JPS59191711A - Production of cationic urea-formaldehyde polymer particle - Google Patents

Production of cationic urea-formaldehyde polymer particle

Info

Publication number
JPS59191711A
JPS59191711A JP6572983A JP6572983A JPS59191711A JP S59191711 A JPS59191711 A JP S59191711A JP 6572983 A JP6572983 A JP 6572983A JP 6572983 A JP6572983 A JP 6572983A JP S59191711 A JPS59191711 A JP S59191711A
Authority
JP
Japan
Prior art keywords
parts
formaldehyde
urea
polymer particles
basic nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6572983A
Other languages
Japanese (ja)
Other versions
JPH0541647B2 (en
Inventor
Akio Kurokawa
黒川 明男
Kenzo Kiyota
謙三 清田
Ryoji Sasaki
良治 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6572983A priority Critical patent/JPS59191711A/en
Publication of JPS59191711A publication Critical patent/JPS59191711A/en
Publication of JPH0541647B2 publication Critical patent/JPH0541647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/49Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
    • D21H17/51Triazines, e.g. melamine
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/47Condensation polymers of aldehydes or ketones
    • D21H17/49Condensation polymers of aldehydes or ketones with compounds containing hydrogen bound to nitrogen
    • D21H17/50Acyclic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paper (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

PURPOSE:To produce the titled particles useful as a filler exhibiting a high retention even in neutral paper making, by coagulating by reaction a precondensate comprising a basic nitrogen atom-containing compound, urea and formaldehyde with the aid of an acid catalyst. CONSTITUTION:The titled particles are produced by coagulating by reaction a precondensate comprising (A) a basic nitrogen atom-containing compound (e.g., diethylenetriamine), (B) urea and (C) formaldehyde, wherein the ratio of the number of equivalents of the basic nitrogen atoms of compound (A) to that number of moles of compound (B) is 0.05:1-0.6:1, and the ratio of the total number of moles of A and B to the number of moles of C is 1:1.1-1:2.0, with the aid of an acid catalyst (e.g., sulfuric acid). The particulate polymer can be used as a reinforcing filler or a white pigment for rubbers and thermoplastic resins such as PE, is especially useful as a filler for improving the opacity and whiteness of paper, and can exhibit a high retention even in neutral paper making.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は陽イオン性を有する尿素−ホルムアルデヒドポ
リマー粒子の製法に関するもので、陽イオン性顔料、紙
加工用填料の用途、特に紙の中性抄紙用填料として適切
な陽イオン性尿素−ホルムアルデヒドポリマー粒子の製
造方法に関する。 さらに詳しくは塩基性窒素原子を有する化合物、尿素及
びホルムアルデヒドの初期縮合物を酸触媒により反応凝
固せしめた後、分散状態にて遊離ホルムアルデヒド減少
および濾過濃縮の操作を経て得られることを特徴とする
陽イオン性尿素−ホルムアルデヒドポリマー粒子の製法
に関する。 従来紙の抄造において、紙の副原料として、サイズ剤、
紙力増強剤、填料等が用いられ、これらの副原料の紙層
への定着のため硫酸アルミニウムが定着剤として用いら
れてきた。この機構は次のように考えられている。即ち
、硫酸アルミニウムが抄紙水系で水酸化アルミニウムか
らなる陽イオン性のポリマーを形成し、これが陰イオン
性又は陰性電位を有する上記のような紙の副原料に吸着
されて、副原料のイオン性或いは電位が陽性に変換され
る。従って陽性に変換された副原料は陰性の電位を有す
るパルプ繊維に吸着され易くなる。 しかし乍らこの定着機構を有する硫酸アルミニウムの使
用は、抄紙の水系を酸性にするため、酸性の系で抄造さ
れた紙は長期保存のための耐久性に欠け、従って硫酸ア
ルミニウムを使用しない中性から弱アルカリ性での紙の
製造方法の開発が望まれている。 一方、尿素−ホルムアルデヒドポリマー粒子が紙の填料
として有用であることは特誇公佼昭51−23601に
て既に知られている。しかし乍ら定着剤である硫酸アル
ミニウムが抄紙時に使用されない場合には、クレー、二
酸化チタン等の無機B 顔料/および時分N49−2350及び特公昭57−2
66B6等により開示されている尿素−ホルムアルデヒ
ドポリマー粒子は、紙層中への歩留が不十分であり、そ
の結果、紙の不透明度、白色度等の向上が不十分であっ
た。 本発明者等は硫酸アルミニウムの如き定着剤の存在しな
い系、即ち中性抄紙においても高い歩留率を有する尿素
−ホルムアルデヒドポリマー粒子を得るべく鋭意研究を
続けた結果、塩基性窒素原子を有する化合物、尿素及び
ホルムアルデヒドの初期縮合物を酸触媒により反応凝固
せしめて得られる陽イオン性尿素−ホルムアルデヒドポ
リマー粒子が中性抄紙において高い歩留りを示すことを
見い出し、本発明を完成するに到った。 即ち本発明は、塩基性窒素原子を有する化合物(A)、
尿素〔B〕及びホルムアルデヒド〔c〕からなり、〔A
〕の塩基性窒素原子当量数(以下〔a〕と記す):〔B
〕のモル数(以下(b’]と記す)の比がし 0.05:1〜0.6:1であり、〔a〕+〔\〕:〔
c〕のモル数の比が1:11〜1:2oの初期縮合物を
酸触媒により反応凝固せしめることを特徴とする陽イオ
ン性尿素−ホルムアルデヒドポリマー粒子の製造法であ
るへ 而して、上記の方法においては、従来法と同様に遊離ホ
ルムアルデヒド減少の操作を尿素またはアンモニアを単
独使用もしくは併用することによって行うこと、および
f過濃縮の操作によって得られるr液を初期縮合物の酸
触媒による反応凝固操作前の工程に再使用する方法が適
用できる。 以下本発明について詳述する一 本発明において用いる塩基性窒素原子を含有する化合物
としては、例えばエチレンジアミン、ジエチレントリア
ミン、トリエチレンテトラミン、テトラエチレンペンタ
ミン、プロピレンジアミン、3−アザヘキサン−1,6
ジアミン、N、 N’−ビス(3−アミノプロピル)エ
チレンジアミンの如きポリアルキレンポリアミン−ジメ
チルアミノエタノール、ジェタノールアミン、トリエタ
ノールアミンの如きヒドロキシルアミン類等をあげるこ
とができるが、これらは1種のみならず2種以上併用す
ることができ、更にこれらの塩基性窒素原子を有する化
合物の誘導体も同様に使用できることは言うまでもない
。特にポリアルキレンポリアミン類が好ましい塩基性窒
素原子を有する化合物である。 本発明において用いられる初期縮合物は、塩基性窒素原
子を有する化合物(A)、尿素〔B〕及びホルムアルデ
ヒド〔C〕からなるが、〔A〕の塩基性窒素原子当量数
〔a〕:〔B〕のモル数〔b〕が005:1〜06:1
の範囲に限定される理由は、0.05=1相当より(A
)の量が少いと得られる陽イオン性尿素−ホルムアルデ
ヒドポリマー粒子の陽イオン性が少く、中性抄紙の系に
用いた場合に紙層中への良好な歩留率が認められないか
らであり、又〔a〕:〔b〕が06:1相当よりCA〕
の旬・が多い場合には得られるポリマーは親水性が強く
不透明な水溶性の粒子を形成しないからである。従って
好ましイ〔a〕:〔b〕の比は0.07:1〜0.5:
1の範囲である。 更に本発明において、使用する〔a〕十〔b〕:〔C〕
のモル数の比が1:11〜1:20の範囲に限定される
理由は、1:11より〔C〕のモル数、即ちホルムアル
デヒドのモル数が少い場合には最終的に得られる陽イオ
ン性尿素−ホルムアルデヒドポリマー粒子の紙加工用填
料としての性能、即ち加工紙の透明度及び白色度の向上
作用が不十分であるからである。又、[:a’:l +
(b] : (0)のモル数の比が1:20より〔C〕
のモル数、即ちホルムアルデヒドのモル数が多い場合に
は、水不溶成分である陽イオン性尿素−ホルムアルデヒ
ドポリマー粒子の収率が低下するので、工業的生産にと
っては好ましくはないからである。従って(a) + 
(b):〔C〕のモル数の好しい比は1:12〜1:1
.9の範囲である。 塩基性窒素原子を有する化合物CA’l、尿素〔PH3
−10,反応温度20−95°Cの条件でよ℃・。 斯くして得られる初期縮合物は通常濃度が2゜〜60重
量係の水溶液であり、プルツクフィルド粘度計による2
5°Cの液粘性は通常200センチポイズ以下、好まし
くは2〜200センチポイズの範囲である。又初期縮合
物の長期保存のためには、塩酸、硝酸、硫酸、ギ酸、酢
酸等の酸、或いは苛性ソーダ、苛性カリ、アンモニア、
エタノールアミン、インプロパツールアミン等のアルカ
リによりPHを6〜8の範囲に調整することもできる。 初期縮合物を得た後の工程として、初期縮合物を攪拌下
に反応凝固せしめる目的で酸触媒が添加される。この目
的に適した酸触媒としては、硫酸、燐酸、塩酸、硝酸の
ような鉱酸、蟻酸、蓚酸、マレイン酸、コハク酸及びク
ロル酸の如き有機酸、スルファミン酸、硫酸水素アンモ
ニウム、硫酸水素メチルアンモニウム、硫酸水素エチル
アンモニウム、硫酸水素ヒドロキシエチルアンモニウム
等の酸をあげることができる。添加するこれらの酸の量
は、一般に塩基性窒素原子を有する化合物、尿素及びホ
ルムアルデヒドからなる初期縮合物の固形重量に対して
、1〜30重量係、特に5〜20重量係の範囲が使用さ
れる。 酸触媒を添加する場合は水浴液で用いられ、通常1〜5
重f3−優の濃度範囲で使用される。又この時の初期縮
合物の固形分濃度範囲は10〜40重量係で、初期縮合
物水溶液の温度は5〜95°Cの範囲に側索される。 初期縮合物を酸触媒で反応凝固する場合、予め初期縮合
物に保護コロイド作用を有する水溶性有機高分子物質を
添加しておくとより好しい結果が得られる。この場合の
好しい保護コロイド作用を有する水浴性有機物質(以下
、保護コロイド剤と称す)としては、澱粉、メチルセル
ロース、エチルセルロース、ベータヒドロキシエチルセ
ルロースのような天然物或いは変性した天然物ポリビニ
ルアルコール、ポリビニルピロリドン等の合成ポリマー
を例示することができる。保護コロイド剤の使用量は、
一般に塩基性窒素原子を有する化合物、尿素及びホルム
アルデヒドの反応生成物の重量に対して、01〜8重量
係とくに02〜5重量係の範囲がよく使用される。保護
コロイド剤の添加は初期縮合物が生成する前後または途
中のいずれの段階においても可能である。 初期縮合物水浴液を攪拌下に反応凝固せしめる目的で酸
触痢を添加すると、通常、数分以内に反応が開始して凝
固する。工業的には初期縮合物水溶液と酸触媒の混合を
インラインミキサー等で行い、混合物の凝固が進行する
直前に押し出し機又は回転する無端ベルト上に供給して
反応凝固を進行させる。この場合の反応凝固せしめるの
に要する時間は60分以内であり、通常数分以内である
。 斯くして得られた凝固体は、常法に従って攪拌下で分散
スラリー化後、残存ホルムアルデヒド減少のための水洗
を行い中和及び粉砕機で平均粒径1〜60μ、好ましく
は2〜10μに凝固体を粉砕して顔料及び紙加工用填料
として用いることができる。 しかし乍ら、残存ホルムアルデヒド減少のための水洗は
、凝固体の水への分散化と沢過或いは遠心分離を繰り返
すことによって行われるが、この操作によって残存ホル
ムアルデヒド、即ち未反応ホルムアルデヒド、水溶性の
尿素−ホルムアルデヒド反応物および水溶性の尿素−ホ
ルムアルデヒド−塩基性窒素原子を有する化合物の反応
物が除去される。従って水洗による残存ホルムアルデヒ
ドの除去は、目的とする陽イオン性尿素、ホルムアルデ
ヒドポリマー粒子の収率向上の点から好しくなく、更に
沢液の排水は処理が必要でありそのために多大の費用を
要する。 そのため本発明にお(・では、残存ホルムアルデヒドの
減少方法として、尿素、アンモニア又はアンモニウム塩
を添加して残存ホルムアルデヒドと反応させた後、通常
90〜95重量係の水分を含有する分散液を輸送及び保
管上の利点のためr過1゜て濃縮し、この沢過濃縮工程
で発生したf液中には、なは比較的少量の水浴性の塩基
性窒素原子を有する化合物、尿素、ホルムアルデヒド等
の反応物或いはこれらとアンモニア又はアンモニウム塩
との反応物が含まれているので、陽イオン性尿素−ホル
ムアルデヒドポリマー粒子の凝固物が生成される以前の
反応系に戻す方法が好ましい方法として採用される。 前記した残存ホルムアルデヒドの減少方法として尿素を
添加して行う場合において、尿素は固形のまメ或いは水
浴液として加えることができ、このときの分散液のPH
は通常40以下である。添加する尿素の量は、分散液の
水相中に存在する残存ホルムアルデヒドの等モル以上で
あり、反応温度は10〜70°0で反応時間は5〜30
分の範囲で充分である。 又前記した残存ホルムアルデヒドの減少をアンモニア又
はアンモニウム塩で行う場合は、残存ホルムアルデヒド
量1モルに対して05〜40モルの1 範囲のアンモニア又はアンモニウム塩を添加して10〜
90°Cで反応時間は5〜100分間の範囲で充分であ
る。 上記の如く尿素、アンモニアまたはアンモニウム塩で残
存ホルムアルデヒドを減少させた後、苛性ソーダ水溶液
又は硫酸水溶液により液のPHを5〜10、好ましくは
6〜9の範囲に調整しつつ更に10〜9000で5〜1
DO分間攪拌して陽イオン 性尿素−ホルムアルデヒド
ポリマー粒子の分散液が得られる。 次に上記分散液はケーキ状となすためにP別脱水され、
このr液は陽イオン性尿素−ホルムアルデヒドポリマー
粒子の凝固物が生成される以前の反応系に戻される。 而してP液を陽イオン性尿素−ホルムアルデヒドポリマ
ー粒子の凝固物が生成される以前の反応系に戻す場合に
は、そのf液を戻した系の塩基性窒素原子を有する化合
物(Al、尿素CB〕及びホルムアルデヒド〔C〕の成
分比が前記した(al : (b〕および〔a〕+〔b
〕:〔C〕を満足するように、混2 含油の〔A〕、〔B〕及び〔C〕からなる初期縮合物の
組成割合を調整しておく事が必要である。通常、r液が
戻される工程としては、初期縮合物の希釈工程及び陽イ
オン性尿素−ホルムアルデヒドポリマー粒子を凝固する
ために加えられる酸触媒の希釈工程の一方か或いは両工
程が採用される。 斯くして得られる陽イオン性尿素−ホルムアルデヒドポ
リマー粒子は、天然ゴム、合成ゴム、ポリエチレン及び
その他の熱可塑性樹脂の補強充填剤、白色の顔料として
用いることができ、特に紙の不透明性及び白色度向上の
ための填料として有用である。 以下、実施例をあげて本発明を更に詳細に説明する。 実施例1 メチルセルロース06重量部(以下部及び係は重量基準
とする)を水(以下水Aと称す)660部にとかし、こ
れに57%ホルムアルデヒド水溶液420部、尿素15
2部、ジエチレントリアミン214部及び20q6硫酸
水溶液411部を加えて、PH7,0において70°C
で2時間の反応を行い、〔a〕:〔b〕の比が0.25
 : 1で、〔a〕十〔b’:l : (C’l]のモ
ル数の比が1=165である初期縮合物100部を得た
。この初期縮合物の濃度は664チで、プルツクフィル
ド粘度計による2500の粘度は5(センチポイズであ
った。次いでこの初期縮合物に98係硫酸水浴液4部と
水(以下水Bと称す)140部を用いて調製した27係
硫酸水溶液144部を加えて混合後、約40°0にて3
0分間放置して得られたゲル状物244部をステンレス
捧にて粗く砕いた。これに40部の水を加えて、プロペ
ラ型攪拌翼にて約2時間攪拌することによってスラリー
化した。これに20係尿素水浴液25部を加えて、20
分間反応させた後、20係苛性ソーダ水浴液i6.o部
を用いて中和した。更にこれをコロイドミルにて微粉砕
して陽イオン性尿素−ホルムアルデヒドポリマー粒子を
含有する分散液325部を得た。この分散液を東洋2紙
5人とブツフナーロートを用いてP別することにより1
76部のf液と149部のケーキ状物(以下実施例1ケ
ーキ状物と称す)を得た。 尚、分析の結果、分散液中には290 ppmの遊離ホ
ルムアルデヒドが含有されていた。なは、f液中にはホ
ルムアルデヒド007係、尿素が067%を含有してい
たが、ホルムアルデヒドのほとんどは尿素との反応物と
して存在していた。 ケーキ状物中には173%の陽イオン性尿素−ホルムア
ルデヒドポリマー粒子が含有されており、これを乾燥し
電子顕微鏡で観察したところ6−次粒子の直径は1ミク
ロン以下であった。 実施例2 次に分散液を戸別することによって得られるP液を、初
期縮合物を酸触媒により反応凝固させる前で再使用する
例を示す。 先ず、実施例1で得られた176部のf液を36部と1
40部に分割して実施例1における水A及び水Bの代り
に用いる以外実施例1と同−操作及び方法によってf液
176部とケーキ状物149部を得た。 尚、この場合の凝固させる前の(a) : (b)の比
は5 0、23 : 1で、〔a〕十〔b〕:〔c〕のモル数
の比は1 : 1.56であった。得られたケーキ状物
149部中には陽イオン性尿素−ホルムアルデヒドポリ
マー粒子が182係含有されていた。これを乾燥して電
子顕微鏡観察の結果−次粒子の直径は1ミクロン以下で
あった。 実施例ろ メチルセルロース0614部を水440部にとかし、こ
れに67係ホルムアルデヒド水溶液337部、尿素19
3部、トリエチレンテトラミン0886部及び20係硫
酸水溶液150部を加えてPH7,2において7000
で2時間の反応を行い、〔a〕:〔b〕の比が0.07
5:1で、(a) +CM+ :
The present invention relates to a method for producing urea-formaldehyde polymer particles having cationic properties, and the cationic urea-formaldehyde polymer particles are suitable for use as cationic pigments and paper processing fillers, particularly as neutral papermaking fillers. Relating to a manufacturing method. More specifically, it is characterized in that it is obtained by reacting and coagulating an initial condensate of a compound having a basic nitrogen atom, urea and formaldehyde using an acid catalyst, and then reducing the free formaldehyde in a dispersed state and filtrating and concentrating it. The present invention relates to a method for producing ionic urea-formaldehyde polymer particles. In conventional paper making, sizing agents,
Paper strength agents, fillers, etc. have been used, and aluminum sulfate has been used as a fixing agent to fix these auxiliary materials to the paper layer. This mechanism is thought to be as follows. That is, aluminum sulfate forms a cationic polymer consisting of aluminum hydroxide in the papermaking water system, and this is adsorbed to the above-mentioned paper auxiliary materials having anionic or negative potential, resulting in the ionic or negative potential of the auxiliary materials. The potential is converted to positive. Therefore, the auxiliary raw material that has been converted to a positive potential is easily adsorbed to the pulp fibers having a negative potential. However, the use of aluminum sulfate, which has this fixing mechanism, makes the aqueous system of paper making acidic, so paper made in an acidic system lacks the durability for long-term storage. Therefore, it is desired to develop a method for producing paper in a slightly alkaline environment. On the other hand, it is already known in Tokko Kogyo Sho 51-23601 that urea-formaldehyde polymer particles are useful as paper fillers. However, if aluminum sulfate, which is a fixing agent, is not used during paper making, inorganic B pigments such as clay, titanium dioxide, etc.
The urea-formaldehyde polymer particles disclosed in No. 66B6 and the like were insufficiently retained in the paper layer, and as a result, the opacity, whiteness, etc. of the paper were insufficiently improved. The inventors of the present invention have conducted extensive research in order to obtain urea-formaldehyde polymer particles that have a high yield rate even in a system without a fixing agent such as aluminum sulfate, that is, in neutral papermaking. It was discovered that cationic urea-formaldehyde polymer particles obtained by reacting and coagulating an initial condensate of urea and formaldehyde with an acid catalyst exhibit a high yield in neutral papermaking, and the present invention was completed. That is, the present invention provides a compound (A) having a basic nitrogen atom,
Consisting of urea [B] and formaldehyde [c], [A
] Basic nitrogen atom equivalent number (hereinafter referred to as [a]): [B
] The ratio of the number of moles (hereinafter referred to as (b')) is 0.05:1 to 0.6:1, and [a] + [\]: [
A method for producing cationic urea-formaldehyde polymer particles characterized by coagulating an initial condensate having a molar ratio of 1:11 to 1:2o with an acid catalyst; In this method, as in the conventional method, the operation for reducing free formaldehyde is carried out by using urea or ammonia alone or in combination; A method of reusing it in the process before the coagulation operation can be applied. The present invention will be described in detail below. Compounds containing basic nitrogen atoms used in the present invention include, for example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, propylene diamine, 3-azahexane-1,6
Examples include polyalkylenepolyamines such as diamine, N,N'-bis(3-aminopropyl)ethylenediamine, and hydroxylamines such as dimethylaminoethanol, jetanolamine, and triethanolamine, but only one type of these can be used. Needless to say, two or more of these compounds can be used in combination, and derivatives of these compounds having a basic nitrogen atom can also be used. In particular, polyalkylene polyamines are preferred compounds having a basic nitrogen atom. The initial condensate used in the present invention consists of a compound (A) having a basic nitrogen atom, urea [B] and formaldehyde [C], and the basic nitrogen atom equivalent number [a] of [A]: [B ] The number of moles [b] is 005:1 to 06:1
The reason why it is limited to the range is that (A
), the cationic nature of the cationic urea-formaldehyde polymer particles obtained will be low, and a good retention rate in the paper layer will not be observed when used in a neutral papermaking system. , and [a]:[b] is equivalent to 06:1, so CA]
This is because when the amount of water is high, the resulting polymer has strong hydrophilicity and does not form opaque water-soluble particles. Therefore, the preferable ratio of [a]:[b] is 0.07:1 to 0.5:
The range is 1. Furthermore, in the present invention, [a] used [b]: [C]
The reason why the ratio of the number of moles of [C] is limited to the range of 1:11 to 1:20 is that when the number of moles of [C], that is, the number of moles of formaldehyde, is smaller than 1:11, the final resultant positive This is because the performance of the ionic urea-formaldehyde polymer particles as a filler for paper processing, that is, the effect of improving the transparency and whiteness of processed paper is insufficient. Also, [:a':l +
(b]: The ratio of the number of moles of (0) is 1:20 [C]
This is because if the number of moles of formaldehyde is large, the yield of cationic urea-formaldehyde polymer particles, which is a water-insoluble component, decreases, which is not preferable for industrial production. Therefore (a) +
The preferable ratio of the number of moles of (b):[C] is 1:12 to 1:1
.. The range is 9. Compound CA'l with basic nitrogen atom, urea [PH3
-10°C at a reaction temperature of 20-95°C. The initial condensate thus obtained is usually an aqueous solution with a concentration of 2 to 60% by weight, and is measured by
The liquid viscosity at 5°C is usually less than 200 centipoise, preferably in the range of 2 to 200 centipoise. In addition, for long-term preservation of the initial condensate, acids such as hydrochloric acid, nitric acid, sulfuric acid, formic acid, acetic acid, etc., or caustic soda, caustic potash, ammonia,
The pH can also be adjusted to a range of 6 to 8 using an alkali such as ethanolamine or impropatulamine. As a step after obtaining the initial condensate, an acid catalyst is added for the purpose of reacting and coagulating the initial condensate while stirring. Acid catalysts suitable for this purpose include mineral acids such as sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, organic acids such as formic acid, oxalic acid, maleic acid, succinic acid and chloric acid, sulfamic acid, ammonium hydrogen sulfate, methyl hydrogen sulfate. Examples include acids such as ammonium, ethyl ammonium hydrogen sulfate, and hydroxyethylammonium hydrogen sulfate. The amount of these acids added is generally in the range of 1 to 30 weight percent, particularly 5 to 20 weight percent, based on the solid weight of the initial condensate consisting of a compound having a basic nitrogen atom, urea, and formaldehyde. Ru. When adding an acid catalyst, it is used in a water bath solution, usually 1 to 5
It is used in the concentration range of F3-Superior. Further, the solid content concentration range of the initial condensate at this time is 10 to 40% by weight, and the temperature of the initial condensate aqueous solution is set to a range of 5 to 95°C. When reacting and coagulating the initial condensate with an acid catalyst, more preferable results can be obtained by adding a water-soluble organic polymeric substance having a protective colloid effect to the initial condensate in advance. In this case, preferable water-based organic substances having a protective colloid effect (hereinafter referred to as protective colloid agents) include starch, natural products such as methylcellulose, ethylcellulose, and beta-hydroxyethylcellulose, or modified natural products such as polyvinyl alcohol and polyvinylpyrrolidone. Examples include synthetic polymers such as. The amount of protective colloid used is
Generally, a range of 01 to 8 weight units, particularly 02 to 5 weight units, is often used based on the weight of the reaction product of the compound having a basic nitrogen atom, urea, and formaldehyde. The protective colloid agent can be added at any stage before, during or after the formation of the initial condensate. When acidic acid is added to the initial condensate water bath solution under stirring for the purpose of reaction and coagulation, the reaction usually starts and coagulation occurs within a few minutes. Industrially, the initial condensate aqueous solution and the acid catalyst are mixed using an in-line mixer or the like, and immediately before the mixture solidifies, it is fed onto an extruder or a rotating endless belt to advance the reaction solidification. In this case, the time required for reaction and coagulation is within 60 minutes, and usually within several minutes. The thus obtained coagulate is dispersed into a slurry with stirring according to a conventional method, washed with water to reduce residual formaldehyde, neutralized, and coagulated in a pulverizer to an average particle size of 1 to 60μ, preferably 2 to 10μ. The bodies can be ground and used as pigments and fillers for paper processing. However, washing with water to reduce residual formaldehyde is carried out by repeating dispersion of the coagulated material in water and rinsing or centrifugation. - Formaldehyde reactants and water-soluble urea - Formaldehyde - Reactants of compounds with basic nitrogen atoms are removed. Therefore, removing residual formaldehyde by washing with water is not preferred from the viewpoint of improving the yield of the desired cationic urea and formaldehyde polymer particles, and furthermore, the drainage of the sap must be treated, which requires a large amount of cost. Therefore, in the present invention, as a method for reducing residual formaldehyde, after adding urea, ammonia or ammonium salt and reacting with the residual formaldehyde, a dispersion liquid containing water of 90 to 95% by weight is transported and For storage convenience, the liquid is concentrated by 1°C, and the liquid generated in this process contains relatively small amounts of water-bathable basic nitrogen-containing compounds, urea, formaldehyde, etc. Since reactants or reactants of these with ammonia or ammonium salts are included, a preferred method is to return the reaction system to the state before the coagulation of cationic urea-formaldehyde polymer particles is produced. When adding urea as the method for reducing residual formaldehyde described above, urea can be added as a solid bean or a water bath solution, and the pH of the dispersion at this time
is usually 40 or less. The amount of urea added is at least equimolar to the residual formaldehyde present in the aqueous phase of the dispersion, the reaction temperature is 10 to 70°C, and the reaction time is 5 to 30°C.
A range of minutes is sufficient. When the above-mentioned reduction of residual formaldehyde is carried out using ammonia or ammonium salt, ammonia or ammonium salt in the range of 05 to 40 mol per mol of residual formaldehyde is added to reduce the amount of formaldehyde from 10 to 10.
A reaction time of 5 to 100 minutes at 90°C is sufficient. After reducing the residual formaldehyde with urea, ammonia or ammonium salt as described above, the pH of the liquid is adjusted to 5 to 10, preferably 6 to 9, with a caustic soda aqueous solution or a sulfuric acid aqueous solution, and then further adjusted to a pH of 10 to 9,000. 1
A dispersion of cationic urea-formaldehyde polymer particles is obtained by stirring for a DO minute. Next, the above-mentioned dispersion liquid is dehydrated by P in order to make it into a cake shape.
This r-liquid is returned to the reaction system before the coagulum of cationic urea-formaldehyde polymer particles is produced. When the P solution is returned to the reaction system before the coagulation of cationic urea-formaldehyde polymer particles is produced, the F solution is returned to the reaction system containing basic nitrogen atoms (Al, urea, etc.). CB] and formaldehyde [C] as described above (al: (b) and [a] + [b
]: In order to satisfy [C], it is necessary to adjust the composition ratio of the initial condensate consisting of [A], [B] and [C] of the mixed oil-containing mixture. Usually, as the step in which the r-liquid is returned, one or both of the steps of diluting the initial condensate and the step of diluting the acid catalyst added to coagulate the cationic urea-formaldehyde polymer particles is employed. The cationic urea-formaldehyde polymer particles thus obtained can be used as reinforcing fillers in natural rubber, synthetic rubber, polyethylene and other thermoplastics, as white pigments, and in particular to improve the opacity and whiteness of paper. Useful as a filler for improvement. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 06 parts by weight of methyl cellulose (the following parts and related parts are based on weight) was dissolved in 660 parts of water (hereinafter referred to as water A), and to this was added 420 parts of a 57% formaldehyde aqueous solution and 15 parts of urea.
2 parts, diethylenetriamine 214 parts and 411 parts of 20q6 sulfuric acid aqueous solution were added, and the mixture was heated at 70°C at pH 7.0.
The reaction was carried out for 2 hours, and the ratio of [a]:[b] was 0.25.
: 1, 100 parts of an initial condensate with a molar ratio of [a]10[b':l:(C'l] of 1=165 was obtained.The concentration of this initial condensate was 664 h, The viscosity of 2500 measured by a Pruckfield viscometer was 5 (centipoise). Next, a 27% sulfuric acid aqueous solution was prepared by using 4 parts of a 98% sulfuric acid bath solution and 140 parts of water (hereinafter referred to as water B) to this initial condensate. After adding 144 parts and mixing, 3 parts at about 40°0.
After standing for 0 minutes, 244 parts of the gel-like material obtained was coarsely crushed using a stainless steel plate. 40 parts of water was added to this, and the mixture was stirred using a propeller type stirring blade for about 2 hours to form a slurry. Add 25 parts of 20% urea water bath solution to this,
After reacting for 20 minutes, caustic soda water bath solution i6. It was neutralized using part o. This was further pulverized in a colloid mill to obtain 325 parts of a dispersion containing cationic urea-formaldehyde polymer particles. This dispersion was separated into P using Toyo 2 Paper 5 people and Bützfner funnel.
76 parts of liquid f and 149 parts of a cake-like product (hereinafter referred to as Example 1 cake-like product) were obtained. As a result of analysis, the dispersion liquid contained 290 ppm of free formaldehyde. The F solution contained 0.07% formaldehyde and 0.67% urea, but most of the formaldehyde existed as a reaction product with urea. The cake-like material contained 173% cationic urea-formaldehyde polymer particles, and when this was dried and observed under an electron microscope, the diameter of the 6-order particles was less than 1 micron. Example 2 Next, an example will be shown in which the P liquid obtained by distributing the dispersion liquid from door to door is reused before the initial condensate is reacted and coagulated using an acid catalyst. First, 176 parts of the f solution obtained in Example 1 was mixed with 36 parts and 1
176 parts of liquid F and 149 parts of a cake-like material were obtained by the same operation and method as in Example 1, except that the mixture was divided into 40 parts and used in place of water A and water B in Example 1. In this case, the ratio of (a):(b) before solidification is 50, 23:1, and the ratio of the number of moles of [a] ten [b]:[c] is 1:1.56. there were. 149 parts of the resulting cake-like material contained 182 parts of cationic urea-formaldehyde polymer particles. This was dried and observed under an electron microscope, and the diameter of the secondary particles was 1 micron or less. Example 0.614 parts of methyl cellulose was dissolved in 440 parts of water, and to this was added 337 parts of formaldehyde aqueous solution No. 67 and 19 parts of urea.
3 parts, 0886 parts of triethylenetetramine and 150 parts of a 20% sulfuric acid aqueous solution to make the solution 7000 at pH 7.2.
The reaction was carried out for 2 hours, and the ratio of [a]:[b] was 0.07.
At 5:1, (a) +CM+:

〔0〕のモル数の比が
1:12である初期縮合物100部を得た。との初期縮
合物の濃度は63ろでプルツクフィルド粘度計による2
5°Cの粘度は48センチポイズであった。次いでこの
初期縮合物に27係硫酸水溶液144部を加えて混合後
、約40’Oにて30分間放置して得られるゲル状物2
44部をステンレス棒にて粗く砕いた。これに6 40部の水を加えて、2時間の攪拌をすることによりス
ラリー化した。このスラリー化された分散液中には5.
500 ppmの遊離ホルムアルデヒドが含有されてい
た。この分散液200部に20%アンモニア水を198
部添加した後(この時のアンモニア対遊離ホルムアルデ
ヒドのモル比は2:1である)40°Cで1時間攪拌し
た。次いでコロイドミルにて微粉砕して陽イオン性尿素
−ホルムアルデヒドポリマー粒子を含有する分散液20
2部を得た。この分散液を沢別することにより124部
のr液と78部のケーキ状物(以下実施例6−ケーキ状
物と称す)を得た。尚分析の結果、分散液中には250
1)I)mの遊離ホルムアルデヒドが含有されていた。 又ケーキ状物中には20チの陽イオン性尿素−ホルムア
ルデヒドポリマー粒子が含有されており、これを乾燥し
電子顕微鏡で観察したところ一次粒子の直径は1ミクロ
ン以下であった。 実施例4 メチルセルロース065部を水297部にとかし、これ
に37%ホルムアルデヒド水溶液471部、尿素122
部、テトラエチレンペンタミン685部及び20係硫酸
水浴液68部を加えて、し 70°Cにて2時間の反応を行い、〔a〕:〔\〕の比
が05:1で、〔a〕+〔\〕:〔C〕のモル数の比が
1=19である初期縮合物100部を得た。 この初期縮合物の濃度は338係で、プルツクフィルド
粘度計による25°Cの粘度は36センチポイズであっ
た。次いでこの初期縮合物に2.7多硫酸水浴液144
部を加えて混合後、約40°Cにて30分間放置して得
られたゲル状物244部をステンレス棒にて粗く砕いた
。これに40部の水を加えて、2時間の攪拌をすること
によりスラリー化した。このスラリー化された分散液中
には8600ppmの遊離ホルムアルデヒドが含有され
ていた。 この分散液200部に20係の尿素水浴液17部を加え
て、20分間反応させた後、20襲アンモニア水487
部を添加(このときの尿素:アンモニア:遊離ホルムア
ルデヒドのモル比は1:1:1である)して40°0で
1時間の攪拌を行った。 次いでコロイドミルにて微粉砕して陽イオン性尿素ホル
ムアルデヒドポリマー粒子を含有する分散液222部を
得た。この分散液をf別することにより1455部のf
液と765部のケーキ状物(以下実施例4−ケーキ状物
と称す)を得た。 尚、分析の結果、分散液中には2701)l)m遊離ホ
ルムアルデヒドが含有されていた。又ケーキ状物中には
20%の陽イオン性尿素−ホルムアルデヒドポリマー粒
子が含有されており、これを乾燥し電子顕微鏡で観察し
たところ一次粒子の直径は1ミクロン以下であった。 比較例1 実施例1においてジエチレントリアミンを用いないで、
〔b〕:〔Caのモル数の比が1:165になるように
尿素量を増量して188部用い、かつへ 20%硫酸水溶液を411部を用いた代りに20係苛性
ソ一ダ05部及び水22部を用いる以外は実施例1と同
−条件及び方法により、176部のf液と尿素ホルムア
ルデヒドポリマー粒子を183係含有するケーキ状物(
以下比較例1−ケーキ状9 物と称す)149部を得た。尚、分散液中には295 
ppmの遊離ホルムアルデヒドが含有されていた。又ケ
ーキ状物を乾燥し電子顕微鏡で観察したところ一次粒子
の直径は1ミクロン以下であった。 比較例2 塩基性窒素原子を有する化合物が多い場合について例示
する。 メチルセルロース06部を水284部にとかしこれに3
7係ホルムアルデヒド水浴液45.3部、尿素120部
、ジエチレントリアミン48部及び20係硫酸水浴液9
2部を加えて、PH7,3にお1、−て70°Cで2時
間の反応を行い、Ca:] : (b)の比が07=1
でCa) + 〔X) : [0)のモル数の比が1 
: 1.65である初期縮合物100部を得た。 この初期縮合物の濃度は33.’5%で、プルツクフィ
ルド粘度計による25°Cの粘度は68センチボイズで
あった。次いでこの初期縮合物に27係硫酸水溶液14
4部を加えて混合後、約4o0cにて30分間放置して
得られたゲル状物は、実施例10 〜4及び比較例1のゲル状物が明白不透明なゲル状物で
あるのに対して、はg透明なゲル状物であり、本発明の
目的である粒子が形成されていないことが認められた。 比較例3 ホルムアルデヒドの使用量が少い場合について例示する
。 実施例1において67係ホルマリンを255部用いる以
外は実施例1と同−条件及び方法により陽イオン性尿素
ホルムアルデヒドポリマー粒子を17、 D %含有す
るケーキ状物(以下比較例3−ケーキ状物と称す)を9
21部を得た。これを乾燥し電子顕微鏡で観察したとこ
ろ一次粒子の直径は1ミクロン以下であった。 比較例4 ホルムアルデヒドの使用量が多い場合について例示する
。 実施例1において37%ホルマリン536部を用いる以
外は、実施例1と同−条件及び方法により陽イオン性尿
素ホルムアルデヒドポリマー粒子を19係含有するケー
キ状物1266部を得た。これを電子顕微鏡観察したと
ころ一次粒子の直径は1ミクロン以下であった。 応用例 実施例1〜4で得た本発明の陽イオン性尿素ホルムアル
デヒドポリマー粒子の有用性について比た 較例13及び4で得られポリマー粒子と比較しなへ から示す。 叩解度がa、 s、 p(カナデアン、スタンダード。 フリネス)431部mlのり、BKPの1係パルプスラ
リ一2000部に対して実施例1−ケーキ状1156部
(L、 BKPの絶乾燥状態に対して陽イオン性尿素ホ
ルムアルデヒドポリマー粒子10係)添加して2分間の
攪拌を行って後、角型シートマシンにて抄紙し次いでプ
レスロールにて脱水を行う。引続きプレスにて3.0k
ti/crAで15分間の脱水を行った後、表面温度1
10°Cのドラムドライヤーにて乾燥を行う。同様の方
法により実施例26,4及び比較例134によって得ら
れたケーキ状物を含有されるポリマー粒子量でり、 B
KPの絶乾状態に対して10係添加して、それぞれのポ
リマー粒子添加紙を得た。又ポリマー粒子を添加しない
以外は、添加紙を得た同−条件及び方法により無添加紙
を得た。得られた紙は湿度65係、温度20°Cの恒湿
恒温室にて24時間の調湿を行って坪量、不透明度及び
紙へのポリマー粒子の歩留率を測定して表−1に示した
。得られた紙の坪量はいずれも45.0 、j9 /n
fであった。又不透明度は、rIs(p−8138のA
法)に準じて行った。紙へのポリマー粒子の歩留率は抄
紙時に添加したポリマー粒子割合に対して抄紙後の紙中
に含有されているポリマー粒子量を窒素分析によって求
めて算出する。 尚、これと同時にそれぞれのポリマー粒子のゼータ−?
lN、位を粒子ゼータ−電位測定装置(ペン。 ケム社製)にて測定した。又塩基性窒素原子を有する化
合物、尿素ホルムアルデヒド及び保護コロイド剤等初期
縮合物の原料として用いられた有機物及び遊離ホルムア
ルデヒドの減少のために用いる尿素等に対するポリマー
粒子の収量を算出して収率とした。これらゼータ−電位
及び収率につい2ろ ても第1表に示した。 第1表に示した如く、本発明によった実施例から得られ
た尿素−ホルムアルデヒドポリマー粒子はゼータ−電位
がプラスであり陽性を帯びており、高収率であり、しか
も紙の填料として応用した場合には高歩留であり、高い
不透明度の向上のあることが認められる。 4
100 parts of an initial condensate having a molar ratio of [0] of 1:12 was obtained. The concentration of the initial condensate with
The viscosity at 5°C was 48 centipoise. Next, 144 parts of a 27% sulfuric acid aqueous solution was added to this initial condensate, mixed, and left at about 40'O for 30 minutes to obtain a gel-like product 2.
44 parts were roughly crushed with a stainless steel rod. To this was added 640 parts of water and stirred for 2 hours to form a slurry. This slurry dispersion contains 5.
It contained 500 ppm free formaldehyde. Add 198 parts of 20% ammonia water to 200 parts of this dispersion.
(The molar ratio of ammonia to free formaldehyde at this time was 2:1) and the mixture was stirred at 40°C for 1 hour. Next, the dispersion 20 containing cationic urea-formaldehyde polymer particles was finely pulverized in a colloid mill.
Got 2 copies. By separating this dispersion liquid, 124 parts of R liquid and 78 parts of a cake-like material (hereinafter referred to as Example 6-cake-like material) were obtained. As a result of the analysis, the dispersion liquid contained 250
1) Contained I)m free formaldehyde. The cake-like material contained 20 inches of cationic urea-formaldehyde polymer particles, and when these were dried and observed under an electron microscope, the diameter of the primary particles was 1 micron or less. Example 4 065 parts of methylcellulose was dissolved in 297 parts of water, and 471 parts of a 37% formaldehyde aqueous solution and 122 parts of urea were added to the solution.
1 part, 685 parts of tetraethylenepentamine and 68 parts of a 20% sulfuric acid water bath solution were added, and the reaction was carried out at 70°C for 2 hours, and the ratio of [a]:[\] was 05:1, [a] ]+[\]:100 parts of an initial condensate having a molar ratio of [C] of 1=19 was obtained. The concentration of this initial condensate was 338 mm, and the viscosity at 25°C measured by a Pulckfield viscometer was 36 centipoise. Next, 2.7 polysulfuric acid water bath solution 144 was added to this initial condensate.
After mixing, 244 parts of the gel-like material obtained was left to stand at about 40°C for 30 minutes, and the resulting gel-like material was roughly crushed with a stainless steel rod. 40 parts of water was added to this and stirred for 2 hours to form a slurry. This slurry dispersion contained 8600 ppm of free formaldehyde. To 200 parts of this dispersion, 17 parts of a 20% urea water bath solution was added, and after reacting for 20 minutes, 487 parts of a 20% ammonia solution was added.
(The molar ratio of urea:ammonia:free formaldehyde at this time was 1:1:1) and stirring was carried out at 40°0 for 1 hour. The mixture was then finely pulverized in a colloid mill to obtain 222 parts of a dispersion containing cationic urea formaldehyde polymer particles. By separating this dispersion by f, 1455 parts of f
A liquid and 765 parts of a cake (hereinafter referred to as Example 4-cake) were obtained. As a result of analysis, the dispersion liquid contained 2701)l)m free formaldehyde. The cake contained 20% cationic urea-formaldehyde polymer particles, and when this was dried and observed under an electron microscope, the diameter of the primary particles was 1 micron or less. Comparative Example 1 Without using diethylenetriamine in Example 1,
[b]: [The amount of urea was increased to 188 parts so that the mole ratio of Ca was 1:165, and 20% caustic soda 05 was used instead of 411 parts of 20% sulfuric acid aqueous solution. A cake-like product (
149 parts (hereinafter referred to as Comparative Example 1 - cake-like product) were obtained. In addition, the dispersion liquid contains 295
Contained ppm of free formaldehyde. When the cake-like material was dried and observed under an electron microscope, the diameter of the primary particles was 1 micron or less. Comparative Example 2 A case where there are many compounds having basic nitrogen atoms will be exemplified. Dissolve 06 parts of methylcellulose in 284 parts of water and add 3 parts to this.
45.3 parts of formaldehyde water bath solution in Section 7, 120 parts of urea, 48 parts of diethylenetriamine, and 9 parts of sulfuric acid bath solution in Section 20.
Add 2 parts of Ca: ]: (b) to pH 7.3 and react for 2 hours at 70°C to obtain a ratio of 07=1.
So the ratio of moles of Ca) + [X): [0) is 1
: 100 parts of an initial condensate having a concentration of 1.65 were obtained. The concentration of this initial condensate is 33. At 5%, the viscosity at 25°C was 68 centiboise using a Pruckfield viscometer. Next, this initial condensate was added with a 27% sulfuric acid aqueous solution 14%
After adding 4 parts and mixing, the gel-like product obtained by leaving it for 30 minutes at about 4o0C was clear and opaque, whereas the gel-like products of Examples 10 to 4 and Comparative Example 1 were clearly opaque gel-like products. It was found that the sample was a transparent gel-like substance, and no particles, which is the object of the present invention, were formed. Comparative Example 3 A case where the amount of formaldehyde used is small will be illustrated. A cake-like product containing 17.D% of cationic urea-formaldehyde polymer particles (hereinafter referred to as Comparative Example 3-cake-like product) was prepared using the same conditions and method as in Example 1 except that 255 parts of 67% formalin was used in Example 1. 9)
Obtained 21 copies. When this was dried and observed under an electron microscope, the diameter of the primary particles was 1 micron or less. Comparative Example 4 A case where a large amount of formaldehyde is used will be illustrated. 1266 parts of a cake containing 19 parts of cationic urea-formaldehyde polymer particles was obtained under the same conditions and method as in Example 1, except that 536 parts of 37% formalin were used in Example 1. When this was observed under an electron microscope, the diameter of the primary particles was 1 micron or less. APPLICATION EXAMPLES The usefulness of the cationic urea formaldehyde polymer particles of the present invention obtained in Examples 1 to 4 will be illustrated by comparing them with the polymer particles obtained in Comparative Examples 13 and 4. Example 1 - cake-like 1156 parts (L, relative to the absolutely dry state of BKP) with a beating degree of a, s, p (Canadian, standard. After adding cationic urea-formaldehyde polymer particles (Part 10) and stirring for 2 minutes, paper is made using a square sheet machine and then dewatered using a press roll. Continued to press 3.0k
After 15 minutes of dehydration with ti/crA, the surface temperature was 1.
Dry with a drum dryer at 10°C. B
Each polymer particle-added paper was obtained by adding 10 parts to KP in an absolutely dry state. An additive-free paper was also obtained under the same conditions and method as the additive paper, except that no polymer particles were added. The obtained paper was conditioned for 24 hours in a constant humidity room with a humidity of 65% and a temperature of 20°C, and the basis weight, opacity, and yield rate of polymer particles on the paper were measured.Table 1 It was shown to. The basis weight of the obtained papers was 45.0, j9/n.
It was f. Also, the opacity is rIs (A of p-8138
Act). The retention rate of polymer particles in paper is calculated by determining the amount of polymer particles contained in the paper after paper making by nitrogen analysis with respect to the proportion of polymer particles added at the time of paper making. At the same time, the zeta of each polymer particle?
The 1N level was measured using a particle zeta potential measuring device (PEN, manufactured by Chem Co., Ltd.). In addition, the yield was determined by calculating the yield of polymer particles for compounds having basic nitrogen atoms, organic substances used as raw materials for initial condensation such as urea-formaldehyde, and protective colloid agents, and urea used to reduce free formaldehyde. . Both of these zeta potentials and yields are shown in Table 1. As shown in Table 1, the urea-formaldehyde polymer particles obtained from the examples according to the present invention have a positive zeta potential and are positive, and have a high yield, and can be used as paper fillers. In this case, it is recognized that the yield is high and the opacity is greatly improved. 4

Claims (1)

【特許請求の範囲】[Claims] (1)塩基性窒素原子を有する化合物(A)、尿素〔B
〕及びホルムアルデヒド〔0〕からなり、〔A〕の塩基
性窒素原子当量数〔a〕:〔B〕のモル数(b〕の比が
0.05 : 1−06: 1であり(a:] + (
b) : (0)のモル数の比が1=11〜1:2oの
初期縮合物を酸触媒により反応凝固せしめることを特徴
とする陽イオン性尿素−ホルムアルデヒドポリマー粒子
の製法。
(1) Compound (A) having a basic nitrogen atom, urea [B
] and formaldehyde [0], the ratio of the number of basic nitrogen atom equivalents [a] of [A]: the number of moles (b) of [B] is 0.05: 1-06: 1 (a:] + (
b): A method for producing cationic urea-formaldehyde polymer particles, which comprises reacting and coagulating an initial condensate with a mole ratio of (0) of 1=11 to 1:2o using an acid catalyst.
JP6572983A 1983-04-15 1983-04-15 Production of cationic urea-formaldehyde polymer particle Granted JPS59191711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6572983A JPS59191711A (en) 1983-04-15 1983-04-15 Production of cationic urea-formaldehyde polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572983A JPS59191711A (en) 1983-04-15 1983-04-15 Production of cationic urea-formaldehyde polymer particle

Publications (2)

Publication Number Publication Date
JPS59191711A true JPS59191711A (en) 1984-10-30
JPH0541647B2 JPH0541647B2 (en) 1993-06-24

Family

ID=13295394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572983A Granted JPS59191711A (en) 1983-04-15 1983-04-15 Production of cationic urea-formaldehyde polymer particle

Country Status (1)

Country Link
JP (1) JPS59191711A (en)

Also Published As

Publication number Publication date
JPH0541647B2 (en) 1993-06-24

Similar Documents

Publication Publication Date Title
US20030150573A1 (en) Compositions suitable as additives in the paper industry, preparation; use; and, paper comprising such
KR100260451B1 (en) Reaction product of sulfonated amino resin and amino group-containing substance and papermaking process
FI57117B (en) DERIVATIVES OF I DIFFERENTIAL DISPENSERS OF POLYACKERS WITHOUT PAPERSTILLVERKNING AND CHARACTERISTICS OF DESS FRAMSTAELLNING
JPS59191711A (en) Production of cationic urea-formaldehyde polymer particle
US3909348A (en) Urea-formaldehyde pigmentary fillers used in paper
US2786824A (en) Cationic urea-formaldehyde resins and preparation thereof
US4433133A (en) Process for producing crosslinked urea-formaldehyde polymer particles
US3880707A (en) Process for fiber treatment
JP3531346B2 (en) Papermaking method
JPS61133218A (en) Production of loading material for paper
JPS61115921A (en) Production of urea resin filler
JP2516765B2 (en) Paper and its manufacturing method
JPH0670116B2 (en) Method for producing urea formaldehyde polymer-particle aggregate
JPH0753958B2 (en) High compression strength corrugated board production method
JPS61106616A (en) Production of crosslinked urea/formaldehyde polymer particle
JPS5952889B2 (en) Method for producing crosslinked urea formaldehyde polymer particles
WO1991005813A1 (en) Process for the production of a white fine-grained material of urea-formaldehyde resin or a modified urea-formaldehyde resin
CN114085383A (en) High-solid-content wet strength agent and preparation method thereof
JPH0610233B2 (en) Method for removing free formaldehyde in urea resin particle dispersion
JPS63249798A (en) Paper filler and its production
JP2516775B2 (en) Improved pulp and its production method
JPH0629310B2 (en) Filler manufacturing method
CA1279159C (en) Lightweight paper and process for producing same
SU1730303A1 (en) Method of paper pulp preparation
JPH0466248B2 (en)