JPS59190652A - Rich-burn sensor - Google Patents

Rich-burn sensor

Info

Publication number
JPS59190652A
JPS59190652A JP58066022A JP6602283A JPS59190652A JP S59190652 A JPS59190652 A JP S59190652A JP 58066022 A JP58066022 A JP 58066022A JP 6602283 A JP6602283 A JP 6602283A JP S59190652 A JPS59190652 A JP S59190652A
Authority
JP
Japan
Prior art keywords
oxygen
air
fuel ratio
gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58066022A
Other languages
Japanese (ja)
Other versions
JPH0411823B2 (en
Inventor
Yoshiaki Asayama
浅山 嘉明
Masaya Kominami
小南 正哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
Mitsubishi Electric Corp
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical Mitsubishi Electric Corp
Priority to JP58066022A priority Critical patent/JPS59190652A/en
Publication of JPS59190652A publication Critical patent/JPS59190652A/en
Publication of JPH0411823B2 publication Critical patent/JPH0411823B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases

Abstract

PURPOSE:To obtain an air-fuel ratio sensor which can detect rich-burn by a method wherein a measurement chamber is equipped with an oxygen control and supply means and a chemical equivalent point detection means and exhaust gas is introduced into this measurement chamber. CONSTITUTION:An oxygen control and supply means is composed of zirconia solid electrolytic plates 11a, 12a and a chemical equivalent point detection means is composed of zirconia solid electrolytic plates 11b, 12b. Measured gas (exhaust gas) is introduced into a space chamber (measurement chamber) B through a fine diffusion hole 14. The difference between the oxygen density in a reference air chamber A' and the oxygen concentration in the space chamber B is detected by the chemical equivalent point detection means. As an output voltage of an oxygen concentration cell which is the chemical equivalent point detection means changes step by step in the rich-side from a theoretical air-fuel ratio point, the theoretical air-fuel ratio point can be detected. Because the quantity of the oxygen introduced into the space chamber B can be optionally controlled by an oxygen pump which is the oxygen control and supply means, the air-fuel ratio can be shifted to the rich-side from the theoretical air-fuel ratio point and the optional air-fuel ratio can be detected.

Description

【発明の詳細な説明】 この発明は燃焼機関の排気ガス中の空燃比を測定するた
めのりッチパーンセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rich pan sensor for measuring the air-fuel ratio in exhaust gas of a combustion engine.

従来、空燃比検知素子としてツルフェア酸素濃淡電池セ
ンサが使用されていた。このセンサは理論空燃比点で出
力電圧が階段状に変化することによって理論空燃比での
燃焼状態を検出する。たとえば自動車用内燃機関を理論
空燃比で運転するように制御するシステムに用いられて
いる。しかし上記の酸素センサではリッチ雰囲気におい
て起電力の変化が殆んどなく、したがってリッチ側にお
ける空燃比を厳密に測定することは不可能で、このため
ほぼ一定のリッチ雰囲気に保持するために吸気系側に種
々の装置を設けてオープン制御を行なっていた。ところ
がこのような制御方式では空燃比制御がコスト高になる
上、応答性が低いので高精度の制御が行なえない欠点が
あった。
Conventionally, a Trufea oxygen concentration battery sensor has been used as an air-fuel ratio detection element. This sensor detects the combustion state at the stoichiometric air-fuel ratio by changing the output voltage stepwise at the stoichiometric air-fuel ratio point. For example, it is used in a system that controls an automobile internal combustion engine to operate at a stoichiometric air-fuel ratio. However, with the oxygen sensor mentioned above, there is almost no change in the electromotive force in a rich atmosphere, so it is impossible to accurately measure the air-fuel ratio on the rich side. Various devices were installed on the side to perform open control. However, such a control system has the disadvantage that air-fuel ratio control is expensive and responsiveness is low, making it impossible to perform highly accurate control.

また従来、空燃比全域を検出するセンサとして、特公昭
53−34077号公報並びに特公昭57−49860
号公報に記載されているようなセンサが提案されている
が、いずれも技術的に困難で実用段階に至っていない。
In addition, conventionally, as a sensor for detecting the entire air-fuel ratio,
Sensors such as those described in the above publication have been proposed, but all of them are technically difficult and have not yet reached the practical stage.

上記の特公昭53−34077号公報には空燃比が理論
空燃比点よシもリッチ側での空燃比を測定するためにツ
ルフェア管の排気ガス中に位置する測定側電極としてA
u 。
The above-mentioned Japanese Patent Publication No. 53-34077 discloses that in order to measure the air-fuel ratio at a richer side than the stoichiometric air-fuel ratio point, A
u.

Agのような非触媒電極を用いる形式の酸素センサが記
載されているが、上記の電極でも触媒作用があシ、ガス
吸着現象が生じ出力電圧の再現性が悪くさらに高温高速
のガス中での耐久性が悪く実用できないセンサであった
。また特公昭57−49860号公報にはリッチおよび
リーン側の空燃比が測定しうる方法が記載されているが
使用電流値が極めて低く、電気的な処理に注意が必要で
あシ、製作も技術的に難しく高温高速のガス中での耐久
性。
Oxygen sensors using non-catalytic electrodes such as Ag have been described, but even with the above electrodes, the catalytic action is poor, gas adsorption occurs, and the reproducibility of the output voltage is poor. The sensor had poor durability and could not be put to practical use. In addition, Japanese Patent Publication No. 57-49860 describes a method that can measure rich and lean air-fuel ratios, but the current used is extremely low, requires careful electrical processing, and manufacturing is also difficult. Durability in technically difficult, high-temperature, high-speed gas environments.

応答性が悪いなどの欠点があった。It had drawbacks such as poor responsiveness.

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、比較的安価で実用性に優れ、理論
空燃比点はかシでなくリッチ側やり一ン側の空燃比を測
定し得るセンサを提供することを目的としている。また
この発明は自動車エンジンの燃焼効率の向上および排気
ガスの無害化を良好な機能にするためのりツチバーンエ
ンジン。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above.It is relatively inexpensive and has excellent practicality, and the stoichiometric air-fuel ratio point is not measured at the stoichiometric point but at the rich side and the in-line side. The purpose is to provide a sensor that can This invention also provides a fuel-burning engine for improving the combustion efficiency of an automobile engine and making exhaust gas harmless.

リーンバーンエンジンの空燃比をクローズド制御するだ
めの排気ガス中の空燃比を測定するセンサを提供するこ
とを目的としている。
The present invention aims to provide a sensor that measures the air-fuel ratio in exhaust gas for closed control of the air-fuel ratio of a lean burn engine.

この発明によるリッチバーンセンサの特徴は、酸素供給
源として空気中の酸素を利用したもので、この結果被測
定ガス中の可燃性ガス濃度と酸素濃度を変化させるのに
十分な量の酸素を供給することができる。このことは被
測定ガスの化学当量点を酸素不足状態の側に移動するこ
とができることになり、これは理論空燃比点よj91J
ツチ側での空燃比を検出できることを意味している。
The feature of the rich burn sensor according to this invention is that it uses oxygen in the air as an oxygen supply source, and as a result, it supplies a sufficient amount of oxygen to change the combustible gas concentration and oxygen concentration in the gas being measured. can do. This means that the chemical equivalence point of the gas to be measured can be moved to the oxygen-deficient side, which is lower than the stoichiometric air-fuel ratio point.
This means that the air-fuel ratio on the side can be detected.

以下この発明の実施例を第1図について説明する。An embodiment of the invention will be described below with reference to FIG.

〔実施例1〕 y2os 10重量係で安定したZrO2焼結体よシ5
×20×帆5mの板を2枚切出し、この板の両面に3×
4鱈の大きさにptを約2000^蒸着し、その後厚さ
1μになるように電気メッキして第2図に示す電極付き
固体電解質板12a(12b)を製作した。次に5 X
 20 X i、5 mの板を2枚切出し、上記固体電
解質板12a(12b)と接着したときに空気側と通じ
る孔を形成するようなくほみを設けた第3図に示す固体
電解質板11 a(llb)を製作した。さらに5X5
X1.5waの板を切出し、空間室を形成するために4
X4m+の穴をあけ、かつ拡散細孔14となる0、07
slI++の孔をあけた第4図に示すスペーサ13を製
作した。上記の各部材は第1図に示すよ・うに排気管1
内に保持部3を介して組立て、その接着部にNaO−8
iot −htρ、系のxoootで軟化点を示すガラ
スフリット2を塗布して接合した後、炉中で1150℃
に加熱し結合した。
[Example 1] y2os 10 Stable ZrO2 sintered body 5
Cut out two boards of ×20 × 5m sail, and 3 × on both sides of this board.
Approximately 2,000 ptsm of PT was vapor-deposited to the size of a cod, and then electroplated to a thickness of 1 μm to produce a solid electrolyte plate 12a (12b) with electrodes as shown in FIG. Next 5 X
The solid electrolyte plate 11 shown in FIG. 3 is made by cutting out two plates of 20 X i, 5 m in diameter and providing a hole so as to form a hole communicating with the air side when bonded to the solid electrolyte plate 12a (12b). a(llb) was produced. Further 5X5
Cut out a board of 1.5 wa and cut out 4
Drill a hole of X4m+ and become a diffusion pore 14 0,07
A spacer 13 shown in FIG. 4 with a slI++ hole was manufactured. Each of the above members is attached to the exhaust pipe 1 as shown in Figure 1.
It is assembled through the holding part 3 inside, and NaO-8 is attached to the adhesive part.
After coating and bonding glass frit 2, which has a softening point at xooot of the system
were heated and bonded.

次に上記のように構成したセンサの機能を第1図につい
で説明する。図において、酸素量制御供給手段としての
ツルフェア固体電解質酸素ポンプを固体電解質板11 
a T 12 aで構成している。
Next, the functions of the sensor configured as described above will be explained with reference to FIG. In the figure, a Trufea solid electrolyte oxygen pump as an oxygen amount control supply means is connected to a solid electrolyte plate 11.
It is composed of a T 12 a.

また化学当量点検出手段としてのソルコニア固体電解質
酸素濃淡電池を固体電解質板1 lb、12bで構成し
ている。そして被測定ガスを導入して測定するだめの拡
散細孔14を備えた空間室Bをスペーサ13が形成して
いる。上記酸素ポンプの電極15a 、15bに電圧を
印加されると空気側に開放されている基準空気室Aの酸
素が空間室B内に移動する。また上記酸素濃淡電池は基
準ガスとして空気を利用できるように空気側に開放され
ている空気室A′中の酸素濃度と上記空間室B中の酸素
濃度に応じて電圧を発生する。この電圧は公知のネルン
ストの式で示される。
In addition, a Sorconia solid electrolyte oxygen concentration cell serving as a chemical equivalence point detection means is constituted by solid electrolyte plates 1 lb and 12 b. The spacer 13 forms a space chamber B having diffusion pores 14 through which the gas to be measured is introduced and measured. When a voltage is applied to the electrodes 15a and 15b of the oxygen pump, oxygen in the reference air chamber A, which is open to the air, moves into the space chamber B. Further, the oxygen concentration cell generates a voltage depending on the oxygen concentration in the air chamber A' and the oxygen concentration in the space chamber B, which are open to the air so that air can be used as a reference gas. This voltage is expressed by the well-known Nernst equation.

F−・・ファラデ一定数 P Ot・・・基準ガス中の酸素分圧 POr・・・被測定ガス中の酸素分圧 ところで、空燃比が理論空燃比点よfi IJラッチで
は被測定ガス中の酸素濃度が極めて低く可燃性ガスが急
増するためジルコニア固体電解質酸素濃淡電池では、そ
の出力電圧が理論空燃比点よp lツチ側で階段状に変
化しその現象を利用して理論空燃比点を検出する手段と
して使用されることは公知である。一方、この発明にお
いても酸素濃淡電池は上記と同様の動作を行なうが、酸
素ポンプによって被測定ガス中に酸素が導入されるため
に被測定ガス中の酸素と可燃性ガスの化学当量点が理論
空燃比点よシもリッチ側に移動し、この移動量は導入さ
れた酸素量によって自由に制御できるので、第6.7図
に示すようにリッチ側の任意の空燃比を検出する・こと
ができる。
F-...Faraday constant P Ot...Oxygen partial pressure in the reference gas POr...Oxygen partial pressure in the measured gas By the way, the air-fuel ratio is at the stoichiometric air-fuel ratio point. Because the oxygen concentration is extremely low and combustible gas rapidly increases, the output voltage of the zirconia solid electrolyte oxygen concentration battery changes in a stepwise manner from the stoichiometric air-fuel ratio point to the 1/2 side.Using this phenomenon, the stoichiometric air-fuel ratio point can be reached. It is known to be used as a means of detection. On the other hand, in this invention, the oxygen concentration cell operates in the same manner as described above, but since oxygen is introduced into the measured gas by the oxygen pump, the chemical equivalence point between the oxygen in the measured gas and the combustible gas is the theoretical point. The air-fuel ratio point also moves to the rich side, and the amount of this movement can be freely controlled depending on the amount of oxygen introduced, so it is possible to detect any air-fuel ratio on the rich side, as shown in Figure 6.7. can.

〔実施例2〕 Y2O310重量%で安定化したZrO,焼結体よシ5
X 20 X O,5tmの板を2枚切出し、この板の
両面に3 X 4 mの大きさにptを約20001蒸
着し、その後厚さ1μになるように電気メッキして電極
付き固体電解質板12a、12bを製作した。次に5X
20X1.5mの板を2枚切出し上記固体電解質板12
a、12bと接着したときに空気側と通じる孔を形成す
るようなくほみを設けた固体電解質板11’a、llb
を製作した。さらに間隙室Cを設けるためにスペーサ4
として5 x s X O,075閣の板を切出した。
[Example 2] ZrO stabilized with 10% by weight of Y2O3, sintered body 5
Cut out two 5tm x 20 x 0 plates, deposit approximately 20,001 ptsm of PT on both sides of the plate to a size of 3 x 4m, and then electroplate to a thickness of 1μ to create a solid electrolyte plate with electrodes. 12a and 12b were manufactured. Next 5X
The above solid electrolyte plate 12 was cut out from two 20x1.5m plates.
solid electrolyte plates 11'a and llb provided with holes to form holes communicating with the air side when bonded to solid electrolyte plates 11'a and 12b;
was produced. Furthermore, in order to provide a gap chamber C, a spacer 4 is used.
I cut out a board of 5 x s x O, 075.

上記の各部材は第5図に示すように組て、その接着部に
Na0−8i02−At20s系の1000℃で軟化点
を示すガラス7リツトを塗布した後、炉中で1150℃
に加熱し接合した。このように構成したセンサの機能に
おいては間隙室Cが実施例1の拡散細孔14を備えた空
間室Bと同等の作用が得られ、出力特性も同様であった
The above members were assembled as shown in Fig. 5, and after applying 7 liters of Na0-8i02-At20s glass, which has a softening point at 1000°C, to the bonded parts, they were heated to 1150°C in a furnace.
It was heated and bonded. Regarding the function of the sensor configured in this manner, the gap chamber C achieved the same effect as the space chamber B provided with the diffusion pores 14 of Example 1, and the output characteristics were also similar.

〔実施例3〕 実施例1にて製作したセンサにおいて、固体電解質酸素
ポンプを使用し空間室B内の酸素を排出し、固体電解質
酸系濃淡電池の出力電圧が100mVになるように空燃
比に対応してポンプ電流を変え測定したところ、800
℃排気ガス温中で第7図に示すような特性が確認された
。この特性からり一ン時において空燃比を測定するには
ポンプ電流を測ればよい。また実施例2にて製作したセ
ンサでも同様の特性が得られた。なお、第8図にリーン
時におけるポンプ電流とを燃比との関係の特性図を示し
ている。
[Example 3] In the sensor manufactured in Example 1, the oxygen in space chamber B was exhausted using a solid electrolyte oxygen pump, and the air-fuel ratio was adjusted so that the output voltage of the solid electrolyte acid concentration battery was 100 mV. When I changed the pump current accordingly and measured it, I found that it was 800.
The characteristics shown in FIG. 7 were confirmed at an exhaust gas temperature of .degree. Due to this characteristic, the air-fuel ratio can be measured at one time by measuring the pump current. Further, similar characteristics were obtained with the sensor manufactured in Example 2. Incidentally, FIG. 8 shows a characteristic diagram of the relationship between pump current and fuel ratio during lean operation.

以上のようにこの発明によれば、所定量の酸素を供給す
る酸系量制御供給手段と、化学当量点検出手段とを備え
、両手段が任意量の被測定ガスを導入して測定するため
の間隙室または拡散細孔を備えた空間室を形成したこと
によジ、内燃機関の排気ガス中の酸素濃度と空燃比が計
測できる小型で安価なりツチパーンセンサとなり、基準
としての理論空燃比を検出し、酸素濃度と空燃比の補正
ができるので、正確かつ安定にリッチ、リーンの任意の
空燃比に制御できる。またこの発明のセンサは自動車の
エンジンの他2.工業用バーナおよび暖房用燃焼装置な
どにも広く適用できる効果がおる。
As described above, according to the present invention, the acid system amount control supply means for supplying a predetermined amount of oxygen and the chemical equivalence point detection means are provided, and both means introduce and measure an arbitrary amount of the gas to be measured. By forming a space chamber with a gap chamber or diffusion pores, it becomes a small and inexpensive sensor that can measure the oxygen concentration and air-fuel ratio in the exhaust gas of an internal combustion engine, and the stoichiometric air-fuel ratio as a reference. Since the oxygen concentration and air-fuel ratio can be corrected, the air-fuel ratio can be accurately and stably controlled to any desired rich or lean air-fuel ratio. Furthermore, the sensor of the present invention can be applied to automobile engines as well as 2. It has the effect of being widely applicable to industrial burners and heating combustion devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のりツチパーンセンサの断面図、第2
図は電極付き固体電解質板の斜視図、第3図は固体電解
質板の斜視図、第4図はスペーサの斜視図、第5図はり
ツチバーンセンサの他の実施例を示す断面図、第6図は
ポンプ電流を流したときの電池電圧の変化を示す特性図
、第7図は化学当量点変化をポンプ電流と空燃比で表わ
した特性図、第8図はり一ン時におけるポンプ電流と空
燃比の関係を示す特性図である。 2・・・ガラスフリット接合部、4・・・スペーサ、1
1a、11b−固体電解質板、12a、12b・・・電
極付き固体電解質板、13・・・スペーサ、14・−拡
散細孔、15a、151>・・・ポンプ部電極、16 
a 、 16 b−電池部電極、A 、 A’−・基準
空気室、B・・・空間室、C・・・間隙室。 なお、図中、同一符号は同−又は相当部分を示す。 第1図 第5図 第6 図 キノ1気力・”スジ車速 soo’c O点 ポンプ電ミ赴100mAのときの出力文イヒ点E
市 ポンプ 第7図 第8図 手続補正書(自発) 2、発明の名称 リッチバーンセンサ 3、補正をする者 事件との関係 特許出願人 住 所    東京都千代田区丸の内二丁目2番3号名
 称  (601)三菱電機株式会社代表者片山仁八部 4、代理人 住 所     東京都千代田区丸の内二丁目2番3号
5、補正の対象 明細書の特許請求の範囲の欄 6、補正の内容 別紙のとおり、明細書の特許請求の範囲を補正する。 以上 特許請求の範囲 (1)所定量の酸素を供給する酸素量制御供給手段と、
化学当量点検出手段とを備え、上記両手段が任意量の被
測定ガスを導入して測定するための間隙室または拡散細
孔を備えた空間室を形成し、この室内の被測定ガス中の
酸素濃度を上記酸素量制御供給手段で制御して所定の空
燃比で上記空間室内の被測定ガスを化学当量点に制御し
、空間室外の被測定ガスの空燃比を上記化学当量点検出
手段で測定することを特徴とするりッチバーンセンサ。 (2)酸素量制御供給手段として、固体電解質酸素ポン
プを用い、酸素源として空気中の酸素を使用することを
特徴とする特許請求の範囲第1項記載のりッチバーンセ
ンサ。 (3)化学当量点検出手段として、固体電解質酸素濃淡
電池を用い、基準ガスとして空気中の酸素を使用するこ
とを特徴とする特許請求の範囲第1項記載のりッチバー
ンセンサ。 (4)リーン時において、上記空間室内の被測定ガス中
の酸素濃度が化学当量点検出手段の基準ガス中の、酸素
濃度と所定の濃度差をもつように上記検出手段を動作し
、そのときの電流値によって酸素濃度を判定し、空間室
外の測定ガスの空燃比を判定することを特徴とする特許
請求の範囲第1項記載のりツチバーンセンも 手続補正書(自発) 936 昭和  年  月  日 1、事件の表示   特願昭58−66022号2、発
明の名称 空燃比センサ 3、補正をする者 4、代理人 I′キビ”、′ 5、補正の対象 明細書全文。 6、補正の内容 明細書全文を別紙のとおり補正する。 以上 明    細    書 1、発明の名称 空燃比センサ 2、特許請求の範囲 (1)  所定量の酸素を供給する酸素量制御供給手段
と、化学当量点検出手段とを備え、上記両手段が任意量
の被測定ガスを導入して測定するための間隙室または拡
散細孔を備えた空間室を゛形成し、この室内の被測定ガ
ス中の酸素濃度を上記酸素量制御供給手段で制御して所
望の空燃比で上記室内上記室外の被測定ガスの空燃比を
上記化学当量点ことを特徴とする空燃比センサ。 (2)酸素量制御供給手段として、固体電解質酸素ポン
プを用い、酸素源として空気中の酸素を使用することを
特徴とする特許請求の範囲第1項記載の空燃比センサラ (3)化学当量点検出手段として、固体電解質酸ること
を特徴とする特許請求の範囲第1項ユJユL第2項記載
の空燃比センサ。 ンサ。 8、発明の詳細な説明 この発明は内燃機関の排気ガス中の空燃比を測定するた
めの空燃比センサに関するものである。 従来、空燃比検知素子としてジルコニア酸素濃淡電池セ
ンサが使用されていた。このセンサは理論空燃比点で出
力電圧が階段状ζこ変化することによって理論空燃比で
の燃焼状態を検出する。たとえば自動車用内燃機関を理
論空燃比モ運転するように制御するシステムに用いられ
ている。しかし上記の酸素センサではリッチ雰囲気にお
いて起電力の変化が殆んどなく、シたがってリッチ側に
おける空燃比を厳密に測定することは不可能で、このた
めほぼ一定のリッチ雰囲気に保持するために吸気系側に
棟々の装置を設けてオープン制御を行なっていた。とこ
ろがこのような制御方式では空燃比制御がコスト高にな
る上、高精度の制御が行なえない欠点があった。 また従来、空燃比全域を検出するセンサとして、特公昭
58−”84077号公報並びに特公昭57−4986
0号公報に記載されているようなセンサが提案されてい
るが、いずれも技術的に困難で実用段階に至っていない
。上記の特公昭58−84077号公報には空燃比が理
論空燃比点よりもリッチ側での空燃比を測定するために
ジルコニア管の排気ガス中に位置する測定側電極として
Au 、 Agのような非触媒電極を用いる形式の酸素
センサが記載されているが、上記の電極でも触媒作用が
あり、ガス吸着現象が生じ出力電圧の再現性が悪くさら
に高温高運のガス中での耐久性が悪く実用できないセン
サであった。また特公昭57−49860号公報にはリ
ッチおよびリーン側の空燃比が測定しうる方法が記載さ
れているが使用電流値が極めて低く、電気的な処理に注
意が必要であり、製作も技術的に難しく高温高速のガス
中での耐久性、応答性が悪いなどの欠点があった。 この発明は上記のような従来のものの欠点を除去するた
めになされたもので、比較的安価で実用性に優れ、理論
空燃比点ばかりでなくリッチ側やリーン側の空燃比を測
定し得るセンサを提供することを目的としている。また
この発明は自動車用機関の燃焼効率の向上および排気ガ
スの無害化を良好にするためのりッチバーンエンジン、
リーンバーンエンジンの空燃比をクローズド制御するた
めの排気ガス中の空燃比を測定するセンサを提供するこ
とを目的としている。 この発明による空燃比センサの特徴は、酸素供給源とし
て空気中の酸素を利用したもので、この結果被測定ガス
中の可燃性ガス濃度と酸素濃度を変化させるのに十分な
量の酸素を供給することができる、このことは被測定ガ
スの化学当量点を酸素不足状態の側に移動することがで
きることになり、これは理論空燃比点よりリッチ側での
空燃比を検出できることを意味している。 以下この発明の実施例を第1図について説明する。 〔実施例IJ Y20810重屋%で安足したZ、o2焼結体より5×
20X0.5mm の板を2枚切出し、この板の両面に
8X4m+++の大きさにPtを約200OA蒸着し、
その後厚さ1μになるように電気メッキして第2図に示
す電極付き固体電解質板(12a) (12b)を製作
した。次に5X20X1.5mmの板を2枚切出し、上
記固体型#質板(12a) (12b)と接着したとき
に空気側と通じる孔を形成するようなくぼみを設けた第
8図に示す固体電解質板(lla) (Hb)を製作し
た。 さらに5X5X1.5mmの板を切出し、空間室を形成
するために4X4.の穴をあけ、かつ拡散細孔14とな
る0、07nnnの孔′をあけた第4図に示すスペーサ
18を製作した。上記の各部材は第1図に示すように排
気管1内に保持部8を介して組立て、その接着部ニNa
 O−S i 02  AA’20B系O1000℃で
軟化点を示すガラスフリット2を塗布して接合しす後、
炉中で1150″Cに加熱し結合した。 次に上記のように構成したセンサの機能を第1図につい
て説明する。図において、酸漿量制御供給手段としての
ジルコニア固体電解質酸素ポンプを固体電解質板11a
 、 12aで構成している。また化学当量点検出手段
としてのジルコニア固体電解質酸素濃淡電池を固体電解
質板11b 、ト2bで構成している。そして被測定ガ
スを導入して測定するための拡散細孔14を備えた空間
室Bをスペーサ18が形成している。上記酸素ポンプの
電極15a 、 15bに電圧を印加されると空気側に
開放されている基準空気室Aの酸素が空間室B内に移動
する。また上記酸素濃淡電池は基準ガスとして空気を利
用でるように空気側に開放されている空気室A′中の酸
素濃度と上記空間室B中の酸素濃度に応じて電圧を発生
する。この電圧は公知のネルンストの式で示される。 R・・・気体定数 PO2・・・基準ガス中の酸素分圧 Pσ2・・・被測定カス中の酸素分圧 ところで、空燃比が理論空燃比点よりリッチ側では被測
定ガス中の酸素濃度が極めて低く可燃性ガスが急増する
ためジルコニア固体電解質酸素濃淡電池では、その出力
電圧が理論空燃比点よりリッチ側で階段状に変化しその
現象を利用して理論空燃比点を検出する手段として使用
されることは公知である。一方、この発明においても酸
素濃淡電池は上記と同様の動作を行なうが、酸素ポンプ
によって上記空間室B内の被測定ガス中に酸素が導入さ
れるためにこの被測定ガス中の酸素と可燃性ガスの化学
当量が上記空間室B外の被測定ガスの理論空燃比点より
も実質的にリッチ側に移動し、この移動量は導入された
酸素量によって自由に制御できるので、第6,7図に示
すようにリッチ側の任意の空燃比を検出することができ
る。 〔実施例2〕 Y2O810重量%で安定化したZ r O2焼結体よ
り5X20X0.5mmの板を2枚切出し、この板の両
面にF3 X 4 m+nの大きさにptを約200O
A蒸着し、その後厚さ1μになるように電気メッキして
電極付き固体電解質板12a 、 12bを製作した。 次に5X20X1.5mmの板を2枚切出し上記固体電
解質板12a 、 12bと接着したときに空気側と通
じる孔を形成するようなくぼみを設けた固体電解質板1
1a。 11bを製作した。さらに間隙室Cを設けるためにスペ
ーサ4として5X5X0.075mmの板を切出した。 上記の各部材は第5図に示すように組立て、その接着部
にNa0−5i02−Al□Oa系(D 1000 ’
Cテ軟化点を示すガラスフリットを塗布した後、炉中で
1150℃に加熱し接合した。このように構成したセン
サの機能においては間隙室Cが実施例1の拡散細孔14
を備えた空間室Bと同等の作用が得られ、出力特性も同
様であった。 〔実施例3〕 実施例1にて製作したセンサにおいて、固体電解質酸素
ポンプを使用し空間室B内の酸素を排出し、固体電解質
酸素濃淡電池の出力電圧が100mVになるように、即
ち、空間室Bと基準空気室A′との酸素分圧が設定値に
なるように空燃比に対応してポンプ電流を変え測定した
ところ、800’C排気ガス温中で第8図に示すような
特性が確認された。 この特性からリーン時において空燃比を測定するにはポ
ンプ電流を測ればよい。また実施例2にて製作したセン
サでも同様の特性が得られた。 以上のようにこの発明によれば、所定量の酸素を供給す
る酸素量制御供給手段と、化学当量点検出手段とを備え
、両手段が任意量の被測定ガスを導入して測定するため
の間隙室または拡散細孔を備えた空間室を形成したこと
により、内燃機関の排気ガス中の酸素濃度と空燃比が計
測できる小型で安価な空燃比センサとなり、基準として
の理論空燃比を検出し、酸素濃度と空燃比の補正ができ
るので、正確かつ安定にリッチ、リーンの任意の空燃比
が測定できる。またこの発明のセンサは自動車用機関の
他、工業用バーナおよび房用燃焼装置などにも広く適用
できる効果がある。 4、図面の簡単な説明 第1図はこの発明の空燃比センサの断面図、第2図は電
極付き固体電解質板の斜視図、第8図は固体電解質板の
斜視図、第4図はスペーサの斜視図、第5図は空燃比セ
ンサの他の実施例を示す断面図、第6図はポンプ電流を
流したときの電池電圧の変化を示す特性図、第7図は化
学当量変化をポンプ電流と空燃比で表わした特性図、第
8図はリーン時におけるポンプ電流と空燃比の関係を示
す特性図である。 2・・・ガラスフリット接合部、4・・・スペーサ、1
1a、 llb ・・一固体電解質板、12a 、 1
2b =−電極付き固体電解質板、1g・・・スペーサ
、工4・・・拡散細孔、15a 、 15b・・・ポン
プ部電極、16a 、 16b・・・電池部電極、^、
A′・・・基準空気室、B・・・空間室、C・・・間隙
室。 なお、図中、同一符号は同−又は相当部分を示す。 代理人 大岩増雄
Fig. 1 is a sectional view of the adhesive sensor according to the present invention;
The figure is a perspective view of a solid electrolyte plate with electrodes, Figure 3 is a perspective view of a solid electrolyte plate, Figure 4 is a perspective view of a spacer, Figure 5 is a sectional view showing another embodiment of the beam sensor, and Figure 6 is a perspective view of a solid electrolyte plate with electrodes. Figure 7 is a characteristic diagram showing changes in battery voltage when pump current is applied, Figure 7 is a characteristic diagram showing changes in chemical equivalence point in terms of pump current and air-fuel ratio, and Figure 8 is a characteristic diagram showing changes in battery voltage when pump current is applied. FIG. 3 is a characteristic diagram showing the relationship between fuel ratios. 2...Glass frit joint, 4...Spacer, 1
1a, 11b - Solid electrolyte plate, 12a, 12b... Solid electrolyte plate with electrode, 13... Spacer, 14 - Diffusion pore, 15a, 151>... Pump part electrode, 16
a, 16b-battery section electrode, A, A'--reference air chamber, B... space chamber, C... gap chamber. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Fig. 1 Fig. 5 Fig. 6
City Pump Figure 7 Figure 8 Procedural amendment (voluntary) 2. Name of the invention Rich burn sensor 3. Relationship to the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name Name (601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent address 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo, Claims column 6 of the specification to be amended, Attachment to the contents of the amendment Amend the claims of the specification as follows. Claims (1) Oxygen amount control supply means for supplying a predetermined amount of oxygen;
chemical equivalence point detection means; both means form a space chamber equipped with a gap chamber or diffusion pore for introducing and measuring an arbitrary amount of the gas to be measured; The oxygen concentration is controlled by the oxygen amount control supply means to control the gas to be measured in the space chamber to a chemical equivalence point at a predetermined air-fuel ratio, and the air-fuel ratio of the gas to be measured outside the space chamber is controlled by the chemical equivalence point detection means. A rich burn sensor characterized by measuring. (2) The rich burn sensor according to claim 1, wherein a solid electrolyte oxygen pump is used as the oxygen amount control supply means and oxygen in the air is used as the oxygen source. (3) The rich burn sensor according to claim 1, wherein a solid electrolyte oxygen concentration battery is used as the chemical equivalence point detection means, and oxygen in the air is used as the reference gas. (4) In the lean state, the detection means is operated so that the oxygen concentration in the gas to be measured in the space chamber has a predetermined concentration difference from the oxygen concentration in the reference gas of the chemical equivalence point detection means; The oxygen concentration is determined based on the current value of the air-fuel ratio of the gas to be measured outside the space chamber, and the air-fuel ratio of the gas to be measured outside the space chamber is determined. Indication of the case: Japanese Patent Application No. 58-66022 2, Name of the invention Air-fuel ratio sensor 3, Person making the amendment 4, Agent I'Kibi', 5. Full text of the specification to be amended. 6. Details of the amendment The entire text has been amended as shown in the attached document. Description 1, Name of the invention Air-fuel ratio sensor 2, Claims (1) Oxygen amount control supply means for supplying a predetermined amount of oxygen and chemical equivalence point detection means Both means form a space chamber equipped with a gap chamber or a diffusion pore for introducing and measuring an arbitrary amount of the gas to be measured, and the oxygen concentration in the gas to be measured in this chamber is adjusted to the above amount of oxygen. An air-fuel ratio sensor characterized in that the air-fuel ratio of the gas to be measured in the indoor and outdoor areas is controlled by a control supply means to a desired air-fuel ratio to the chemical equivalence point.(2) As the oxygen amount control supply means, a solid electrolyte oxygen (3) The air-fuel ratio sensor according to claim 1, characterized in that a pump is used and oxygen in the air is used as an oxygen source. The air-fuel ratio sensor as set forth in claim 1, item 2. Conventionally, a zirconia oxygen concentration battery sensor has been used as an air-fuel ratio detection element.This sensor detects the combustion state at the stoichiometric air-fuel ratio by changing the output voltage stepwise at the stoichiometric air-fuel ratio point. For example, it is used in a system that controls an automobile internal combustion engine to operate at a stoichiometric air-fuel ratio.However, in the oxygen sensor mentioned above, there is almost no change in electromotive force in a rich atmosphere, and therefore It is impossible to precisely measure the air-fuel ratio, so in order to maintain an almost constant rich atmosphere, open control is performed by installing various devices on the intake system side.However, with this control method, Air-fuel ratio control has the drawbacks of high cost and inability to perform high-precision control. Conventionally, as a sensor for detecting the entire air-fuel ratio, there are sensors such as those disclosed in Japanese Patent Publication No. 58-84077 and Japanese Patent Publication No. 57-4986.
Sensors such as those described in Publication No. 0 have been proposed, but all of them are technically difficult and have not yet reached the practical stage. The above-mentioned Japanese Patent Publication No. 58-84077 describes the use of materials such as Au and Ag as a measuring electrode located in the exhaust gas of a zirconia tube in order to measure the air-fuel ratio when the air-fuel ratio is richer than the stoichiometric air-fuel ratio point. Oxygen sensors using non-catalytic electrodes have been described, but even the above electrodes have a catalytic effect, causing gas adsorption phenomena, resulting in poor output voltage reproducibility and poor durability in high-temperature, high-temperature gases. It was a sensor that could not be put to practical use. In addition, Japanese Patent Publication No. 57-49860 describes a method that can measure rich and lean air-fuel ratios, but the current used is extremely low, requires careful electrical processing, and is technically difficult to manufacture. However, it has drawbacks such as poor durability and poor responsiveness in high-temperature, high-speed gas environments. This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is a sensor that is relatively inexpensive, has excellent practicality, and can measure not only the stoichiometric air-fuel ratio point but also the air-fuel ratio on the rich side and lean side. is intended to provide. This invention also provides a rich burn engine for improving the combustion efficiency of an automobile engine and making exhaust gas harmless;
The present invention aims to provide a sensor that measures the air-fuel ratio in exhaust gas for closed control of the air-fuel ratio of a lean burn engine. A feature of the air-fuel ratio sensor according to the present invention is that it uses oxygen in the air as an oxygen supply source, and as a result, it supplies a sufficient amount of oxygen to change the combustible gas concentration and oxygen concentration in the gas being measured. This means that the chemical equivalence point of the gas being measured can be moved to the oxygen-deficient side, which means that the air-fuel ratio can be detected on the richer side than the stoichiometric air-fuel ratio point. There is. An embodiment of the invention will be described below with reference to FIG. [Example IJ Y208 10 Juya% Z, O2 sintered body 5×
Two 20 x 0.5 mm plates were cut out, and approximately 200 OA of Pt was deposited on both sides of the plates to a size of 8 x 4 m +++.
Thereafter, the solid electrolyte plates (12a) and (12b) with electrodes shown in FIG. 2 were manufactured by electroplating to a thickness of 1 μm. Next, two plates of 5 x 20 x 1.5 mm were cut out, and a hollow was formed so as to form a hole communicating with the air side when the solid electrolyte plates (12a) and (12b) were bonded to the solid electrolyte shown in Fig. 8. A plate (lla) (Hb) was manufactured. Furthermore, a 5x5x1.5mm plate was cut out, and a 4x4. A spacer 18 as shown in FIG. 4 was manufactured in which a hole of 0.07 nnn was formed to serve as the diffusion pore 14. Each of the above members is assembled into the exhaust pipe 1 via the holding part 8 as shown in FIG.
O-S i 02 AA'20B series O After applying and bonding glass frit 2 which exhibits a softening point at 1000°C,
They were heated to 1150"C in a furnace and bonded. Next, the function of the sensor configured as described above will be explained with reference to FIG. 11a
, 12a. Further, a zirconia solid electrolyte oxygen concentration cell serving as a chemical equivalence point detection means is composed of a solid electrolyte plate 11b and a plate 2b. The spacer 18 forms a space chamber B having diffusion pores 14 for introducing and measuring the gas to be measured. When a voltage is applied to the electrodes 15a and 15b of the oxygen pump, oxygen in the reference air chamber A, which is open to the air, moves into the space chamber B. Further, the oxygen concentration cell generates a voltage depending on the oxygen concentration in the air chamber A' and the oxygen concentration in the space chamber B, which are open to the air so that air can be used as a reference gas. This voltage is expressed by the well-known Nernst equation. R...Gas constant PO2...Oxygen partial pressure in the reference gas Pσ2...Oxygen partial pressure in the measured gas By the way, when the air-fuel ratio is richer than the stoichiometric air-fuel ratio point, the oxygen concentration in the measured gas is Because combustible gas increases rapidly at extremely low temperatures, the output voltage of zirconia solid electrolyte oxygen concentration batteries changes stepwise on the richer side than the stoichiometric air-fuel ratio point, and this phenomenon is used as a means to detect the stoichiometric air-fuel ratio point. It is publicly known that On the other hand, in this invention, the oxygen concentration cell operates in the same manner as described above, but since oxygen is introduced into the gas to be measured in the space chamber B by the oxygen pump, the oxygen in the gas to be measured and the flammable The chemical equivalent of the gas moves to the richer side than the stoichiometric air-fuel ratio point of the gas to be measured outside the space chamber B, and the amount of this movement can be freely controlled by the amount of oxygen introduced. As shown in the figure, any air-fuel ratio on the rich side can be detected. [Example 2] Two plates of 5 x 20 x 0.5 mm were cut out from a Z r O 2 sintered body stabilized with 10% by weight of Y2O8, and about 200 O of PT was applied to both sides of the plate to a size of F3 x 4 m+n.
Solid electrolyte plates 12a and 12b with electrodes were manufactured by depositing A and then electroplating to a thickness of 1 μm. Next, two plates of 5 x 20 x 1.5 mm are cut out, and a solid electrolyte plate 1 is provided with a recess so as to form a hole communicating with the air side when bonded to the solid electrolyte plates 12a and 12b.
1a. 11b was produced. Furthermore, in order to provide a gap chamber C, a plate of 5×5×0.075 mm was cut out as a spacer 4. Each of the above members was assembled as shown in Fig. 5, and Na0-5i02-Al□Oa system (D 1000'
After applying a glass frit exhibiting a CTE softening point, it was heated to 1150°C in a furnace and bonded. In the function of the sensor configured in this way, the gap chamber C is the diffusion pore 14 of the first embodiment.
The same effect as that of the space chamber B equipped with the above was obtained, and the output characteristics were also the same. [Example 3] In the sensor manufactured in Example 1, the oxygen in space chamber B was exhausted using a solid electrolyte oxygen pump, and the output voltage of the solid electrolyte oxygen concentration battery was 100 mV. When we measured the pump current by changing the pump current according to the air-fuel ratio so that the oxygen partial pressure in chamber B and reference air chamber A' became the set value, we found the characteristics shown in Figure 8 at an exhaust gas temperature of 800'C. was confirmed. Based on this characteristic, in order to measure the air-fuel ratio during lean conditions, it is sufficient to measure the pump current. Further, similar characteristics were obtained with the sensor manufactured in Example 2. As described above, according to the present invention, the oxygen amount control supply means for supplying a predetermined amount of oxygen and the chemical equivalence point detection means are provided. By forming a space chamber with a gap chamber or diffusion pores, it becomes a small and inexpensive air-fuel ratio sensor that can measure the oxygen concentration and air-fuel ratio in the exhaust gas of an internal combustion engine, and also detects the stoichiometric air-fuel ratio as a reference. Since the oxygen concentration and air-fuel ratio can be corrected, any rich or lean air-fuel ratio can be measured accurately and stably. Furthermore, the sensor of the present invention has the effect of being widely applicable not only to automobile engines but also to industrial burners and chamber combustion devices. 4. Brief description of the drawings Figure 1 is a cross-sectional view of the air-fuel ratio sensor of the present invention, Figure 2 is a perspective view of a solid electrolyte plate with electrodes, Figure 8 is a perspective view of a solid electrolyte plate, and Figure 4 is a spacer. 5 is a sectional view showing another embodiment of the air-fuel ratio sensor, FIG. 6 is a characteristic diagram showing changes in battery voltage when pump current is applied, and FIG. FIG. 8 is a characteristic diagram showing the relationship between the pump current and the air-fuel ratio in a lean state. 2...Glass frit joint, 4...Spacer, 1
1a, llb... one solid electrolyte plate, 12a, 1
2b =-Solid electrolyte plate with electrode, 1g... Spacer, Work 4... Diffusion pore, 15a, 15b... Pump part electrode, 16a, 16b... Battery part electrode, ^,
A'...Reference air chamber, B...Space chamber, C...Gap chamber. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Agent Masuo Oiwa

Claims (4)

【特許請求の範囲】[Claims] (1)所定量の酸素を供給する酸素量制御供給手段と、
化学当量点検出手段とを備え、上記両手段が任意量の被
測定ガスを導入して測定するための間隙室または拡散細
孔を備えた空間室を形成し、この室内の被測定ガス中の
酸素濃度を上記酸素量制御供給手段で制御して所定の空
燃比で上記空間室内の被測定ガスを化学当量点に制御し
、空間室外の被測定ガスの空燃比を上記化学当量点検出
手段で測定することを特徴とするりツチパーンセンサ。
(1) oxygen amount control supply means for supplying a predetermined amount of oxygen;
chemical equivalence point detection means; both means form a space chamber equipped with a gap chamber or diffusion pore for introducing and measuring an arbitrary amount of the gas to be measured; The oxygen concentration is controlled by the oxygen amount control supply means to control the gas to be measured in the space chamber to a chemical equivalence point at a predetermined air-fuel ratio, and the air-fuel ratio of the gas to be measured outside the space chamber is controlled by the chemical equivalence point detection means. Ritsuchipan sensor characterized by measuring.
(2)酸素量制御供給手段として、固体電解質酸素ポン
プを用い、酸素源として空気中の酸素を使用することを
特徴とする特許請求の範囲第1項記載のりツチバーンセ
ンサ。
(2) The multi-burn sensor according to claim 1, characterized in that a solid electrolyte oxygen pump is used as the oxygen amount control supply means and oxygen in the air is used as the oxygen source.
(3)化学当量点検出手段として、固体電解質酸素濃淡
電池を用い、・基準ガスとして空気中の酸素を使用する
ことを特徴とする特許請求の範囲第1項記載のりツチバ
ーンセンサ。
(3) The multi-bar sensor according to claim 1, characterized in that a solid electrolyte oxygen concentration battery is used as the chemical equivalence point detection means, and oxygen in the air is used as the reference gas.
(4)リーン時において、上記空間室内の被測定ガス中
の酸素濃度が化学当量検出手段の基準ガス中の酸素濃度
と所定の濃度差をもつように上記検出手段を動作し、そ
のときの電流値によって酸素濃度を判定し、空間室外の
測定ガスの空燃比を判定することを特徴とする特許請求
の範囲第1項記載のりツチパーンセンサ。
(4) In the lean state, the detection means is operated so that the oxygen concentration in the gas to be measured in the space chamber has a predetermined concentration difference from the oxygen concentration in the reference gas of the chemical equivalent detection means, and the current at that time is The sensor according to claim 1, characterized in that the oxygen concentration is determined based on the value, and the air-fuel ratio of the measurement gas outside the space chamber is determined.
JP58066022A 1983-04-12 1983-04-12 Rich-burn sensor Granted JPS59190652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58066022A JPS59190652A (en) 1983-04-12 1983-04-12 Rich-burn sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58066022A JPS59190652A (en) 1983-04-12 1983-04-12 Rich-burn sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59043097A Division JPS59192955A (en) 1984-03-06 1984-03-06 Air fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS59190652A true JPS59190652A (en) 1984-10-29
JPH0411823B2 JPH0411823B2 (en) 1992-03-02

Family

ID=13303879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58066022A Granted JPS59190652A (en) 1983-04-12 1983-04-12 Rich-burn sensor

Country Status (1)

Country Link
JP (1) JPS59190652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144655A (en) * 1984-01-05 1985-07-31 Nissan Motor Co Ltd Air-fuel ratio detector
DE4033667A1 (en) * 1989-10-25 1991-05-02 Ngk Insulators Ltd Oxygen concn. sensor for gas mixt. has heater - operable at two different potentials to minimise preparation time
US5130002A (en) * 1989-11-15 1992-07-14 Ngk Insulators, Ltd. Method of processing oxygen concentration sensor by applying ac current, and the thus processed sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163558A (en) * 1983-03-09 1984-09-14 Ngk Insulators Ltd Electrochemical apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163558A (en) * 1983-03-09 1984-09-14 Ngk Insulators Ltd Electrochemical apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144655A (en) * 1984-01-05 1985-07-31 Nissan Motor Co Ltd Air-fuel ratio detector
DE4033667A1 (en) * 1989-10-25 1991-05-02 Ngk Insulators Ltd Oxygen concn. sensor for gas mixt. has heater - operable at two different potentials to minimise preparation time
US5130002A (en) * 1989-11-15 1992-07-14 Ngk Insulators, Ltd. Method of processing oxygen concentration sensor by applying ac current, and the thus processed sensor

Also Published As

Publication number Publication date
JPH0411823B2 (en) 1992-03-02

Similar Documents

Publication Publication Date Title
US4574627A (en) Air-fuel ratio detector and method of measuring air-fuel ratio
EP0259175B1 (en) Electrochemical gas sensor, and method for manufacturing the same
US6007688A (en) Wide range air/fuel ratio sensor having one electrochemical cell
US4568443A (en) Air-to-fuel ratio sensor
GB2053488A (en) Device for detection of air/fuel ratio from oxygen partial pressure in exhaust gas
JPS58153155A (en) Oxygen sensor
JPS6228422B2 (en)
JPH038706B2 (en)
US4769123A (en) Electrochemical device
JPS59190652A (en) Rich-burn sensor
JPS61221644A (en) Air-fuel ratio sensor
JPS59190646A (en) Rich-burn sensor
JPS62190459A (en) Gas sensor
JPH0245819B2 (en)
JPH0412420B2 (en)
JP2010210521A (en) Gas concentration detecting apparatus
JPS60195447A (en) Oxygen concentration detector
JPS6111653A (en) Air-fuel ratio detector
JPH0682417A (en) Air-fuel ratio sensor
JPS5994051A (en) Oxygen sensor
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPH0516544B2 (en)
JPH0436341B2 (en)
JPS5963555A (en) Oxygen sensor
JPS60231151A (en) Oxygen sensor