary register 11, and then becomes a further developed swirling flow in the tertiary swirling chamber 12, and then flows from the secondary air outlet 10 and the tertiary air outlet 13 to the furnace. It is injected into 17.

このような二次空気および三次空気の旋回流にともなう
攪拌作用によシ、主噴出口3から噴射された微粉炭は短
炎下に効率よく燃焼するので、No。
Because of the stirring action caused by the swirling flow of secondary air and tertiary air, the pulverized coal injected from the main jetting port 3 is efficiently combusted with a short flame, so it is no.

の生成は増大するが未燃損失は減少することとなる。The production of fuel will increase, but the unburned loss will decrease.

一方、一般に200〜380℃の昇温下にある再循環燃
焼排ガスにより副燃料供給管5内を搬送された副燃料例
のより微細な微粉炭4は1副燃料管6を通ったのち副噴
出ロアがら空気搬送微粉度より高速下に火炉17内へ噴
射される。該噴射後の副燃料は、周囲の主燃焼炎や火炉
の輻射熱により加熱されて揮発成分を発生するが、この
揮発成分は02+圧の低い再循環燃焼排ガスの雰囲気下
にあるため燃焼遅れを生じ、主燃焼炎の後流側において
流速低下にともない主燃焼炎の排ガスとの混合が可能と
なる段階になって始めて該排ガス中の残存02と反応し
、炭化水素系ラジカルの生成、消滅を繰り返しながら燃
焼することとなる。そして上記により生成した炭化水素
系2ジカルは、既述の(2)および(3)式に従って主
燃焼炎排ガス中のNOと反応し、NOアの低減化を良好
に達成することとなる。
On the other hand, finer pulverized coal 4, which is an example of an auxiliary fuel, is conveyed through the auxiliary fuel supply pipe 5 by the recirculated combustion exhaust gas, which is generally heated at 200 to 380°C, and then passes through the 1 auxiliary fuel pipe 6 before being ejected from the auxiliary jet. The lower air is injected into the furnace 17 at a higher speed than the fineness of the air. The auxiliary fuel after the injection is heated by the surrounding main combustion flame and the radiant heat of the furnace and generates volatile components, but since these volatile components are in the atmosphere of recirculated combustion exhaust gas with low 02+ pressure, combustion is delayed. , it reacts with the remaining 02 in the exhaust gas only when it becomes possible to mix with the exhaust gas of the main combustion flame as the flow velocity decreases on the downstream side of the main combustion flame, and hydrocarbon radicals are repeatedly generated and extinguished. However, it will burn. The hydrocarbon-based diradicals generated above react with NO in the main combustion flame exhaust gas according to equations (2) and (3) described above, thereby successfully achieving a reduction in NOa.

なお、上記副燃料は空気搬送微粉炭より微細な微粉炭が
使用されているため燃焼性はすぐれておシ、従って未燃
損契も軽微である。
Furthermore, since the auxiliary fuel used is pulverized coal that is finer than air-borne pulverized coal, its combustibility is excellent, and the amount of unburned fuel is also small.

本実施例によれば、バーナ毎に未燃損失の増大をともな
うことなく低NO,燃焼が可能となるので、装置の小屋
化が可能となる。
According to this embodiment, low NO combustion is possible without increasing unburned loss for each burner, so the apparatus can be made into a shed.

次に、第3図は、本発明の他の実施例に係るバーナを示
すもので、第2図に示す離島状副噴出口に代え、主噴出
口の中心点を回る回転方向に沿りて2個の分割状副噴出
7Aを設け、これによシ主噴出口についても2分割状の
3Aとなる以外は同様な構成としたものである。
Next, FIG. 3 shows a burner according to another embodiment of the present invention, in which instead of the island-like sub-nozzle shown in FIG. The structure is the same except that two sub-spout 7A are provided, and the main spout 3A is also divided into two.

本実施例によれば、分割主噴出口3人に基づく分割型の
主燃焼炎が形成されるのでNOと炭化水素系ラジカルと
の接触が一層良好となシ、第1図1  および第2図に
示す実施例の効果に加え低NO工化がさらに向上する。
According to this embodiment, since a divided main combustion flame is formed based on the three divided main ejection ports, contact between NO and hydrocarbon radicals is even better. In addition to the effects of the embodiment shown in , low NO processing is further improved.

第4図〜第6図は、本発明の他の実施例に係るバーナを
示すもので、第3図に示す円形状を形成する主噴出口3
Aおよび副噴出ロアAに代えて、環状を形成する主噴出
口3Bおよび副噴出ロアBを設け、かつ二次空気噴出口
10に到る二次空気通路を形成する外筒体の外周に耐人
材体19を設ける以外は第3図に示すものと同様な構成
としたものである。なお、同図中、18はバーナの中心
部に設けられた助燃用オイルガン、21は助燃用オイル
ガン18の外側に設けられた再循環燃焼排ガス20の通
路で、その火炉側先端部には蓋体24と副噴出ロアBK
連通する開口部23とが設けられている。また、空気搬
送微粉炭1を案内する主燃料通路2の内、副噴出ロアB
に対応する部分の前記開口部上流側には、第7図が参照
されるような複数の小孔25を有する遮へい板22が設
けられている。
4 to 6 show a burner according to another embodiment of the present invention, in which a main jet nozzle 3 forming a circular shape as shown in FIG.
In place of A and auxiliary ejection lower A, a main ejection port 3B and an auxiliary ejection lower B forming an annular shape are provided, and an outer cylindrical body that forms a secondary air passage leading to the secondary air ejection port 10 has a resistant structure. The structure is similar to that shown in FIG. 3 except that the human body 19 is provided. In addition, in the same figure, 18 is an auxiliary combustion oil gun provided in the center of the burner, 21 is a passage for recirculating combustion exhaust gas 20 provided outside the auxiliary combustion oil gun 18, and the tip on the furnace side is a passage. Lid body 24 and sub-spout lower BK
A communicating opening 23 is provided. Also, of the main fuel passage 2 that guides the air conveyed pulverized coal 1, a sub-ejection lower B
A shielding plate 22 having a plurality of small holes 25 as shown in FIG. 7 is provided on the upstream side of the opening in a portion corresponding to the opening.

上記構成のバーナにおいて、主燃料通路2内を送られる
空気搬送微粉炭1の大部分は主噴出口3Bから火炉内へ
噴射され、第3図に示す実施例の場合と同様にして分割
燃焼される。
In the burner configured as described above, most of the air-carried pulverized coal 1 sent through the main fuel passage 2 is injected into the furnace from the main jet port 3B, and is split and combusted in the same manner as in the embodiment shown in FIG. Ru.

一方、1部の微粉炭は、第7図に示す通シ、遮へい板2
2の小孔25を通って漏出流ICとなるが、このものは
開口部23を通る再循環排ガス20と混合されたのち副
燃料として副噴出ロアBから火炉内へ噴射され、既述実
施例と同様な作用および効果を示すこととなる。
On the other hand, one part of the pulverized coal is stored in the through hole and the shielding plate 2 shown in FIG.
The leakage flow IC passes through the small hole 25 of No. 2 and becomes a leakage flow IC, which is mixed with the recirculated exhaust gas 20 passing through the opening 23 and then injected into the furnace from the sub-injection lower B as an auxiliary fuel. It will show the same action and effect as.

本実施例によれば、既述実施例の効果に加え、二次空気
通路を形成する外筒体の外周に耐火材体19を設けたた
め、その輻射効果によp主燃焼炎の根元が高温に保持さ
れ、燃焼の安定化を達成することができる。
According to this embodiment, in addition to the effects of the previously described embodiments, since the refractory material body 19 is provided on the outer periphery of the outer cylindrical body forming the secondary air passage, the root of the main combustion flame reaches a high temperature due to its radiation effect. combustion stability can be achieved.

以上は本発明の典型的な実施例について説明したもので
あるが、本発明は勿論これらに限定されるものではなく
、本発明の思想内で他に種々の変形や応用例が存在する
ことはいうまでもない。例えば、本発明は公知の脱硝燃
焼法例である二段燃焼と組合せ実施してもよく、これに
よシ一層すぐれた低No、化を達成できる。
Although typical embodiments of the present invention have been described above, the present invention is of course not limited to these, and there may be various other modifications and applications within the spirit of the present invention. Needless to say. For example, the present invention may be implemented in combination with two-stage combustion, which is an example of a known denitrification combustion method, and thereby an even more excellent reduction in NO can be achieved.

以上、本発明によれば、空気搬送微粉炭の燃焼域を貫通
して低燃料比の副燃料を再循環燃焼排ガスの雰囲気下に
噴射することによシ、空気搬送微粉炭の高率燃焼を可能
とするとともに、該燃焼域の後流側に還元雰囲気を形成
して上記燃焼で生成しfcNOの還元を良好ならしめ、
これによジノく−す毎忙未燃損失をともなうことなく低
NO,燃焼を行うことができる上、゛燃焼装置全体を小
型化することもできる。
As described above, according to the present invention, high-rate combustion of air-borne pulverized coal can be achieved by penetrating the combustion zone of air-borne pulverized coal and injecting auxiliary fuel with a low fuel ratio into the atmosphere of recirculated combustion exhaust gas. At the same time, a reducing atmosphere is formed on the downstream side of the combustion zone to improve the reduction of fcNO generated by the combustion,
As a result, low NO combustion can be performed without any unburned loss during combustion, and the entire combustion apparatus can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係る微粉炭バーナの側断面
図、第2図は、第1図のA方向部分親図、第3図は、本
発明の他の実施例に係る微粉炭バーナの第1図のA方向
に相当する部分親図、第4図は、本発明の他の実施例に
係る微粉炭バーナの第1図の入方向に相当する上半分部
分視図、第5図は、第4図のB−B線に沿った矢視方向
部分断面図、第6図は、第4図のC−C線に沿った矢視
方向断面図、第7図は、第4図に示すバーナの副噴出口
部に設けられる遮へい板の斜視説明図である。 1・・・空気搬送微粉炭、2・・・主燃料管(通路)、
3.3A、3B・・・主噴出口、4−・・副燃料、7.
7A、7B・・・副噴出口、10・・・二次空気噴出口
、13・・・三次空気噴出口、16・・・スロート、1
7・・・火炉、19・・・耐火材体、20・・・再循環
燃焼排ガス、21・・・再循環燃焼排ガス通路、22・
・・遮へい板、23・・・開口部、24・・・蓋体、2
5・・・小孔、IC・・・漏出流。 代理人 弁理士  川 北 武 長 第1頁の続き 0発 明 者 中下成人 呉市宝町6番9号バブコック日 立株式会社呉工場内
FIG. 1 is a side sectional view of a pulverized coal burner according to an embodiment of the present invention, FIG. 2 is a partial main view in the A direction of FIG. 1, and FIG. 3 is a pulverized coal burner according to another embodiment of the present invention. 4 is a partial perspective view of the pulverized coal burner according to another embodiment of the present invention, which corresponds to the direction A in FIG. 1, and FIG. 5 is a partial cross-sectional view in the direction of arrows taken along line B-B in FIG. 4, FIG. 6 is a cross-sectional view in the direction of arrows along line C-C in FIG. 4, and FIG. FIG. 5 is a perspective explanatory view of a shielding plate provided at the sub-spout part of the burner shown in FIG. 4; 1... Air conveyed pulverized coal, 2... Main fuel pipe (passage),
3.3A, 3B...Main injection port, 4-...Auxiliary fuel, 7.
7A, 7B... Sub-air outlet, 10... Secondary air outlet, 13... Tertiary air outlet, 16... Throat, 1
7...Furnace, 19...Refractory material body, 20...Recirculation combustion exhaust gas, 21...Recirculation combustion exhaust gas passage, 22.
... Shielding plate, 23 ... Opening, 24 ... Lid, 2
5...Small hole, IC...leakage flow. Agent: Patent Attorney Takeshi Kawakita Continued from page 1 0 Inventor: Narato Nakashita 6-9 Takaracho, Kure City, Babcock Hitachi Co., Ltd. Kure Factory

Claims (3)

【特許請求の範囲】[Claims] (1)バーナの燃料噴出口から空気搬送の微粉炭を火炉
内へ噴射させて燃焼を行う方法において、上記燃料噴出
口の少くとも1部から上記微粉炭の燃焼域を貫通してそ
の後流側に達するように、上記微粉炭と同一以下の燃料
比を示す燃料を再循環燃焼排ガスを含む雰囲気下で噴射
することを特徴とする微粉炭脱硝燃焼方法。
(1) In a method in which air-borne pulverized coal is injected into a furnace from a fuel nozzle of a burner to perform combustion, the combustion area of the pulverized coal is penetrated from at least a part of the fuel nozzle to the downstream side. A pulverized coal denitrification combustion method characterized by injecting a fuel exhibiting a fuel ratio equal to or lower than that of the pulverized coal in an atmosphere containing recirculated combustion exhaust gas so as to reach the above pulverized coal.
(2)中心部から外周へ向けて順次、空気搬送微粉炭噴
出口、二次空気噴出口および三次空気噴出口等を備えた
微粉炭バーナにおいて、上記空気搬送微粉炭噴出口の少
くとも1部に上記微粉炭と同一以下の燃料比を示す燃料
を再循環燃焼排ガスを含む雰囲気下で噴射させるための
副噴出口を1個以上設けたことを特徴とする微粉炭脱硝
バーナ。
(2) In a pulverized coal burner equipped with an air conveying pulverized coal outlet, a secondary air outlet, a tertiary air outlet, etc. sequentially from the center toward the outer periphery, at least one part of the air conveying pulverized coal outlet A pulverized coal denitration burner characterized in that one or more sub-injection ports are provided for injecting fuel having a fuel ratio equal to or lower than that of the pulverized coal in an atmosphere containing recirculated combustion exhaust gas.
(3)特許請求の範囲第2項において、二次空気噴出口
に到る二次空気通路を形成する外筒体の外周に耐火材体
を設けた゛ことを特徴とする微粉炭脱硝バーナ。
(3) The pulverized coal denitrification burner according to claim 2, characterized in that a refractory material body is provided on the outer periphery of the outer cylindrical body that forms the secondary air passage leading to the secondary air outlet.
JP58064518A 1983-04-14 1983-04-14 Denitrating combustion of pulverized coal and burner thereof Pending JPS59191806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064518A JPS59191806A (en) 1983-04-14 1983-04-14 Denitrating combustion of pulverized coal and burner thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064518A JPS59191806A (en) 1983-04-14 1983-04-14 Denitrating combustion of pulverized coal and burner thereof

Publications (1)

Publication Number Publication Date
JPS59191806A true JPS59191806A (en) 1984-10-31

Family

ID=13260509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064518A Pending JPS59191806A (en) 1983-04-14 1983-04-14 Denitrating combustion of pulverized coal and burner thereof

Country Status (1)

Country Link
JP (1) JPS59191806A (en)

Similar Documents

Publication Publication Date Title
EP0421424B1 (en) Boiler furnace combustion system
KR100394428B1 (en) FUEL DILUTION METHODS AND APPARATUS FOR NOx REDUCTION
US5013236A (en) Ultra-low pollutant emission combustion process and apparatus
EP0933592B1 (en) Method for combusting pulverized coal
JPS62276310A (en) Burner for low nox combustion
US5407347A (en) Apparatus and method for reducing NOx, CO and hydrocarbon emissions when burning gaseous fuels
US5681159A (en) Process and apparatus for low NOx staged-air combustion
US4162890A (en) Combustion apparatus
JPH0627561B2 (en) Pulverized coal combustion equipment
WO1995002789A1 (en) APPARATUS AND METHOD FOR REDUCING NOx, CO AND HYDROCARBON EMISSIONS WHEN BURNING GASEOUS FUELS
JPS59191806A (en) Denitrating combustion of pulverized coal and burner thereof
JPH07310903A (en) Combustion for pulverized coal and pulverized coal burner
JP3068435B2 (en) Boiler furnace combustion equipment
KR102645081B1 (en) Burner and boiler equipment including the same
JPS60129504A (en) Burner
JP2619973B2 (en) Ultra low pollutant emission combustion method and equipment
JPH0229369Y2 (en)
JPS60218505A (en) Burner
JPH0220567Y2 (en)
JPS6096813A (en) Low nox type high efficiency burning device
RU1802265C (en) Pulverized-coal burner
JPS62288406A (en) Fine coal burner
JPS58102006A (en) Low nox pulverized coal burner
KR100189706B1 (en) Two stage combustion nozzle in oil burner
JPS58182003A (en) Combustion method for pulverized coal and burner for pulverized coal combustion