JPH038706B2 - - Google Patents

Info

Publication number
JPH038706B2
JPH038706B2 JP59043097A JP4309784A JPH038706B2 JP H038706 B2 JPH038706 B2 JP H038706B2 JP 59043097 A JP59043097 A JP 59043097A JP 4309784 A JP4309784 A JP 4309784A JP H038706 B2 JPH038706 B2 JP H038706B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
oxygen
solid electrolyte
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043097A
Other languages
Japanese (ja)
Other versions
JPS59192955A (en
Inventor
Yoshiaki Asayama
Masaya Kominami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Original Assignee
Mitsubishi Electric Corp
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Nippon Tokushu Togyo KK filed Critical Mitsubishi Electric Corp
Priority to JP59043097A priority Critical patent/JPS59192955A/en
Publication of JPS59192955A publication Critical patent/JPS59192955A/en
Publication of JPH038706B2 publication Critical patent/JPH038706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Description

【発明の詳細な説明】 この発明は内燃機関の排気ガス中の空燃比を測
定するための空燃比センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air-fuel ratio sensor for measuring the air-fuel ratio in exhaust gas of an internal combustion engine.

従来、空燃比検知素子としてジルコニア酸素濃
淡電池センサが使用されていた。このセンサは理
論空燃比点で出力電圧が階段状に変化することに
よつて理論空燃比での燃焼状態を検出する。たと
えば自動車用内燃機関を理論空燃比で運転するよ
うに制御するシステムに用いられている。しかし
上記の酸素センサではリツチ雰囲気において起電
力の変化が殆んどなく、したがつてリツチ側にお
ける空燃比を厳密に測定することは不可能で、こ
のためほぼ一定のリツチ雰囲気に保持するために
吸気系側に種々の装置を設けてオープン制御を行
なつていた。ところがこのような制御方式では空
燃比制御コストが高になる上、高精度の制御が行
なえない欠点があつた。
Conventionally, a zirconia oxygen concentration cell sensor has been used as an air-fuel ratio detection element. This sensor detects the combustion state at the stoichiometric air-fuel ratio by changing the output voltage stepwise at the stoichiometric air-fuel ratio point. For example, it is used in a system that controls an automobile internal combustion engine to operate at a stoichiometric air-fuel ratio. However, with the oxygen sensor mentioned above, there is almost no change in the electromotive force in a rich atmosphere, so it is impossible to accurately measure the air-fuel ratio on the rich side. Various devices were installed on the intake system side to perform open control. However, such a control system has the disadvantage that it increases the cost of controlling the air-fuel ratio and does not allow highly accurate control.

また従来、空燃比全域を検出するセンサとし
て、特公昭53−34077号公報並びに特公昭57−
49860号公報に記載されているようなセンサが提
案されているが、いずれも技術的に困難で実用段
階に至つていない。上記の特公昭53−34077号公
報には空燃比が理論空燃比点よりもリツチ側での
空燃比を測定するためにジルコニア管の排気ガス
中に位置する測定側電極としてAu、Agのような
非触媒電極を用いる形式の酸素センサが記載され
ているが、上記の電極でも触媒作用があり、ガス
吸着現象が生じ出力電圧の再現性が悪くさらに高
温高速のガス中での耐久性が悪く実用できないセ
ンサであつた。また特公昭57−49860号公報には
リツチおよびリーン側の空燃比が測定しうる方法
が記載されているが使用電流値が極めて低く、電
気的な処理に注意が必要であり、製作も技術的に
難しく高温高速のガス中での耐久性、応答性が悪
いなどの欠点があつた。
In addition, conventionally, as a sensor that detects the entire air-fuel ratio,
Sensors such as those described in Publication No. 49860 have been proposed, but all of them are technically difficult and have not reached the practical stage. The above-mentioned Japanese Patent Publication No. 53-34077 describes the use of materials such as Au and Ag as the measuring electrode located in the exhaust gas of a zirconia tube in order to measure the air-fuel ratio on the richer side than the stoichiometric air-fuel ratio point. Oxygen sensors using non-catalytic electrodes have been described, but even the above electrodes have a catalytic effect, causing gas adsorption phenomena, resulting in poor output voltage reproducibility and poor durability in high-temperature, high-speed gases, making them impractical. It was a sensor that could not be used. In addition, Japanese Patent Publication No. 57-49860 describes a method for measuring rich and lean air-fuel ratios, but the current used is extremely low, requires careful electrical processing, and is technically difficult to manufacture. However, it had drawbacks such as poor durability and poor response in high-temperature, high-speed gas environments.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、比較的安価で実用
性に優れ、理論空燃比点ばかりでなくリツチ側や
リーン側の空燃比を測定し得るセンサを提供する
ことを目的としている。またこの発明は自動車用
機関の燃焼効率の向上および排気ガスの無害化を
良好にするためのリツチバーンエンジン、リーン
バーンエンジンの空燃比をクローズド制御するた
めの排気ガス中の空燃比を測定するセンサを提供
することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it is a relatively inexpensive and highly practical sensor that can measure not only the stoichiometric air-fuel ratio point but also the rich side and lean side air-fuel ratio. is intended to provide. This invention also provides a sensor for measuring the air-fuel ratio in exhaust gas for closed control of the air-fuel ratio of rich burn engines and lean burn engines to improve the combustion efficiency of automobile engines and to make exhaust gas harmless. is intended to provide.

この発明による空燃比センサの特徴は、被測定
ガスが供給される室を介して対向する酸素ポンプ
と酸素濃淡電池から構成したセンサの酸素供給源
として空気中の酸素を利用したもので、この結果
被測定ガス中の可燃性ガス濃度と酸素濃度を変化
させるのに十分な量の酸素を供給することができ
る。このことは被測定ガスの化学当量点を酸素不
足状態の側に移動することができることになり、
これは理論空燃比点よりリツチ側での空燃比をも
検出できることを意味している。
A feature of the air-fuel ratio sensor according to the present invention is that oxygen in the air is used as an oxygen supply source for the sensor, which is composed of an oxygen pump and an oxygen concentration battery that face each other through a chamber into which the gas to be measured is supplied. A sufficient amount of oxygen can be supplied to change the combustible gas concentration and oxygen concentration in the gas to be measured. This means that the chemical equivalence point of the gas to be measured can be moved to the oxygen-deficient side.
This means that the air-fuel ratio on the richer side than the stoichiometric air-fuel ratio point can also be detected.

以下この発明の実施例を第1図について説明す
る。
An embodiment of the invention will be described below with reference to FIG.

実施例 1 Y2O310重量%で安定したZrO2焼結体より5×
20×0.5mmの板を2枚切出し、この板の両面に8
×4mmの大きさにPtを約2000Å蒸着し、その後
厚さ1μになるように電気メツキして第2図に示
す電極付き固体電解質板12a(12b)を製作
した。次に5×20×1.5mmの板を2枚切出し、上
記固体電解質板12a(12b)と接着したとき
に空気側と通じる孔を形成するようなくぼみを設
けた第3図に示す固体電解質板11a(11b)
を製作した。さらに5×5×1.5mmの板を切出し、
空間室を形成するために4×1mmの穴をあけ、か
つ拡散細孔14となる0.07mmの孔をあけた第4図
に示すスペーサ13を製作した。上記の各部材は
第1図に示すように排気管1内に保持部3を介し
て組立て、その接着剤にNaO−SiO2−Al2O3系の
1000℃で軟化点を示すガラスフリツト2を塗布し
て接合した後、炉中で1150℃に加熱し結合した。
Example 1 5× from ZrO 2 sintered body stabilized with 10% by weight of Y 2 O 3
Cut out two 20x0.5mm boards, and mark 8 on both sides of this board.
Approximately 2000 Å of Pt was deposited on a 4 mm x 4 mm plate, and then electroplated to a thickness of 1 μm to produce a solid electrolyte plate 12a (12b) with electrodes as shown in FIG. Next, two plates of 5 x 20 x 1.5 mm were cut out, and a solid electrolyte plate shown in Fig. 3 was provided with a depression so as to form a hole communicating with the air side when bonded to the solid electrolyte plate 12a (12b). 11a (11b)
was produced. Furthermore, cut out a 5 x 5 x 1.5 mm board,
A spacer 13 shown in FIG. 4 was manufactured in which a 4×1 mm hole was bored to form a space chamber, and a 0.07 mm hole was drilled to serve as the diffusion pore 14. Each of the above members is assembled in the exhaust pipe 1 via the holding part 3 as shown in Fig. 1, and the adhesive is NaO-SiO 2 -Al 2 O 3- based.
Glass frit 2, which has a softening point at 1000°C, was applied and bonded, and then heated to 1150°C in a furnace for bonding.

次に上記のように構成したセンサの機能を第1
図について説明する。図において、酸素量制御供
給手段としてのジルコニア固体電解質酸素ポンプ
を固体電解質板11a,12aで構成している。
また化学当量点検出手段としてのジルコニア固体
電解質酸素濃淡電池を固体電解質板11b,12
bで構成している。そして被測定ガスを導入して
測定するための拡散細孔14を備えた空間室Bを
スペーサ13が形成している。上記酸素ポンプの
電極15a,15bに電圧を印加されると空気側
に開放されている基準空気室Aの酸素が空間室B
内に移動する。また上記酸素濃淡電池は基準ガス
として空気を利用できるように空気側に開放され
ている空気室A′中の酸素濃度と上記空間室B中
の酸素濃度に応じて電圧を発生する。この電圧は
公知のネルンストの式で示される。
Next, the function of the sensor configured as above is explained as follows.
The diagram will be explained. In the figure, a zirconia solid electrolyte oxygen pump serving as oxygen amount control and supply means is composed of solid electrolyte plates 11a and 12a.
In addition, a zirconia solid electrolyte oxygen concentration battery as a chemical equivalence point detection means is connected to the solid electrolyte plates 11b and 12.
It consists of b. The spacer 13 forms a space chamber B having diffusion pores 14 for introducing and measuring the gas to be measured. When a voltage is applied to the electrodes 15a and 15b of the oxygen pump, oxygen in the reference air chamber A, which is open to the air side, is transferred to the space chamber B.
move inside. Further, the oxygen concentration cell generates a voltage depending on the oxygen concentration in the air chamber A' and the oxygen concentration in the space chamber B, which are open to the air so that air can be used as a reference gas. This voltage is expressed by the well-known Nernst equation.

E=RT/4FlnPO″2/PO2 R……気体定数 T……絶対温度 F……フアラデー定数、 PO2……基準ガス中の酸素分圧 PO″2……被測定ガス中の酸素分圧 ところで、空燃比が理論空燃比点よりリツチ側
では被測定ガス中の酸素濃度が極めて低く可燃性
ガスが急増するためジルコニア固体電解質酸素濃
淡電池では、その出力電圧が理論空燃比点よりリ
ツチ側で階段状に変化しその現象を利用して理論
空燃比点を検出する手段として使用されることは
公知である。一方、この発明においても酸素濃淡
電池は上記と同様の動作を行なうが、酸素ポンプ
によつて上記空間室B内の被測定ガス中に酸素が
導入されるためにこの被測定ガス中の酸素と可燃
性ガスの化学当量点が上記空間室B外の被測定ガ
スの理論空燃比点よりも実質的にリツチ側に移動
し、この移動量は導入された酸素量によつて自由
に制御できるので、第6,7図に示すようにリツ
チ側の任意の空燃比を検出することができる。
E=RT/4FlnPO″ 2 /PO 2 R…Gas constant T…Absolute temperature F…Faraday constant, PO 2 …Oxygen partial pressure in reference gas PO″ 2 …Oxygen partial pressure in measured gas By the way, when the air-fuel ratio is richer than the stoichiometric air-fuel ratio point, the oxygen concentration in the measured gas is extremely low and the amount of combustible gas increases rapidly. It is well known that the air-fuel ratio changes stepwise and is used as a means for detecting the stoichiometric air-fuel ratio point by utilizing this phenomenon. On the other hand, in the present invention, the oxygen concentration cell operates in the same manner as described above, but since oxygen is introduced into the gas to be measured in the space chamber B by the oxygen pump, the oxygen in the gas to be measured is mixed with the oxygen in the gas to be measured. The chemical equivalence point of the combustible gas moves substantially to the richer side than the stoichiometric air-fuel ratio point of the gas to be measured outside the space chamber B, and the amount of this movement can be freely controlled by the amount of oxygen introduced. As shown in FIGS. 6 and 7, any air-fuel ratio on the rich side can be detected.

実施例 2 Y2O310重量%で安定化したZrO2焼結体より5
×20×0.5mmの板を2枚切出し、この板の両面に
3×4mmの大きさにPtを約2000Å蒸着し、その
後厚さ1μになるように電気メツキして電極付き
固体電解質板12a,12bを製作した。次に5
×20×1.5mmの板を2枚切出し上記固体電解質板
12a,12bと接着したときに空気側と通じる
孔を形成するようなくぼみを設けた固体電解質板
11a,11bを製作した。さらに間〓室Cを設
けるためにスペーサ4として5×5×0.075mmの
板を切出した。上記の各部材は第5図に示すよう
に組立て、その接着部にNaO−SiO2−Al2O3系の
1000℃で軟化点を示すがガラスフリツトを塗布し
た後、炉内で1150℃に加熱し接合した。このよう
に構成したセンサの機能においては間〓室Cが実
施例1の拡散細孔14を備えた空間室Bと同等の
作作用が得られ、出力特性も同様であつた。
Example 2 5 from ZrO 2 sintered body stabilized with 10% by weight of Y 2 O 3
Cut out two plates of ×20 × 0.5 mm, deposit approximately 2000 Å of Pt on both sides of the plates to a size of 3 × 4 mm, and then electroplated to a thickness of 1 μm to form a solid electrolyte plate with electrodes 12a. I made 12b. Next 5
Solid electrolyte plates 11a and 11b were fabricated by cutting out two plates of 20 x 1.5 mm and having depressions so as to form holes communicating with the air side when bonded to the solid electrolyte plates 12a and 12b. Further, in order to provide a spacer C, a plate measuring 5 x 5 x 0.075 mm was cut out as a spacer 4. Each of the above members is assembled as shown in Figure 5, and a NaO-SiO 2 -Al 2 O 3- based material is applied to the adhesive part.
After applying glass frit, which has a softening point at 1000°C, it was heated to 1150°C in a furnace and bonded. Regarding the function of the sensor constructed in this way, the space chamber C achieved the same effect as the space chamber B provided with the diffusion pores 14 of Example 1, and the output characteristics were also similar.

実施例 3 実施例1にて製作したセンサにおいて、固体電
解質酸素ポンプを使用し空間室B内の酸素を排出
し、固体電解質酸素濃淡電池の出力電圧が1000m
Vになるように、即ち空間室Bと基準空気室
A′との酸素分圧が設定値となるように空燃比に
対応してポンプ電流を変え測定したところ、800
℃排気ガス温中で第8図に示すような特性が確認
された。この特性からリーン時において空燃比を
測定するにはポンプ電流を測ればよい。また実施
例2にて製作したセンサでも同様の特性が得られ
た。なお、第7図にリツチ時におけるポンプ電流
と空燃比との関係を特性図を示している。
Example 3 In the sensor manufactured in Example 1, a solid electrolyte oxygen pump was used to exhaust oxygen from space chamber B, and the output voltage of the solid electrolyte oxygen concentration battery was 1000 m
V, that is, space chamber B and reference air chamber
When measuring by changing the pump current according to the air-fuel ratio so that the oxygen partial pressure with A′ was the set value, it was found that 800
The characteristics shown in FIG. 8 were confirmed at an exhaust gas temperature of .degree. Based on this characteristic, in order to measure the air-fuel ratio during lean conditions, it is sufficient to measure the pump current. Further, similar characteristics were obtained with the sensor manufactured in Example 2. Incidentally, FIG. 7 shows a characteristic diagram showing the relationship between the pump current and the air-fuel ratio when the fuel is rich.

以上のようにこの発明によれば、所定量の酸素
を供給する酸素量制御供給手段と、化学当量点検
出手段とを備え、両手段が任意量の被測定ガスを
導入して測定するための間〓室または拡散細孔を
備えた空間室を形成したことにより、内燃機関の
排気ガス中の酸素濃度と空燃比が計測できる小型
で安価な空燃比センサとなり、基準としての理論
空燃比を検出し、酸素濃度と空燃比の補正ができ
るので、正確かつ安定にリツチ、リーンの任意の
空燃比が測定できる。またこの発明のセンサは自
動車用機関の他、工業用バーナおよび暖房燃焼装
置などにも広く適用できる効果がある。
As described above, according to the present invention, the oxygen amount control supply means for supplying a predetermined amount of oxygen and the chemical equivalence point detection means are provided. By forming a space chamber or a space chamber with diffusion pores, it becomes a small and inexpensive air-fuel ratio sensor that can measure the oxygen concentration and air-fuel ratio in the exhaust gas of an internal combustion engine, and detects the stoichiometric air-fuel ratio as a reference. However, since oxygen concentration and air-fuel ratio can be corrected, any rich or lean air-fuel ratio can be measured accurately and stably. Furthermore, the sensor of the present invention has the effect of being widely applicable not only to automobile engines but also to industrial burners, heating combustion devices, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の空燃比センサの断面図、第
2図は電極付き固体電解質板の斜視図、第3図は
固体電解質板の斜視図、第4図はスペーサの斜視
図、第5図は空燃比センサの他の実施例を示す断
面図、第6図はポンプ電流を流したときの電池電
圧の変化を示す特性図、第7図は化学当量点変化
をポンプ電流と空燃比で表わした特性図、第8図
はリーン時におけるポンプ電流と空燃比の関係を
示す特性図である。 2……ガラスフリツト接合部、4……スペー
サ、11a,11b……固体電解質板、12a,
12b……電極付き固体電解質板、13……スペ
ーサ、14……拡散細孔、15a,15b……ポ
ンプ部電極、16a,16b……電池部電極、
A,A′……基準空気室、B……空間室、C……
間〓室。なお、図中、同一符号は同一又は相当部
分を示す。
Figure 1 is a sectional view of the air-fuel ratio sensor of the present invention, Figure 2 is a perspective view of a solid electrolyte plate with electrodes, Figure 3 is a perspective view of a solid electrolyte plate, Figure 4 is a perspective view of a spacer, and Figure 5. 6 is a sectional view showing another example of the air-fuel ratio sensor, FIG. 6 is a characteristic diagram showing changes in battery voltage when pump current is applied, and FIG. 7 is a graph showing chemical equivalence point changes in terms of pump current and air-fuel ratio. FIG. 8 is a characteristic diagram showing the relationship between pump current and air-fuel ratio in lean conditions. 2...Glass frit joint, 4...Spacer, 11a, 11b...Solid electrolyte plate, 12a,
12b...Solid electrolyte plate with electrode, 13...Spacer, 14...Diffusion pore, 15a, 15b...Pump part electrode, 16a, 16b...Battery part electrode,
A, A'...Reference air chamber, B...Space chamber, C...
Between. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 固体電解質の両側面に電極を設けてそれぞれ
構成された固体電解質酸素ポンプおよび固体電解
質酸素濃淡電池、該酸素ポンプと酸素濃淡電池を
間〓室または空間室を介して対向配置し、該室に
被測定ガスを導入するように構成するとともに、
上記酸素ポンプと酸素濃淡電池の両方の上記室と
反対側の側面に大気と連通する空気室を形成した
ことを特徴とする空燃比センサ。
1. A solid electrolyte oxygen pump and a solid electrolyte oxygen concentration battery each configured with electrodes provided on both sides of a solid electrolyte, the oxygen pump and the oxygen concentration battery being arranged opposite to each other with an intervening chamber or a space chamber interposed therebetween; In addition to being configured to introduce the gas to be measured,
An air-fuel ratio sensor characterized in that an air chamber communicating with the atmosphere is formed on a side surface of both the oxygen pump and the oxygen concentration battery opposite to the chamber.
JP59043097A 1984-03-06 1984-03-06 Air fuel ratio sensor Granted JPS59192955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043097A JPS59192955A (en) 1984-03-06 1984-03-06 Air fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043097A JPS59192955A (en) 1984-03-06 1984-03-06 Air fuel ratio sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58066022A Division JPS59190652A (en) 1983-04-12 1983-04-12 Rich-burn sensor

Publications (2)

Publication Number Publication Date
JPS59192955A JPS59192955A (en) 1984-11-01
JPH038706B2 true JPH038706B2 (en) 1991-02-06

Family

ID=12654329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043097A Granted JPS59192955A (en) 1984-03-06 1984-03-06 Air fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPS59192955A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014161A (en) * 1983-07-06 1985-01-24 Ngk Spark Plug Co Ltd Air-fuel ratio sensor
JPS60128352A (en) * 1983-12-15 1985-07-09 Ngk Spark Plug Co Ltd Air fuel ratio detector
JPS61102955U (en) * 1984-12-12 1986-07-01
JPH0612525Y2 (en) * 1985-06-27 1994-03-30 日産自動車株式会社 Air-fuel ratio detector
US4769124A (en) * 1985-08-10 1988-09-06 Honda Giken Kogyo Kabushiki Kaisha Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
GB2182447B (en) * 1985-10-18 1990-01-24 Honda Motor Co Ltd Device for measuring a component of a gaseous mixture
JPH0668483B2 (en) * 1985-10-26 1994-08-31 日本碍子株式会社 Electrochemical device
JPS62179655A (en) * 1986-02-01 1987-08-06 Ngk Insulators Ltd Method and apparatus for detecting air/fuel ratio
JPH073404B2 (en) * 1986-03-27 1995-01-18 本田技研工業株式会社 Abnormality detection method for oxygen concentration sensor
JPH073403B2 (en) * 1986-03-27 1995-01-18 本田技研工業株式会社 Abnormality detection method for oxygen concentration sensor
JP2947353B2 (en) * 1986-04-30 1999-09-13 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
JPH0781985B2 (en) * 1986-09-18 1995-09-06 本田技研工業株式会社 Air-fuel ratio detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163558A (en) * 1983-03-09 1984-09-14 Ngk Insulators Ltd Electrochemical apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59163558A (en) * 1983-03-09 1984-09-14 Ngk Insulators Ltd Electrochemical apparatus

Also Published As

Publication number Publication date
JPS59192955A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US4574627A (en) Air-fuel ratio detector and method of measuring air-fuel ratio
US6007688A (en) Wide range air/fuel ratio sensor having one electrochemical cell
US4859307A (en) Electrochemical gas sensor, and method for manufacturing the same
EP0142992B1 (en) Electrochemical device incorporating a sensing element
US4579643A (en) Electrochemical device
US4383906A (en) Device for sensing oxygen concentration in an exhaust gas
US4570479A (en) Air-fuel ratio detector and method of measuring air-fuel ratio
US4568443A (en) Air-to-fuel ratio sensor
JPH038706B2 (en)
EP0147988B1 (en) Air/fuel ratio detector
US4769123A (en) Electrochemical device
US4712419A (en) Air/fuel ratio detector
JPS61221644A (en) Air-fuel ratio sensor
EP0193379B1 (en) Air/fuel ratio sensor
JPH0411823B2 (en)
JPS59190646A (en) Rich-burn sensor
JPH0412420B2 (en)
JPH0245819B2 (en)
JPS5994051A (en) Oxygen sensor
JPH0516544B2 (en)
JPS5963555A (en) Oxygen sensor
JPH0542623B2 (en)
JPH0436341B2 (en)
JPH065224B2 (en) Air-fuel ratio detection element
JPS61194344A (en) Air-fuel ratio sensor