JPS59191239A - Projection type cathode-ray tube - Google Patents

Projection type cathode-ray tube

Info

Publication number
JPS59191239A
JPS59191239A JP6553883A JP6553883A JPS59191239A JP S59191239 A JPS59191239 A JP S59191239A JP 6553883 A JP6553883 A JP 6553883A JP 6553883 A JP6553883 A JP 6553883A JP S59191239 A JPS59191239 A JP S59191239A
Authority
JP
Japan
Prior art keywords
deflection
ray tube
potential
conductive film
cathode ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6553883A
Other languages
Japanese (ja)
Inventor
Soichi Sakurai
桜井 宗一
Kyohei Fukuda
京平 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6553883A priority Critical patent/JPS59191239A/en
Publication of JPS59191239A publication Critical patent/JPS59191239A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/70Arrangements for deflecting ray or beam
    • H01J29/72Arrangements for deflecting ray or beam along one straight line or along two perpendicular straight lines
    • H01J29/76Deflecting by magnetic fields only

Abstract

PURPOSE:To realize miniaturization of a projection television without deteriorating the brilliancy by disposing the deflection coils inside the cathode-ray tube and the core outside the tube and by establishing the potential of the internal conductive film within the active range of the deflecting field lower than the anode potential. CONSTITUTION:After winding the vertical deflection coils 54 and the horizontal deflection coils 55 in spiral form, the entire surfaces are covered by glass material in the vacuum for the purpose of preventing gas generation and improving the anti-potential characteristics between wires. Moreover, the length in Z direction is made short, at the same time the entire body is shifted towards the phosphor surface 3 side and the deflection center is shifted towards the front side. Outside the neck tube 7, a ferrite core 51 is disposed to improve the sensitivity of the deflecting magnetic field. By means of such a structure, the effective F number can be made small as the deflecting system shields the light flux passing through the lens 4 very little. Also, the anode potential is applied to the phosphor surface 3 and the 4th electrode 15 of an electron gun through the introducing entrance 10, and the deflection sensitivity is improved, as the internal conductive film 8, the nesa film 9 and the 3rd electrode 14 are applied with the lower potential than the anode potential.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、テレビ画像などを光学的手段によってスクリ
ーンに拡大投写するための投写形ブラウン管に関するも
のであシ、更に詳しくは、高輝度かつコンパクトなプロ
ジェクションテレビの実現を可能にするための投写形ブ
ラウン管40〜70インチの大画面テレビを実現するた
めに現在は、プラ・ラン管の前面に拡大投写レンズを配
置し、ブラウン管面上に映し出された映像を7〜15倍
程度に拡大してスクリーンに投写するシステムが主流で
ある。この理由は、安価でFナンバーの小さな明るい拡
大投写レンズの設計およびその製造が可能になった事と
、全体の構成を比較的シンプルとする事が出来るためで
ある。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a projection type cathode ray tube for enlarging and projecting television images etc. onto a screen by optical means. In order to realize large-screen televisions with projection type cathode ray tubes of 40 to 70 inches, currently a magnifying projection lens is placed in front of the plastic tube to enable the realization of projection televisions. The mainstream is a system that enlarges the image by about 7 to 15 times and projects it onto a screen. The reason for this is that it has become possible to design and manufacture an inexpensive and bright magnifying projection lens with a small F number, and that the overall configuration can be made relatively simple.

しかしながら、一方ではセット本体の容積が一般家庭に
受は入れられるに充分なほどコンパクトとなっていない
のが現状であシ、コンパクト化の要求は強い。
However, on the other hand, the volume of the main body of the set is currently not compact enough to be accepted by ordinary households, and there is a strong demand for compactness.

第1図、第2図はそれぞれ従来のプロジェクションテレ
ビを示す概略縦断面図である。これらの図において、9
1は反射鏡、92は投写レンズ93は投写形ブラウン管
を表わしている。従来は第1図および第2図で示すよう
に、反射鏡91の枚数およびその配置に工夫をこらしコ
ンパクト化が行なわれて米た。しかしながら、それでも
要求に対し充分なものではな(、例えそれが可能だとし
ても第2図で示すように、反射鏡の枚数増加にともな5
31度損失は免れ得なかった。
FIGS. 1 and 2 are schematic longitudinal sectional views showing conventional projection televisions, respectively. In these figures, 9
Reference numeral 1 represents a reflecting mirror, and reference numeral 92 represents a projection lens 93 representing a projection type cathode ray tube. Conventionally, as shown in FIGS. 1 and 2, the number and arrangement of reflecting mirrors 91 have been devised to achieve compactness. However, even this is not sufficient to meet the requirements (even if it were possible, as shown in Figure 2, as the number of reflecting mirrors increases,
A loss of 31 degrees was unavoidable.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の問題点を改善し、
輝度を劣化させる事なくグロジェクションテレビのコン
パクト化を実現可能にする投写形ブラウン管を提供する
ことにある。
The purpose of the present invention is to improve the problems of the prior art described above,
To provide a projection type cathode ray tube that can realize a compact projection television without deteriorating brightness.

〔発明の概擬〕[Summary of the invention]

上記目的を達成するため、本発明においては蛍光面が凹
面で蛍光面をビーム入射側から見る反射形であシ、かつ
ファンネル部が凸レンズを形成する投写形ブラウン管に
おいて、ガラス材でモールドした偏向コイルはブラウン
管内部にコアは管外に配置し、かつブラウン管の内部導
電膜を分割し、偏向磁界の及ぶ領域での内部導電膜電位
は、陽極電圧を印加される蛍光面の導電膜電位よシも低
く設定した事を特徴としている。
In order to achieve the above object, the present invention provides a projection type cathode ray tube in which the phosphor screen is a concave surface, the phosphor screen is a reflection type viewed from the beam incidence side, and the funnel portion forms a convex lens, and a deflection coil molded with a glass material is used. The core is placed inside the cathode ray tube and the core is placed outside the tube, and the internal conductive film of the cathode ray tube is divided, and the internal conductive film potential in the area covered by the deflection magnetic field is similar to the conductive film potential of the phosphor screen to which the anode voltage is applied. It is characterized by being set low.

第3図は本発明による投写形ブラウン管の原理説明図で
あり、偏向ヨークは特にネック管の管外に装着されでい
る。
FIG. 3 is a diagram illustrating the principle of the projection type cathode ray tube according to the present invention, in which the deflection yoke is particularly mounted outside the neck tube.

第3図において、1は電子銃、2は電子ビーム、3は蛍
光面、4はガラスより成る凸レンズ5は偏向ヨーク、6
は収差補正レンズ、7はネック部、8は内部導電膜、9
はネサ膜、10は高圧導入口を示している。電子ビーム
2によって発光した蛍光面6の光束は凸レンズ4と収差
補正しンズ6を通過し、スクリーン(図示せず)上に結
像する。この投写形ブラウン管を用いた場合、プロジェ
クションテレビ本体がコンノくクトとなる埋出は、セッ
トの容積を決定する基本要素である。スクリーンからブ
ラウン管ネック部先端までの距離が、これまでのものと
比べ、ブラウン管全長(=蛍光面からネック部先端まで
の長さ)分、短く出来るからである。第4図は、第3図
で示した投写形ブラウン管を用いた場合のセットの概略
縦断面図を示しておシ、従来の投写形ブラウン管を用い
た場合のセントと比べた時、45型で奥行と高さの積は
約20%低減される。
In FIG. 3, 1 is an electron gun, 2 is an electron beam, 3 is a fluorescent screen, 4 is a convex lens made of glass, 5 is a deflection yoke, and 6 is a convex lens made of glass.
is an aberration correction lens, 7 is a neck portion, 8 is an internal conductive film, 9
10 indicates a Nesa membrane, and 10 indicates a high pressure inlet. The light beam emitted from the phosphor screen 6 by the electron beam 2 passes through a convex lens 4 and an aberration correction lens 6, and forms an image on a screen (not shown). When this projection type cathode ray tube is used, the embedding of the projection television body into a compact structure is a basic element that determines the volume of the set. This is because the distance from the screen to the tip of the neck of the cathode ray tube can be made shorter by the total length of the cathode ray tube (= length from the phosphor screen to the tip of the neck) compared to previous models. Figure 4 shows a schematic vertical cross-sectional view of a set using the projection type cathode ray tube shown in Figure 3. The product of depth and height is reduced by approximately 20%.

しかしながら実際問題として、第3図で示した投写形ブ
ラウン管は、偏向ヨーク5によって偏向される電子ビー
ム2が凸レンズ4の蛍光面側先端部に当fCり、ネック
シャドウが発生するために充分な大きさのう6スタを蛍
光面上に出せないのである。このため、本来メリットで
あるコンパクト性が著しく損われてしまうのである。
However, as a practical matter, in the projection type cathode ray tube shown in FIG. It is not possible to display the 6 stars on the fluorescent screen. For this reason, the compactness, which is an original advantage, is significantly impaired.

なぜならば蛍光面からスクリーンまでの距離(TC’L
 )は概略近似として下式に示される。
This is because the distance from the fluorescent screen to the screen (TC'L)
) is shown as a rough approximation in the formula below.

TCL’:rM xf −(11M :投写倍率f:レ
ンズ系倍率 つまり、上述したようにラスクーの大きさが大きく出来
ないため、Mが必然的に大きくなり上式よf)1″CL
も大きくならざるを得ないのである。その解決方法の一
例として、凸レンズ4の蛍光面側先端部の径を大きくす
れは良いが、実効Fナンバーが大きくなり輝度低下とな
る。又偏向ヨーク5によって形成される偏向磁界の中心
を、蛍光面側によp近く設計すれは良いが、この様に設
計すると偏向ヨーク5の外径が大きくなり、光束を遮シ
結果として失効I゛ナンバーが大きくなってしまう。
TCL': rM xf - (11M: Projection magnification f: Lens system magnification In other words, as mentioned above, since the size of the Lascue cannot be increased, M will inevitably become large and the above formula f) 1''CL
It has no choice but to become larger. As an example of a solution to this problem, it is possible to increase the diameter of the tip of the convex lens 4 on the phosphor screen side, but the effective F number increases and the brightness decreases. Also, it is good to design the center of the deflection magnetic field formed by the deflection yoke 5 to be close to the phosphor screen side, but if designed in this way, the outer diameter of the deflection yoke 5 becomes large, and as a result of blocking the light flux, the lapsed I゛The number becomes large.

そこでこれらを改善する丸めの工夫が必要になる。Therefore, it is necessary to devise a rounding method to improve these problems.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例を示す概略断面図である。同
図において、第3図と同様の働きを有するものには同一
の奇岩を付している。又、第6図は第5図におけるA−
A’断面図を示す。
FIG. 5 is a schematic sectional view showing one embodiment of the present invention. In the figure, the same strange rocks are attached to those that have the same function as in Figure 3. Also, Fig. 6 shows A- in Fig. 5.
A' cross-sectional view is shown.

第5図が第6図と大きく異なる点は、偏向コイル54.
55 全ネック管7の内容に設置している点と、ブラウ
ン管内部の電位を、ファンネル部17で分割している点
である。つまり、陽極電圧は導入口10を通し蛍光面3
と電子銃の第4電極15に印加し、かつ内部導電膜8、
ネサ膜9および第3電極14は導入口16を通し陽極電
圧よpも低い電圧を印加している。又、偏向コイル54
.55の(Z方向)長さを短かくすると同時に、全体を
蛍光面39111に移動させ偏向中心を前側に移してい
る。この様にすると、第6図で問題となっていた、凸レ
ンズ4に電子ビーム2が当たる事もなく所望のラスター
サイズが得られるのである。以下にその説明を行なう。
The major difference between FIG. 5 and FIG. 6 is that the deflection coil 54.
55, the contents of the entire neck tube 7 are installed, and the potential inside the cathode ray tube is divided by the funnel section 17. In other words, the anode voltage is applied to the fluorescent screen 3 through the inlet 10.
is applied to the fourth electrode 15 of the electron gun, and the internal conductive film 8,
A voltage lower than the anode voltage is applied to the Nesa membrane 9 and the third electrode 14 through the inlet 16. Also, the deflection coil 54
.. 55 (in the Z direction) is shortened, and at the same time, the entire structure is moved to the phosphor screen 39111, and the center of deflection is shifted to the front side. In this way, the desired raster size can be obtained without the electron beam 2 hitting the convex lens 4, which was a problem in FIG. The explanation will be given below.

一般に電子ビーム2が偏向磁界を通過する時下式で示さ
れる葉(偏向角=θ)偏向作用を受ける。
Generally, when the electron beam 2 passes through a deflection magnetic field, it is subjected to a deflection action expressed by the following equation (deflection angle=θ).

k:定数 ル・L:偏向コイルのアンペアターン i、、:Z方向の偏向磁界有効長 Dm =有効口径 E :偏向磁界のおよぶ領域での電位 つまり、偏向角θは近似的に!1に比例し、D、、、(
B、に反比例する事がわかる。一方、偏向コイルの偏向
中心は、近似的に偏向コイルの中心にある事が軽鉄的に
明らかである。従ってこれらの事から本発明では偏向中
心を蛍光面3側に近つげるために11.を出来る限pm
少し、その補償としてDlとEbを小さくして偏向角θ
を改善しているのである。以下は、偏向コイル54゜5
5について述べる。
k: Constant Le・L: Ampere turn i of the deflection coil, ,: Effective length of the deflection magnetic field in the Z direction Dm = Effective aperture E: Potential in the area affected by the deflection magnetic field, that is, the deflection angle θ is approximated! 1, D, , (
It can be seen that B is inversely proportional to. On the other hand, it is clear from a light railway perspective that the deflection center of the deflection coil is approximately at the center of the deflection coil. Therefore, in the present invention, in order to bring the center of deflection closer to the phosphor screen 3 side, 11. pm as much as possible
To compensate for this, Dl and Eb are slightly reduced and the deflection angle θ is
We are improving this. Below is the deflection coil 54゜5
Let's talk about 5.

垂直偏向コイル54と水平偏向コイル55は第7図で示
す様に渦巻型に巻いた後、ガス発生抑止および線間耐圧
特性向上を目的とし真空中で全表面をガラス材52で覆
われている。さらに内部導電膜8との絶縁を保つために
第6図で示すように円筒状の絶縁ガラス53が内部導電
膜8と偏向コイル54.55との間に挿入されている。
The vertical deflection coil 54 and the horizontal deflection coil 55 are spirally wound as shown in FIG. 7, and then their entire surfaces are covered with a glass material 52 in a vacuum for the purpose of suppressing gas generation and improving line-to-line voltage resistance. . Furthermore, in order to maintain insulation from the internal conductive film 8, a cylindrical insulating glass 53 is inserted between the internal conductive film 8 and the deflection coils 54, 55, as shown in FIG.

又、内部導電膜8に印加する電圧は従来の様に高い陽極
電圧を加えてないために、上記構造で充分な耐圧特性が
得られるのである。ネック管7の管外には偏向磁界の感
度を向上させるために第5図で示すようにフェライトコ
ア51を配置し、偏向コイルへの電流導入は、ネック管
7のネンクビン18で行なう。
Further, since the voltage applied to the internal conductive film 8 is not a high anode voltage as in the conventional case, sufficient breakdown voltage characteristics can be obtained with the above structure. A ferrite core 51 is arranged outside the neck tube 7 as shown in FIG. 5 in order to improve the sensitivity of the deflection magnetic field, and current is introduced into the deflection coil by the neck pin 18 of the neck tube 7.

従って、上述した様な本発明のネック管の構造とした場
合、実効的なり、が小さくなる事はもちろん従来と比ベ
ネック管口径を太く出来る事が可能で、大口径電子銃を
用いた大幅なフォーカス改善のメリットもある。
Therefore, when the neck tube of the present invention is structured as described above, not only is the effective radius reduced, but also the diameter of the neck tube can be increased compared to the conventional one. There is also the benefit of improving focus.

しかしながら、上記した様に偏向コイル54゜55はガ
ラス材でモールドされ、真空中のネック管内部に配置し
ているためにコイルの放熱効率が比較的悪い。そのため
に偏向電流器は制限され、(2)式で示される所望の偏
向角を得られなくなってしまう。
However, as described above, the deflection coils 54 and 55 are molded with a glass material and are placed inside the neck tube in a vacuum, so the heat dissipation efficiency of the coils is relatively poor. Therefore, the deflection current generator is limited, and it becomes impossible to obtain the desired deflection angle shown by equation (2).

一方、偏向磁界のおよぶ領域での電位CE)は第5図か
ら明らかなように、陽極電圧よpも低い電位に設定しで
あるために(2)式で示した関係から偏向感度が改善さ
れる事がわかる。その結果、上記した偏向電流器の制限
から来る偏向角の不足分を、本発明のネック管内部電位
を低くする事により、補償出来るのである。
On the other hand, as is clear from Fig. 5, the potential CE) in the region affected by the deflection magnetic field is set to a potential p lower than the anode voltage, so the deflection sensitivity is improved from the relationship shown in equation (2). I understand that As a result, the deficiency in the deflection angle resulting from the above-mentioned limitations of the deflection current generator can be compensated for by lowering the internal potential of the neck tube of the present invention.

内部導電膜での電圧Eと陽極電圧E、との関係は耐圧特
性と、フォーカス特性から下式の条件が良い。
The relationship between the voltage E at the internal conductive film and the anode voltage E is preferably expressed by the following equation from the viewpoint of breakdown voltage characteristics and focus characteristics.

0.2≦E/E  ≦07 又、ファンネル部17の電位分割部での電位勾配によっ
て周辺においても電子ビームが蛍光面にほぼ直角に入射
するため、周辺輝度向上のメリ  ッ  ト も あ 
る 。
0.2≦E/E≦07 Also, because the potential gradient at the potential dividing portion of the funnel portion 17 causes the electron beam to be incident on the phosphor screen almost at right angles even in the periphery, there is also the advantage of improving the peripheral brightness.
Ru.

又、第5図では陽極電圧は蛍光面と第4電極に、フォー
カス電圧は内部導電膜8、ネサ膜、第3電極14に加え
ているが、第6電極14はネサ膜9と内部導電膜8と異
なった電圧を供給しても艮い。
Furthermore, in FIG. 5, the anode voltage is applied to the phosphor screen and the fourth electrode, and the focus voltage is applied to the internal conductive film 8, the NESA film, and the third electrode 14, but the sixth electrode 14 is applied to the NESA film 9 and the internal conductive film. There is no problem even if a voltage different from 8 is supplied.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれは、芙効Fナンバーを劣化させ
る事なく極めてコンパクトなグロジェクションテレビを
実現可能とする投写形ブラウン管が得られるのである。
As described above, the present invention provides a projection type cathode ray tube that makes it possible to realize an extremely compact projection television without deteriorating the F-number.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ従来のグロジェクションテレ
ビを示す縦断面図、第3図は本発明による投写形ブラウ
ン管の原理説明図、第4図は第3図に示したタイプの投
写形ブラウン管を用いたセットの概略縦断面図、第5図
は本発明の一実施例を示す概略断面図、第6図は第5図
におけるA−A’断面図、第7図は本発明において用い
る偏向コイルの斜視図、である。 符  号  説  明 1・・・・・・・・・・・・電子銃 2・・・・・・・・・・・・電子ビーム3・・・・・・
・・・・・・蛍光面 4・・・・・・・・・・・・凸レンズ 5・・・・・・・・・・・・偏向ヨーク6・・・・・・
・・・・・・収差補正レンズ7・・・・・・・・・・・
・ネック部 8・・・・・・・・−・・内部導電膜 9・・・・・・・・−・・ネサ膜 10・・・・・−・・高圧導入口 17・・・・・・・・・ファンネル部 51・・・・・・・・・コア 52・・・・・・・・・ガラス材 56・・・・・・・・・円筒状絶縁ガラス54・・・・
・・・・・水平偏向コイル55・・・・・−・・垂直偏
向コイル 第3図 第1 凶 糖7図 第2区 鞘5図 英 第6図
Figures 1 and 2 are longitudinal sectional views showing conventional projection televisions, Figure 3 is a diagram explaining the principle of a projection type cathode ray tube according to the present invention, and Figure 4 is a projection type of the type shown in Figure 3. A schematic vertical sectional view of a set using a cathode ray tube, FIG. 5 is a schematic sectional view showing an embodiment of the present invention, FIG. 6 is a sectional view taken along line AA' in FIG. 5, and FIG. FIG. 3 is a perspective view of a deflection coil. Symbol Explanation 1......Electron gun 2...Electron beam 3...
...... Fluorescent screen 4 ...... Convex lens 5 ...... Deflection yoke 6 ...
......Aberration correction lens 7...
・Neck part 8 ・・・・・Inner conductive film 9 ・・・・Nesa membrane 10 ・・・・High pressure inlet 17 ・・・・...Funnel portion 51...Core 52...Glass material 56...Cylindrical insulating glass 54...
...Horizontal deflection coil 55...Vertical deflection coil Fig. 3 Fig. 1 Fig. 7 Fig. 2 Ward sheath 5 Fig. E Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 1)凹面をなす蛍光面は、そのビーム入射側を画像表示
面とする反射形の蛍光面であ夛、かつファンネル部の一
部が凸レンズを形成するようにした投写形ブラウン管に
おいて、偏向□コイルをブラウン管内部に、コアを管外
にそれぞれ配置し、かつブラウン管の内部導電膜を分割
し、偏向磁界の及ぶ領域での内部導電膜電位は、陽極電
圧を印加される蛍光面の導電膜電位よシも低く設定した
ことを特徴とする投写形ブラウン管。
1) The concave phosphor screen is a reflection type phosphor screen with the beam incident side serving as the image display surface, and in a projection type cathode ray tube in which a part of the funnel part forms a convex lens, the deflection □ coil is placed inside the cathode ray tube, and the core is placed outside the tube, and the internal conductive film of the cathode ray tube is divided, and the internal conductive film potential in the area covered by the deflection magnetic field is equal to the conductive film potential of the phosphor screen to which the anode voltage is applied. A projection type cathode ray tube characterized by a low beam angle.
JP6553883A 1983-04-15 1983-04-15 Projection type cathode-ray tube Pending JPS59191239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6553883A JPS59191239A (en) 1983-04-15 1983-04-15 Projection type cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6553883A JPS59191239A (en) 1983-04-15 1983-04-15 Projection type cathode-ray tube

Publications (1)

Publication Number Publication Date
JPS59191239A true JPS59191239A (en) 1984-10-30

Family

ID=13289888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6553883A Pending JPS59191239A (en) 1983-04-15 1983-04-15 Projection type cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS59191239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055804A (en) * 2000-12-29 2002-07-10 이형도 Deflection yoke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055804A (en) * 2000-12-29 2002-07-10 이형도 Deflection yoke

Similar Documents

Publication Publication Date Title
KR100260802B1 (en) Display tube with deflection unit comprising field deflection coil of the semi-saddle type
US4464643A (en) Device for displaying television pictures and deflection unit therefor
JPH047059B2 (en)
KR910001189B1 (en) Device for displaying television pictures
KR910002975B1 (en) Self-converging television display system
US6750602B2 (en) Projection type cathode ray tube device employing a cathode ray tube having a neck composed of different-diameter portions
CN87104149A (en) Cathode ray tube with magnetic focusing lens
WO1993022791A1 (en) Electron beam deflection lens for crt
JPS59191239A (en) Projection type cathode-ray tube
JPS60216430A (en) Electron gun structure
KR900004260B1 (en) Cathod ray tube
US4383199A (en) Electron gun
US6815913B2 (en) Cathode ray tube
JP2002531920A (en) Color display with deflection dependent distance between external beams
US2152825A (en) Braun tube
US6680566B2 (en) Television cathode ray tube
US6771030B2 (en) Color cathode ray tube apparatus
US2538852A (en) Kinescope projection by refractive optical system mounted on tube neck
JP3537943B2 (en) Color cathode ray tube device
EP0235856A1 (en) Cathode ray tube including means for vertically extending the spot
KR810002006B1 (en) Deflection unit for an in-line colour cathode-ray tube
JPS58147942A (en) Electron gun
US4246511A (en) Electron gun
Yoshida A New 3WV-INCH Screen Size Color Picture Tube
Gritz et al. Second generation of miniature CRTs for addressing LCLVs