JPS59191138A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS59191138A
JPS59191138A JP6621183A JP6621183A JPS59191138A JP S59191138 A JPS59191138 A JP S59191138A JP 6621183 A JP6621183 A JP 6621183A JP 6621183 A JP6621183 A JP 6621183A JP S59191138 A JPS59191138 A JP S59191138A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
recording medium
manufacturing
incorporated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6621183A
Other languages
Japanese (ja)
Inventor
Kiyoshi Noguchi
潔 野口
Koji Kobayashi
康二 小林
Masaru Takayama
勝 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP6621183A priority Critical patent/JPS59191138A/en
Publication of JPS59191138A publication Critical patent/JPS59191138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve magnetic characteristics such as coercive force, magnetic flux quantity and squareness ratio, an electromagnetic conversion characteristics, running durability and corrosion resistance by making metallic atoms incident to the surface of a base material at >=20 deg. angle to the normal thereof in performing vapor deposition. CONSTITUTION:A thin magnetic film having a prescribed compsn. is first formed on a base body by a diagonal vapor deposition method. The min. value of the incident angle of the material to be deposited by evaporation to the normal of the base body is made >=20 deg. in this case. The thin magnetic film consists essentially of Co and Ni and/or Cr is incorporated therein according to need. More specifically, said film may consist of Co alone or of Co and Ni. If Ni is incorporated therein, the weight ratio of Co/Ni is >=1.5. Cr may be further incorporated in the thin magnetic film. If Cr is incorporated therein, improvements in an electromagnetic conversion characteristics, output, S/N ratio and film strength are resulted. The weight ratio of Cr/Co or Cr/(Co+Ni) in this case is preferably 0.001-0.1, more preferably 0.005-0.05.

Description

【発明の詳細な説明】 I 発明の背景 一技術分野 本発明は、磁気記録媒体、特にいわゆる斜め蒸着法によ
る連続薄膜型の磁性層を有する磁気記録媒体の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION I. BACKGROUND OF THE INVENTION 1. Technical Field The present invention relates to a magnetic recording medium, and particularly to a method for manufacturing a magnetic recording medium having a continuous thin film type magnetic layer by a so-called oblique evaporation method.

先行技術とその問題点 ビデオ用、オーディオ用等の磁気記録媒体として、テー
プ化して巻回したときのコンパクト性から、連続薄膜型
の磁性層を有するものの開発が活発に行われている。
Prior art and its problems As magnetic recording media for video, audio, etc., media having a continuous thin film type magnetic layer are being actively developed because of their compactness when wound into tapes.

このような連続薄膜型の媒体の磁性層としては、特性上
、基体法線に対し所定の傾斜角にて蒸着を行う、いわゆ
る斜め蒸着法によって形成したCo系、Co−Ni系等
の柱状結晶の集合体からなる蒸着膜が好適である。
Due to its characteristics, the magnetic layer of such a continuous thin film type medium is made of Co-based, Co-Ni-based, etc. columnar crystals formed by the so-called oblique evaporation method, in which evaporation is performed at a predetermined angle with respect to the normal to the substrate. A vapor deposited film consisting of an aggregate of is suitable.

そして、斜め蒸着の際の雰囲気中に、多量の酸素ガスを
導入して蒸着を行い、柱状結晶の表面を酸化物層で被う
(特公昭5.6−23208号公報等)と、電磁変換特
性、が向上し、走行耐久性が向上し、よシ好ましい結果
をうる〇このような場合、Co−Ni系では、導入酸素
量を増大し、酸化物層を多くすると、走行耐久性は向上
するが、高密度記録媒体として大切な特性である保磁力
が減少する。このため、導入酸素量を増大して、しかも
保磁力をある程度以上に維持するためには、斜め蒸着の
際の、基体法線に対する入射角を大きくする必要がある
Then, when vapor deposition is performed by introducing a large amount of oxygen gas into the atmosphere during oblique vapor deposition, and the surface of the columnar crystal is covered with an oxide layer (Japanese Patent Publication No. 5.6-23208, etc.), electromagnetic conversion Properties are improved, running durability is improved, and more favorable results can be obtained.In such cases, in the Co-Ni system, increasing the amount of oxygen introduced and increasing the oxide layer improves running durability. However, the coercive force, which is an important property for high-density recording media, decreases. Therefore, in order to increase the amount of introduced oxygen and maintain the coercive force above a certain level, it is necessary to increase the angle of incidence with respect to the normal to the substrate during oblique deposition.

しかし、このようなときには、蒸着効率が激減し、経済
性の点で不十分となる。 また、膜密度が減少して、耐
食性に欠けることにな、る。
However, in such a case, the vapor deposition efficiency is drastically reduced and the method is economically unsatisfactory. Furthermore, the film density decreases, resulting in a lack of corrosion resistance.

更に、大量に導入した酸素により、ルツボ内の溶融金属
の酸化、あ\、るbは真空系のトラブル等の問題が生じ
る。
Furthermore, the large amount of oxygen introduced causes problems such as oxidation of the molten metal in the crucible and problems with the vacuum system.

すなわち、従来の斜め蒸着法による媒体では、十分な電
磁変換特性、走行耐久性、製造に際しての経済性および
耐食性をすべて満足するものは実現していない。
In other words, with the media produced by the conventional oblique vapor deposition method, it has not been possible to achieve a medium that satisfies all of the requirements of electromagnetic conversion characteristics, running durability, economical efficiency in manufacturing, and corrosion resistance.

■ 発明の目的 本発明は、このような実状に鑑みなされたものであって
、その主たる目的は、保磁力、磁束量、角形比等の磁気
特性が高く、電磁変換特性が高く、シかも走行耐久性に
すぐれ、また、製造に際して経済性にすぐれ、さらに耐
食性の高い磁性層を有する斜め蒸着法を用いた磁気記録
媒体の製造方法を提供することにある。
■ Purpose of the Invention The present invention was made in view of the above-mentioned circumstances, and its main purpose is to provide high magnetic characteristics such as coercive force, magnetic flux, and squareness ratio, high electromagnetic conversion characteristics, It is an object of the present invention to provide a method for manufacturing a magnetic recording medium using an oblique vapor deposition method, which has a magnetic layer that is excellent in durability, economical in manufacturing, and has high corrosion resistance.

このような目的は、以下の発明によって達成される。Such an object is achieved by the following invention.

本発明は、 非磁性の基体上に、基体主面の法線に対して2oQ以上
の入射角にて金属原子を入射させて蒸着を行い、Co1
またはCoならびにNiおよび/もしくはCrを含む柱
状結晶粒の集合体からなる磁性薄膜を形成し、次いで、
この磁性薄膜を、実質的に酸素中性粒子から構成される
エネルギー粒子流に曝し、磁性薄膜の柱状結晶粒の表面
に酸化物層を形成して磁性層とすることを特徴とする磁
気記録媒体の製造方法である。
In the present invention, metal atoms are incident on a non-magnetic substrate at an incident angle of 2oQ or more with respect to the normal to the main surface of the substrate to deposit Co1.
Alternatively, a magnetic thin film consisting of an aggregate of columnar crystal grains containing Co, Ni and/or Cr is formed, and then,
A magnetic recording medium characterized in that this magnetic thin film is exposed to an energetic particle flow consisting essentially of oxygen neutral particles to form an oxide layer on the surface of the columnar crystal grains of the magnetic thin film to form a magnetic layer. This is a manufacturing method.

なお、実質的に酸素中性粒子よシ構成されるとは、50
%以下のイオン粒子あるいは、酸素以外の粒子の混入を
妨げるものではない。
Note that being substantially composed of oxygen-neutral particles means 50%
% or less of ionic particles or particles other than oxygen.

■ 発明の具体的構成 以下、本発明の具体的構成について詳細に説明する。■Specific structure of the invention Hereinafter, a specific configuration of the present invention will be explained in detail.

本発明においては、まず、いわゆる斜め蒸着法によって
、所定の組成の磁性薄膜を基体上に形成する。
In the present invention, first, a magnetic thin film having a predetermined composition is formed on a substrate by a so-called oblique evaporation method.

磁性薄膜はCoを主成分とし、これに必要に応じNiお
よび/またはCrが含有される。0すなわち、Co単独
からなってもよく、c。
The magnetic thin film has Co as its main component, and Ni and/or Cr may be contained therein as required. 0, that is, it may consist of Co alone; c.

とNiからなってもよい。 Niが含まれる場合、Co
 /N iの重量比は、1゜5以上である。
and Ni. If Ni is included, Co
/N i weight ratio is 1°5 or more.

さらに、磁性薄膜中には、Crが含有されていてもよい
Furthermore, the magnetic thin film may contain Cr.

Crが含有されると、電磁変換特性が向上し、出力およ
びS/’N比が向上し、さらに膜強度も。
When Cr is contained, electromagnetic conversion characteristics are improved, output and S/'N ratio are improved, and film strength is also improved.

向上する0 このような場合、Cr/CoあるいはCr/(Co十N
i)の重量比は0.001〜0.1、よシ好ましくは0
.005〜0.05であることが好ましい。
Improves 0 In such cases, Cr/Co or Cr/(Co
The weight ratio of i) is 0.001 to 0.1, preferably 0.
.. It is preferable that it is 005-0.05.

なお、このような磁性薄膜中には、さらに他の微量成分
、特に遷移元素、例えばFe、Mn。
Note that such a magnetic thin film may further contain other trace components, particularly transition elements such as Fe and Mn.

Vt Zr 、Nb + Ta r Ti + Zn 
+Mo+W+Cu等が含まれていてもよい○ このような成分からなる磁性薄膜は、斜め蒸着法によっ
て形成される。
Vt Zr, Nb + Tar Ti + Zn
+Mo+W+Cu, etc. may be included. A magnetic thin film made of such components is formed by an oblique vapor deposition method.

この場合、基体法線に対する、蒸着物質の入射角の最小
値は、20°以上とされる。
In this case, the minimum value of the incident angle of the vapor deposition substance with respect to the normal to the substrate is 20° or more.

入射角が2O2未満となると、所望の電磁変換特性が得
られない。
When the incident angle is less than 2O2, desired electromagnetic conversion characteristics cannot be obtained.

なお、これ以外の蒸着条件には特に制限はない。Note that there are no particular limitations on the vapor deposition conditions other than these.

すなわち、蒸着雰囲気は、通常と同様、アルゴン、ヘリ
ウム、真空等の不活性雰囲気とし、10−5〜100 
Pa程度の圧力とし、また、蒸着距離、基体搬送方向、
マスクの配置等は公知の条件と同様にすればよい。
That is, the vapor deposition atmosphere is an inert atmosphere such as argon, helium, vacuum, etc., as usual, and the deposition temperature is 10-5 to 100.
The pressure was approximately Pa, and the deposition distance, substrate conveyance direction,
The arrangement of the mask etc. may be the same as known conditions.

このような斜め蒸着法により、基体上には、上記したC
oを主成分とする柱状結晶粒の集合体からなる磁性薄膜
が形成される。
By such oblique vapor deposition method, the above-mentioned C is deposited on the substrate.
A magnetic thin film consisting of an aggregate of columnar crystal grains containing o as a main component is formed.

この場合、磁性薄膜の厚さは0.05〜0,5μm1好
ましくは、0.07〜0.6μmとされるQそして、柱
状の結晶粒は、薄膜の厚さ方向のほぼ全域に亘る長さを
もち、その長手方向は1基体の主面の法線に対して、1
0〜70°の範囲にて傾斜している。
In this case, the thickness of the magnetic thin film is 0.05 to 0.5 μm, preferably 0.07 to 0.6 μm. , and its longitudinal direction is 1 with respect to the normal to the principal surface of 1 base.
It is inclined in the range of 0 to 70 degrees.

また、結晶粒の短径は、50〜500八程度の長さをも
つ。
Further, the short axis of the crystal grains has a length of about 50 to 5008.

このような磁性薄膜を形成する基体は、非磁性のもので
あシさえすれば、特に制限はなく、特に、可とり性の基
体、特にポリエステル、ポリイミド等の樹脂製のもので
あることが好ましい0 また、その厚さは、種々のものであってよいが、特に5
〜20μmであることが好ましい。
The substrate on which such a magnetic thin film is formed is not particularly limited as long as it is non-magnetic, and is preferably a flexible substrate, especially one made of resin such as polyester or polyimide. 0 The thickness may be various, but especially 5
It is preferable that it is 20 micrometers.

そして、その磁性薄膜形成面の裏面の表面あらさ高さの
RMS値は、0..05μm以上であることが好ましい
The RMS value of the surface roughness height of the back surface of the magnetic thin film forming surface is 0. .. The thickness is preferably 0.05 μm or more.

これによシ、電磁変換特性が向上する。This improves electromagnetic conversion characteristics.

なお、基体と磁性薄膜との間には、必要に応じ、各種下
地層を介在させることもできる。
Note that various underlayers may be interposed between the base and the magnetic thin film, if necessary.

このような磁性薄膜を形成したのち、この磁性薄膜は、
実質的に酸素中性粒子から構成されるエネルギー粒子に
曝される。
After forming such a magnetic thin film, this magnetic thin film is
Exposure to energetic particles consisting essentially of oxygen-neutral particles.

本発明において、エネルギー粒子流に曝す際の環境とし
て、全圧は通常、5×10〜I X 10−2Pa以下
とされる。
In the present invention, the total pressure of the environment during exposure to the energetic particle flow is usually 5 x 10 to I x 10 -2 Pa or less.

また、環境を構成するガスは、通常の不活性ガスでもよ
いが、酸化性ガスであることがより好ましい。
Furthermore, the gas constituting the environment may be a normal inert gas, but is more preferably an oxidizing gas.

そして、エネルギー粒子流により、磁性薄膜の柱状結晶
粒の表面には酸化物層が形成される。
The energetic particle flow forms an oxide layer on the surface of the columnar crystal grains of the magnetic thin film.

そして、Co1またはCoならびにNiおよび/もしく
はCrを含み、O/(CotたはC。
and contains Co1 or Co and Ni and/or Cr, O/(Cot or C.

+ N i )の原子比が、好ましくは0,3以下、特
に0.05〜0.2のOを含み、好ましくは0.05〜
0.5μm1よシ好ましくは0.07〜0.6μmの厚
さをもつ磁性層が形成される。
+N i ) preferably contains 0.3 or less, especially 0.05 to 0.2 O, preferably 0.05 to 0.2.
A magnetic layer is formed with a thickness of 0.5 .mu.m, preferably 0.07 to 0.6 .mu.m.

なお、もし必要であれば、このような磁性層上に、各種
最上層保護層を形成することもできる0 ■ 発明の具体的作用効果 本発明による磁気記録媒体は、ビデオ用、オーディオ用
等の媒体として有用である。
Incidentally, if necessary, various uppermost protective layers can be formed on such magnetic layer. Useful as a medium.

そして、本発明による媒体は、保磁力、磁束量、角形比
等の磁気特性が高く、電磁変換特性が高い。
The medium according to the present invention has high magnetic properties such as coercive force, magnetic flux, and squareness ratio, and has high electromagnetic conversion properties.

また、走行摩擦が小さく、走行耐久性が高い。In addition, running friction is low and running durability is high.

さらに、蒸着入射角の最小値を低い値に保てるので、蒸
着効率が高く、経済性にすぐれる。
Furthermore, since the minimum value of the deposition incident angle can be kept at a low value, the deposition efficiency is high and the method is economical.

加えて、耐湿性、耐酸化性等の耐食性が高い。In addition, it has high corrosion resistance such as moisture resistance and oxidation resistance.

■ 発明の具体的実施例 以下、本発明の具体的実施例を示し、本発明をさらに詳
細に説明する。
(2) Specific Examples of the Invention Hereinafter, specific examples of the present invention will be shown and the present invention will be explained in more detail.

実施例1 Co / N 1の重量比が4である合金を用い、12
μm厚のポリエチレンテレフタレート(PET)フィル
ム上に、斜め蒸着法によfi、0.2μm厚の磁性薄膜
を形成した。これをAとする。
Example 1 Using an alloy with a Co/N 1 weight ratio of 4, 12
A 0.2 μm thick magnetic thin film was formed on a μm thick polyethylene terephthalate (PET) film by an oblique vapor deposition method. Let this be A.

フィルムは、ルツボに対し斜めに連続搬送し、蒸着物質
の入射角は40°とした。
The film was continuously conveyed obliquely to the crucible, and the incident angle of the vapor-deposited substance was 40°.

また、雰囲気は、PAr−2xio 2paとした0 得られた磁性薄膜Aは、Co/N1=4(重量比)であ
シ、基体主面の法線に対し、約60゜傾斜した、短径1
00Aの、厚さ方向全域に亘って成長した柱状結晶粒の
集合体であった。
The atmosphere was set to PAr-2xio 2pa. The magnetic thin film A obtained was Co/N1=4 (weight ratio) and had a short axis inclined at about 60° with respect to the normal to the main surface of the substrate. 1
It was an aggregate of columnar crystal grains of 00A that had grown over the entire thickness direction.

次いでこのサンプルAを、全圧1O−5P a以下の雰
囲気で、中性粒子ガンを用いて作った一1〜2KeVの
中性酸素粒子流に曝した。なお、粒子流のビーム量はイ
オン電流換算で約10mA。
This sample A was then exposed to a neutral oxygen particle stream of 11-2 KeV produced using a neutral particle gun in an atmosphere with a total pressure of less than 10-5 Pa. Note that the beam amount of the particle flow is approximately 10 mA in terms of ion current.

曝している時間は1分間であったOこのサンプルをA1
とする0 サンプルA1を、オージェ分光分析およびESCAを行
い、深さ方向に、COおよびOの濃度プロファイルをと
ったところ、表記に酸素が多く、内部に少なり、シかも
Oはケミカルシフトして、金属と結合した形をとってお
シ、結晶粒表面に存在していることが確認された0まだ
、磁性層表面は破壊されず、平滑な面を保っていた0 これに対し、Co / N i = 4の合金を、PA
r=2X10−2Pa+PO2=3X10 ”  Pa
の雰囲気にて、上記と同一の条件で斜め蒸着、を行い、
0.2μm厚の磁性層を形成し、サンプルAOを得たと
ころ、断面写真、オージェ分光分析、ESCAの結果か
ら、サンプルA1とほぼ同一であった。
The exposure time was 1 minute.
When sample A1 was subjected to Auger spectroscopy and ESCA, and the concentration profile of CO and O was taken in the depth direction, it was found that there was a lot of oxygen in the notation, and there was less oxygen inside, and that O was probably due to chemical shift. It was confirmed that Co/C was present on the surface of the crystal grains in the form of a bond with the metal.However, the surface of the magnetic layer was not destroyed and remained smooth. An alloy of N i = 4 is made of PA
r=2X10-2Pa+PO2=3X10'' Pa
Oblique vapor deposition was performed under the same conditions as above in an atmosphere of
A 0.2 μm thick magnetic layer was formed to obtain sample AO, which was found to be almost the same as sample A1 from the results of cross-sectional photographs, Auger spectroscopy, and ESCA.

これらサンプルAO,AIにつき、静磁気特性を測定し
た。保磁力He 、 Hmax = 50000eでの
1へあたシの磁束量△fm1および角形比。
The magnetostatic properties of these samples AO and AI were measured. Coercive force He, Hmax = 50000e, magnetic flux amount △fm1 and squareness ratio at 1.

を表1に示す。are shown in Table 1.

また、60℃、相対湿度90%にて3日間放置し、1c
rAあたシの磁束量変化△fmを測定し、耐食性を評価
したところ、表1に示される結果をえた(。
In addition, it was left for 3 days at 60°C and 90% relative humidity, and 1c
When the change in magnetic flux Δfm of the rA heat was measured and the corrosion resistance was evaluated, the results shown in Table 1 were obtained (.

表  1 サ  ン プ ル       AI        
 AD後  処  理   エネルギー粒子照射0/(
Co+Nj、)      0.05      0.
05(原子比) Hc  (Oe)     750    600$m
        9x103  8X10−3(emu
/−f) 角   形  比      0.8       0
.7表1に示される結果から、本発明の効果があきらか
である。
Table 1 Sample AI
Post-AD treatment Energy particle irradiation 0/(
Co+Nj, ) 0.05 0.
05 (atomic ratio) Hc (Oe) 750 600$m
9x103 8X10-3 (emu
/-f) Square ratio 0.8 0
.. 7 From the results shown in Table 1, the effects of the present invention are clear.

なお、サンプルA1は走行摩擦が小さく、実用走行に十
分耐えることが確認された。
It was confirmed that sample A1 had low running friction and could sufficiently withstand practical running.

比較例1 サンプルAを、実施例1と同条件で酸素イオン粒子流に
曝した。その結果、磁性層の帯電が激しく有効な処理が
行なえず、更に、磁性層表面が破壊され、平滑な面が失
なわれていた。
Comparative Example 1 Sample A was exposed to an oxygen ion particle stream under the same conditions as Example 1. As a result, the magnetic layer was so charged that no effective treatment could be carried out, and furthermore, the surface of the magnetic layer was destroyed and lost its smooth surface.

実施例2 Co/Ni/Cr=75/2015の合金を用い、P 
A r = 2 X 1O−2P as入射角45°に
て斜め蒸着を行い、PET12μm上に0.2μm厚の
磁性薄膜をえた。
Example 2 Using an alloy of Co/Ni/Cr=75/2015, P
A 0.2 μm thick magnetic thin film was obtained on 12 μm PET by oblique vapor deposition at an incident angle of 45°.

次いで、この磁性薄膜を、5 X 10’−2P aの
酸素および水蒸気雰囲気で中性粒子ガンを用いて作った
1〜2KeVの中性酸素粒子流に曝した。
The magnetic thin film was then exposed to a 1-2 KeV neutral oxygen particle stream created using a neutral particle gun in a 5 x 10'-2 Pa oxygen and water vapor atmosphere.

粒子流のビーム量はイオン電流換算で20mA 。The beam amount of the particle stream is 20 mA in terms of ion current.

曝した時間は5分間であった。 このサンプルをB1と
する。
The exposure time was 5 minutes. This sample is designated as B1.

これらの断面写真、オージェ分光分析、ESCAの結果
から、法線に対し65°傾斜した、短径200Aの厚さ
方向全域に亘って成長した柱状粒子からなり、0はその
表面に存在していることが確認された。
From these cross-sectional photographs, Auger spectroscopic analysis, and ESCA results, it is found that the particles are composed of columnar particles that are tilted at 65 degrees to the normal line and have grown over the entire thickness direction with a short axis of 200 A, and 0 is present on the surface. This was confirmed.

これらの結果を表2に示す。These results are shown in Table 2.

表  2 サ  ン  プ  ル           B1後 
 処  理    エネルギー粒子流照射Hc   (
Oe)          900$m       
      9X10  ’(emu/雪) 角   形   比          0.9耐  
食  性          2△j;m(%) 表2に示される結果から、本発明の効果があきらかであ
る○
Table 2 Sample after B1
Processing Energy particle flow irradiation Hc (
Oe) 900$m
9X10' (emu/snow) Square shape ratio 0.9 resistance
Eating habits 2△j;m (%) From the results shown in Table 2, the effect of the present invention is clear○

Claims (1)

【特許請求の範囲】 1、非磁性の基体上に、基体主面の法線に対して2O2
以上の入射角にて金属原子を入射させて蒸着を行い5c
osまだはCoならびにNiおよび/もしくはCrを含
む柱状結晶粒の集合体からなる磁性薄膜を形成し、次い
で、この磁性薄膜を実質的に酸素中性粒子から構成され
るエネルギー粒子流に曝し、磁性薄膜の柱状結晶粒の表
面に酸化物層を形成して磁性層とすることを特徴とする
磁気記録媒体の製造方法。 2、磁性層がNiを含み、Co/Niの重量比が1.5
以上である特許請求の範囲第1項に記載の磁気記録媒体
製造方法。 6、磁性層がCrを含み、Cr/(CotたはCO+N
i)の重量比が0.001〜0,1である特許請求の範
囲第1項またけ第2項に記載の磁気la録媒体製造方法
。 4、磁性層中の0/(CoまたはCo + N i )
の原子比が0.6以下である特許請求の範囲第1項ない
し第3項のいずれかに記載の磁気記録媒体製造方法0 5、磁性層の厚さが0.05〜0.5μmである特許請
求の範囲第1項万いし第4項のいずれ751にL己載の
磁気記録媒体製造方法O
[Claims] 1. On a non-magnetic substrate, 2O2 with respect to the normal to the main surface of the substrate
Evaporation is performed by making metal atoms incident at the above angle of incidence, and 5c
A magnetic thin film consisting of an aggregate of columnar crystal grains containing Co and Ni and/or Cr is then formed, and this magnetic thin film is then exposed to an energetic particle stream consisting essentially of oxygen neutral particles to form a magnetic thin film. A method for manufacturing a magnetic recording medium, comprising forming an oxide layer on the surface of a thin film of columnar crystal grains to form a magnetic layer. 2. The magnetic layer contains Ni, and the Co/Ni weight ratio is 1.5.
The magnetic recording medium manufacturing method according to claim 1, which is the above. 6. The magnetic layer contains Cr, Cr/(Cot or CO+N
The method for manufacturing a magnetic LA recording medium according to claim 1 and claim 2, wherein the weight ratio of i) is 0.001 to 0.1. 4. 0/(Co or Co + Ni) in the magnetic layer
The magnetic recording medium manufacturing method according to any one of claims 1 to 3, wherein the atomic ratio of is 0.6 or less, and the thickness of the magnetic layer is 0.05 to 0.5 μm. A method for manufacturing a magnetic recording medium O as described in any one of claims 1 to 4.
JP6621183A 1983-04-14 1983-04-14 Production of magnetic recording medium Pending JPS59191138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6621183A JPS59191138A (en) 1983-04-14 1983-04-14 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6621183A JPS59191138A (en) 1983-04-14 1983-04-14 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59191138A true JPS59191138A (en) 1984-10-30

Family

ID=13309260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6621183A Pending JPS59191138A (en) 1983-04-14 1983-04-14 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59191138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108236A (en) * 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117126A (en) * 1981-01-12 1982-07-21 Matsushita Electric Ind Co Ltd Manufacture for metallic thin film type magnetic recording body
JPS57138060A (en) * 1981-02-20 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording medium
JPS5812317A (en) * 1981-07-15 1983-01-24 Sony Corp Manufacture of thin film magnetic medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117126A (en) * 1981-01-12 1982-07-21 Matsushita Electric Ind Co Ltd Manufacture for metallic thin film type magnetic recording body
JPS57138060A (en) * 1981-02-20 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording medium
JPS5812317A (en) * 1981-07-15 1983-01-24 Sony Corp Manufacture of thin film magnetic medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108236A (en) * 1988-10-18 1990-04-20 Matsushita Electric Ind Co Ltd Production of magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0546014B2 (en)
JPS6321254B2 (en)
JPS5961105A (en) Magnetic recording medium
US4521481A (en) Magnetic recording medium
US4599280A (en) Magnetic recording medium
JPS59178617A (en) Manufacture of magnetic recording medium
JPH0361248B2 (en)
JPS59191138A (en) Production of magnetic recording medium
JPS5961013A (en) Magnetic recording medium
JPS59119534A (en) Magnetic recording medium
JPH0546013B2 (en)
JPS59119543A (en) Production of magnetic recording medium
JPH0817032A (en) Magnetic recording medium and its production
JPH0475577B2 (en)
JPS61139920A (en) Magnetic recording medium
JPS59186136A (en) Manufacture of magnetic recording medium
JP2605803B2 (en) Magnetic recording media
JPH0337724B2 (en)
JPS6333286B2 (en)
JPS59157828A (en) Magnetic recording medium
JPH0630135B2 (en) Ferromagnetic thin film for magnetic recording and method of manufacturing the same
JPH0311531B2 (en)
JP2729544B2 (en) Magnetic recording medium and method of manufacturing the same
JP3665906B2 (en) Magnetic recording medium
JPH01124115A (en) Magnetic recording medium and its production