JPS59190795A - Piezoelectric type low frequency transducer - Google Patents

Piezoelectric type low frequency transducer

Info

Publication number
JPS59190795A
JPS59190795A JP6583583A JP6583583A JPS59190795A JP S59190795 A JPS59190795 A JP S59190795A JP 6583583 A JP6583583 A JP 6583583A JP 6583583 A JP6583583 A JP 6583583A JP S59190795 A JPS59190795 A JP S59190795A
Authority
JP
Japan
Prior art keywords
piston
transducer
low frequency
lever
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6583583A
Other languages
Japanese (ja)
Other versions
JPH0448036B2 (en
Inventor
Takeshi Inoue
武志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6583583A priority Critical patent/JPS59190795A/en
Publication of JPS59190795A publication Critical patent/JPS59190795A/en
Publication of JPH0448036B2 publication Critical patent/JPH0448036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction

Abstract

PURPOSE:To expand sound pressure by using a Helmholtz resonator of balancing type and further providing a displacement expanding mechanism in a piston vibrating type piezoelectric transducer. CONSTITUTION:The displacement expanding mechanism comprising a lever 22 and a hinge 21 is provided in the piston motion type piezoelectric transducer using the Helmholtz resonator 25. Since the sufficient displacement of vibration is attained in a piston rigid body 24 in addition to the low frequency design in this transducer, the transducer with high power at a low frequency is realized.

Description

【発明の詳細な説明】 本発明は数百1+z以下の低周波トランスジューサに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to low frequency transducers of several hundred 1+z or less.

近年、音波による水中探査や水中伝搬の研究のみならず
超速距離トランスジーーサとして1oonz〜数百Hz
(7)周波数範囲で180dB  re  1μPa以
上の音圧レベルが得られる低周波音源が強く望まれてい
る。周知の如く、これらの低周波音源は遠距離音波伝搬
の観点から、1000m程度かそれ以上の海中に沈めて
使用する。
In recent years, research has been conducted not only on underwater exploration and underwater propagation using sound waves, but also as an ultra-fast distance transformer with frequencies ranging from 1oonz to several hundred Hz.
(7) A low-frequency sound source that can obtain a sound pressure level of 180 dB re 1 μPa or higher in a frequency range is strongly desired. As is well known, from the viewpoint of long-distance sound wave propagation, these low-frequency sound sources are used by being submerged in the sea at a depth of about 1000 m or more.

低周波音源の駆動方式として、従来動電形あるいはバリ
アブルレラクタンス形が提案されているが、1000m
程度の深海で動作させるためには、リキッドフィルドも
しくは圧カバランス形トランスジューサ構成とさせるこ
とが必要不可欠でありこのため駆動力が小さすぎ必要な
音圧を得ることが極めて困難であるといった欠点がある
Conventionally, electrodynamic type or variable reluctance type have been proposed as drive methods for low frequency sound sources, but
In order to operate at such depths, it is essential to have a liquid-filled or pressure-capacity transducer configuration, which has the disadvantage that the driving force is too small and it is extremely difficult to obtain the necessary sound pressure. .

一方、圧電形トランスジー−サは十分な駆動力が得られ
るが、180dB re 1μPa という音圧に見合
うだけの放射端面の速度を得ることが、従来困難であっ
た。
On the other hand, although piezoelectric transducers can provide sufficient driving force, it has been difficult in the past to obtain a speed of the radiation end face that is commensurate with the sound pressure of 180 dB re 1 μPa.

本発明は深海でも安定に動作させるため、圧力バランス
形のHe Imho I t z共振器を用い、さらに
変位拡大機構を設け、従来の圧電形トランスジユーサの
放射端面の速度が小さいという欠点を解消し大きな音圧
を得ることができるピストン振動形低周波トランスジー
−サを実現させるためになされたものである。以下図面
について説明する。
In order to operate stably even in the deep sea, the present invention uses a pressure-balanced He Imho I tz resonator and is further equipped with a displacement amplification mechanism, thereby solving the drawback of the low velocity of the radiation end face of conventional piezoelectric transducers. This was done in order to realize a piston vibration type low frequency transformer that can obtain a large sound pressure. The drawings will be explained below.

第1図は、従来のピストン振動タイプ低周波圧電形トラ
ンスジー−サの一例を示す。第1図に於て、10は圧電
セラミック部分を示し、この部分はボルト締めランジュ
バン振動子で周知の如く隣接する円筒状圧電セラミック
振動子の分極方向が互いに逆向きで、機械的には縦続接
続、電気的には並列接続され、またボルトであらかじめ
機械的な圧縮応力のかけられた状態で使用される。
FIG. 1 shows an example of a conventional piston vibration type low frequency piezoelectric transducer. In FIG. 1, numeral 10 indicates a piezoelectric ceramic part, and as is well known in bolted Langevin oscillators, adjacent cylindrical piezoelectric ceramic oscillators have opposite polarization directions and are mechanically connected in cascade. , electrically connected in parallel, and mechanically compressed with bolts before use.

11は結合子%12はピスト741体板、13は)(6
1mh01iz共振器のエンクロージャ一部分、14は
He Imho l t z共振器の空胴部分を示す。
11 is the connector% 12 is the piston 741 body plate, 13 is) (6
The enclosure part of the 1mh01iz resonator, 14 indicates the cavity part of the He Imho l t z resonator.

丈た、第1図Jこ示したトランスジー−サの電気−機械
振動系に関する等価回路表示を第2図に示す。
FIG. 2 shows an equivalent circuit representation of the electro-mechanical vibration system of the transducer shown in FIG. 1.

第2図に於てCdは制動容量、人は力係数、Ccは圧電
セラミック部分のコンプライアンス、Cs1は結合子の
コンプライアンス、mxはピストン剛体板の質量、vt
、Fx はそれぞれピストン放射端面における速度、力
を示す。
In Figure 2, Cd is the braking capacity, force coefficient is Cc, compliance of the piezoelectric ceramic part, Cs1 is compliance of the connector, mx is the mass of the piston rigid plate, vt
, Fx represent the velocity and force at the radial end surface of the piston, respectively.

第1図に示したトランスジューサの共振周波数f□は、
増幅器に接続して駆動した場合、で与えられる。(1)
式より結合子のコンプライアンスC6、を増し、ピスト
ンの質量m1を増すほど低周波化が図られることがわか
るoしかしながら)Ccl、mxを増大させるほど十分
な音圧を得るためのピストン放射端面の速度v1に対し
一、Vxよりかなり大きな圧電セラミック部分の振動速
度が必要である。
The resonant frequency f□ of the transducer shown in Fig. 1 is
When connected to an amplifier and driven, it is given by. (1)
From the equation, it can be seen that the frequency can be lowered as the compliance of the connector C6 is increased and the mass m1 of the piston is increased. However, as Ccl and mx are increased, the speed of the piston radiation end surface to obtain sufficient sound pressure For v1, a vibration velocity of the piezoceramic part that is significantly greater than Vx is required.

即ち、低周波化を図るためにはピストン部分の振動速度
に対してかなり余裕をもって圧電セラミック部分の振動
速度を設定してやる必要があるが、圧電セラミック部分
の振動速度を上げるためには材料上からくる一定の限界
があり、従来のトランスジー−サではエネルギー効率が
悪くなることは明白である。
In other words, in order to reduce the frequency, it is necessary to set the vibration speed of the piezoelectric ceramic part with a considerable margin relative to the vibration speed of the piston part, but in order to increase the vibration speed of the piezoelectric ceramic part, it is necessary to set the vibration speed of the piezoelectric ceramic part from the material. It is clear that there are certain limitations and that conventional transducers have poor energy efficiency.

本発明はこれらの欠点を除いた高効率の圧電形低周波ト
ランスジューサを提供することを目的とする。
An object of the present invention is to provide a highly efficient piezoelectric low frequency transducer that eliminates these drawbacks.

すなわち本発明はへルムホルッの共振器を具備したピス
トン運動タイプ圧電形トランスジューサにおいてレバー
及びヒンジからなる変位拡大機構が付加されたことを特
徴とする圧電形低周波トランスジー−サである。
That is, the present invention is a piezoelectric low-frequency transducer characterized in that a piston motion type piezoelectric transducer equipped with a Helmholt resonator is additionally provided with a displacement magnification mechanism consisting of a lever and a hinge.

本発明の低周波トランスジューサの一例を第3図に示す
An example of the low frequency transducer of the present invention is shown in FIG.

第3図において、加は第1図と同様の圧電セラミック部
分、21はヒンジ、22はレバー、詔は結合子、24は
ピストン剛体板、石はi(elmholtz 共振器の
エンクロージャ一部、2bはHe 1mh o 1 @
 z 共振器の空胴部分を示し1圧電セラミック部分2
0の変位をてこの原理により拡大することを意図したも
のである。第3図のトランスジューサの動作W、埋ヲ詳
述するにあたり、主要部分の構成を第4図に示す。
In FIG. 3, the addition is the same piezoelectric ceramic part as in FIG. 1, 21 is the hinge, 22 is the lever, 2 is the connector, 24 is the piston rigid plate, the stone is part of the enclosure of the elmholtz resonator, and 2b is the He 1mh o 1 @
z indicates the cavity part of the resonator 1 piezoelectric ceramic part 2
It is intended to expand the zero displacement using the lever principle. To explain in detail the operation W of the transducer shown in FIG. 3, the configuration of the main parts is shown in FIG. 4.

第4図において、’1 H’l * ’Iは第3図にお
けるヒンジ21を各部分に分けて記述したものであり、
ILl、IL、はレバー22の各部の長さを示す。また
IL4は結合子路を示す。第4図の動作特性を詳述する
ために、第4図の等価回路表示を第5図に示す。
In FIG. 4, '1 H'l * 'I is a description of the hinge 21 in FIG. 3 divided into each part,
ILl and IL indicate the length of each part of the lever 22. Further, IL4 indicates a connector path. In order to explain the operating characteristics of FIG. 4 in detail, an equivalent circuit representation of FIG. 4 is shown in FIG.

第5図において、cdは制動容量、Aは力係数、coは
圧電セラミック部分のコンプライアンス、m3は圧電セ
ラミック部分の等価質量、CL8.Cも。
In FIG. 5, cd is the braking capacity, A is the force coefficient, co is the compliance of the piezoelectric ceramic part, m3 is the equivalent mass of the piezoelectric ceramic part, CL8. C too.

CJ、はそれぞれヒンジJ1.!、、J、のたてコンプ
ライアンス、CBはヒンジJ、から固定部分をみたコン
プライアンス、CはヒンジJLヨ、b8 ’s間(Dレバーの撓みコンプライアンス、ILはレバ
ーの慣性モーメン”Cbzはヒンジ’ 1 p GeJ
Ls及びセラミック部分からなる複合撓みコンプライア
ンス、CLb*はレバーCIL、−ξ、)部の撓みコン
プライアンス、CJt4は結合子14のたてフンプライ
アンス、rnxはピストン剛体板別の質量である〇 第5図からl x、、/ l r、、よりm奪及び工、
はピストン板冴の質量m1十分小さく設計することがで
き、トランスジューサの特性に関してほとんど無視して
考えられる。またCblはC0と比べてその影響は無視
できる。
CJ, respectively, are hinges J1. ! , J, vertical compliance, CB is hinge J, compliance seen from the fixed part, C is hinge JL yo, b8's (D lever deflection compliance, IL is lever inertia moment, Cbz is hinge' 1 p GeJ
The composite deflection compliance consisting of Ls and the ceramic part, CLb* is the deflection compliance of the lever CIL, -ξ,) part, CJt4 is the vertical hinge compliance of the connector 14, and rnx is the mass of each piston rigid plate 〇Figure 5 From l x, , / l r, , from
The mass m1 of the piston plate can be designed to be sufficiently small, and the characteristics of the transducer can be almost ignored. Moreover, the influence of Cbl can be ignored compared to C0.

トランスジ、−サの低周波化に関して有効に働くコンプ
ライアンスは、回路に並列に配置されているコンプライ
アンスCJ、 、 Cn 、 CJ、 、 CJ、 、
 CI、 bx。
The compliance that is effective in lowering the frequency of the transformer is the compliance CJ, , Cn, CJ, , CJ, , which is placed in parallel in the circuit.
CI, bx.

CLtly ”aであり、これらが低周波化に向けて協
力し合うわけである。またセラミック端面の速度はピス
トン端面では約116./IL、倍に拡大されるわけで
ある。
CLtly''a, and these work together to lower the frequency.Furthermore, the velocity of the ceramic end face is approximately 116./IL at the piston end face, which is doubled.

即ち、本発明の変位拡大機構とHe1mholtz共振
器を用いたトランスジユーサでは、低周波化と同時にピ
ストン鉢体板において十分な振動変位がとれるわけであ
り、深海においてハイパワーかつ小形の低周波音源が実
現できるわけである。
In other words, the transducer using the displacement amplification mechanism and the He1mholtz resonator of the present invention can achieve sufficient vibration displacement in the piston bowl body plate at the same time as lowering the frequency, and can be used as a high-power and small-sized low-frequency sound source in the deep sea. can be realized.

次に本発明の低周波音源の一実施例として、第3図の構
造を有するトランスジー−サについてのべる。l(e1
mholtz共振器δは250 Hzに共振周波数があ
り、円筒形である。
Next, as an embodiment of the low frequency sound source of the present invention, a transducer having the structure shown in FIG. 3 will be described. l(e1
The mholtz resonator δ has a resonant frequency at 250 Hz and is cylindrical.

ピストン剛体板Uは円形をしており、He1mholt
z共振器にわずかな間隙をもって内側に位置している。
The piston rigid plate U is circular and has a He1mholt
It is located inside the z resonator with a slight gap.

駆動用圧電セラミック部は3ケ所あり、120ずつ隔た
っており、ピストン円板消の撓み節点に結合子囚を当接
している。また機械振動系に対する共振周波数は300
Hz付近に設定されている。
There are three driving piezoelectric ceramic parts, spaced apart by 120 mm, and the coupling element is brought into contact with the bending node of the piston disk. In addition, the resonance frequency for the mechanical vibration system is 300
It is set around Hz.

このトランスジューサのピストン板スからirn離れた
ところの最大音圧を測定したところ第6図の実線の特性
を得た。一方、従来の第1図の構造を有する低周波音源
の同様の最大音圧特性は点線の特性となった。
When the maximum sound pressure of this transducer was measured at a distance irn from the piston plate, the characteristics shown by the solid line in FIG. 6 were obtained. On the other hand, the similar maximum sound pressure characteristic of the conventional low-frequency sound source having the structure shown in FIG. 1 is the characteristic shown by the dotted line.

尚、いずれの音源も最大長は1rn未満であり、入力パ
ワーも同一である。従って、本発明に従うと低周波でハ
イパワーのトランスジー−サが実現できる。
Note that the maximum length of both sound sources is less than 1 rn, and the input power is also the same. Therefore, according to the present invention, a low frequency, high power transformer can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のピストン振動低周波圧電形トランスジ−
サの構造図、第2図は第1図に示したトランスジー−サ
の電気機械振動系に関する等価回路図、第3図は本発明
の低周波圧電形トランスジー−サの構造図、第4図は第
3図のトランスジー−サの主要部分を示す図〜第5図は
第4図のトランスジ−サの等価回路図、第6図はトラン
スジー−サの最大音圧特性図である。 図において、10.20は圧電セラミック部分、11゜
詔は結合子、12.24はピストン剛体板、13.25
はHe1mholtz共振器エンクロージャー、14,
26はHe1mholtz共振器空胴部分、21はヒン
ジ、22はレバー、J−1,も、JI−諺はヒンジ、J
L4は結合子、cdは制動容量、Aは力係数、CC,”
 St 、 C4−CJ*、 C4,CB、 CLbt
、 Cbx、 CLbt 、 C4aはコンプライアン
ス、■□ はレバーの慣性モーメント、mlはピストン
剛体板の質量、mff1は圧電セラミック部分の等価質
量、Vxは振動速度、Flは力を示す。 オ  1  図 /j     10     // オ ? 層 オ  3  閃 z5   zti  it  22 75 胆 !1,4□:1
Figure 1 shows a conventional piston vibration low frequency piezoelectric transformer.
2 is an equivalent circuit diagram of the electromechanical vibration system of the transducer shown in FIG. 1. FIG. 3 is a structural diagram of the low frequency piezoelectric transducer of the present invention. 3 shows the main parts of the transformer shown in FIG. 3, FIG. 5 shows an equivalent circuit diagram of the transformer shown in FIG. 4, and FIG. 6 shows the maximum sound pressure characteristics of the transformer. In the figure, 10.20 is the piezoelectric ceramic part, 11° is the connector, 12.24 is the piston rigid plate, and 13.25
is a He1mholtz resonator enclosure, 14,
26 is the He1mholtz resonator cavity, 21 is the hinge, 22 is the lever, J-1, also, JI-proverb is the hinge, J
L4 is the connector, cd is the braking capacity, A is the force coefficient, CC,"
St, C4-CJ*, C4,CB, CLbt
, Cbx, CLbt, and C4a are compliance, ■□ is the moment of inertia of the lever, ml is the mass of the piston rigid plate, mff1 is the equivalent mass of the piezoelectric ceramic part, Vx is the vibration velocity, and Fl is the force. O 1 Figure/j 10 // O? Layer o 3 flash z5 zti it 22 75 bile! 1,4□:1

Claims (2)

【特許請求の範囲】[Claims] (1)  へルムホルツの共振器を具備したピストン振
動タイプ圧電形トランスジューサにおいて、レバー及び
ヒンジからなる変位拡大機構が付加されたことを特徴と
する圧電形低周波トランスジューサ。
(1) A piezoelectric low-frequency transducer characterized in that, in a piston vibration type piezoelectric transducer equipped with a Helmholtz resonator, a displacement magnification mechanism consisting of a lever and a hinge is added.
(2)  レバー及びヒンジからなる変位拡大機構はレ
バーが2つのヒンジと接続しており、該2つのヒンジの
うち一方の他端は固定されており、他方の他端は圧電セ
ラミックと接続し、さらに前記レバーは結合子を介して
ピストン剛体板と接続している構造である特許請求の範
囲第1項記載の圧電形低周波トランスジー−サ。
(2) In the displacement magnification mechanism consisting of a lever and a hinge, the lever is connected to two hinges, the other end of one of the two hinges is fixed, and the other end is connected to a piezoelectric ceramic, 2. The piezoelectric low frequency transducer according to claim 1, wherein said lever is connected to a piston rigid plate via a connector.
JP6583583A 1983-04-14 1983-04-14 Piezoelectric type low frequency transducer Granted JPS59190795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6583583A JPS59190795A (en) 1983-04-14 1983-04-14 Piezoelectric type low frequency transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6583583A JPS59190795A (en) 1983-04-14 1983-04-14 Piezoelectric type low frequency transducer

Publications (2)

Publication Number Publication Date
JPS59190795A true JPS59190795A (en) 1984-10-29
JPH0448036B2 JPH0448036B2 (en) 1992-08-05

Family

ID=13298465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6583583A Granted JPS59190795A (en) 1983-04-14 1983-04-14 Piezoelectric type low frequency transducer

Country Status (1)

Country Link
JP (1) JPS59190795A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310697U (en) * 1986-07-08 1988-01-23
JPS6310699U (en) * 1986-07-08 1988-01-23
JPS6310698U (en) * 1986-07-08 1988-01-23
JPS63263443A (en) * 1987-04-22 1988-10-31 Ngk Spark Plug Co Ltd Repetitive fatigue testing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310697U (en) * 1986-07-08 1988-01-23
JPS6310699U (en) * 1986-07-08 1988-01-23
JPS6310698U (en) * 1986-07-08 1988-01-23
JPH0453116Y2 (en) * 1986-07-08 1992-12-14
JPH0510480Y2 (en) * 1986-07-08 1993-03-15
JPS63263443A (en) * 1987-04-22 1988-10-31 Ngk Spark Plug Co Ltd Repetitive fatigue testing device

Also Published As

Publication number Publication date
JPH0448036B2 (en) 1992-08-05

Similar Documents

Publication Publication Date Title
Larson et al. State switched transducers: A new approach to high-power, low-frequency, underwater projectors
CN110681559B (en) MEMS piezoelectric ultrasonic transducer with Helmholtz resonant cavity
JPS59190795A (en) Piezoelectric type low frequency transducer
GB1557635A (en) Electro acoustic transducer
Guyomar et al. Sound wave transmission reduction through a plate using piezoelectric synchronized switch damping technique
JP2985509B2 (en) Low frequency underwater transmitter
JPS6022478A (en) Stator of surface wave linear motor
Desilets et al. Analyses and measurements of acoustically matched, air-coupled tonpilz transducers
JP2814817B2 (en) Low frequency underwater ultrasonic transmitter
Teng Z-Structured piezoelectric transducers: a new approach for low-frequency small-size underwater projectors
JPH02309799A (en) Transmitter-receiver
Shuyu Acoustic field of flexural circular plates for air-coupled ultrasonic transducers
Mo et al. Thirty years' progress of underwater sound projectors in China
US3085167A (en) High efficiency sonic generator
JPS61133883A (en) Low frequency underwater ultrasonic wave transmitter
Chin et al. Finite element analysis of flextensional electroacoustic transducers
McMahon et al. A 10-kw ring-shell projector
JP2910412B2 (en) Low frequency underwater ultrasonic transmitter
JP2833258B2 (en) Underwater ultrasonic transducer
WO2023163651A2 (en) Acoustic transducer and method of forming the same
Guyomar et al. Wave reflection control using switched piezoelements
US3230502A (en) Single air gap underwater transducer array
Moffett et al. A bimorph flexural‐disk accelerometer for underwater use
JPS6016155Y2 (en) Underwater pressure-resistant transducer
JPS6143897A (en) Low frequency underwater ultrasonic transmitter