JPS59190330A - Method for improving drawability of steel sheet - Google Patents

Method for improving drawability of steel sheet

Info

Publication number
JPS59190330A
JPS59190330A JP6236983A JP6236983A JPS59190330A JP S59190330 A JPS59190330 A JP S59190330A JP 6236983 A JP6236983 A JP 6236983A JP 6236983 A JP6236983 A JP 6236983A JP S59190330 A JPS59190330 A JP S59190330A
Authority
JP
Japan
Prior art keywords
value
steel sheet
steel
carbon content
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6236983A
Other languages
Japanese (ja)
Inventor
Osamu Hashimoto
修 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6236983A priority Critical patent/JPS59190330A/en
Publication of JPS59190330A publication Critical patent/JPS59190330A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Abstract

PURPOSE:To increase considerably the r-value of a steel sheet and to improve the drawability by annealing the sheet having a regulated C content by heating to a temp. between the Ac1 and Ac3 transformation points and slow cooling at a cooling rate corresponding to the C content. CONSTITUTION:A cold or hot rolled steel sheet contg. <=0.15wt% C is annealed by heating or soaking to a temp. between the Ac1 and Ac3 transformation points and controlled cooling to 600 deg.C under conditions satisfying an equation C.V<=0.2 [where C is the carbon content (wt%) of the steel sheet, and V is the average cooling rate ( deg.C/sec)]. The r-value of the sheet is considerably increased, and superior drawability can be obtd.

Description

【発明の詳細な説明】 (技術分野) 薄鋼板の絞り住改善に関し、ここに述べるところは炭素
含有量0.15重量%(以下単に%で表す)までの薄鋼
板につき、焼なまし操作による絞り性向上を目指す開発
成果であり、この焼きなましは主として冷延鋼板の連続
節なましにiいてとくに有利に適合するが、熱延鋼板に
適用してもよく、さらに箱型焼なまし炉によるようなバ
ッチ焼な1しにおいても有効であって、一般に薄鋼板の
焼なましに関する技術の分野に位置づけられる。
[Detailed Description of the Invention] (Technical Field) Regarding the improvement of the drawing strength of thin steel sheets, this article describes the improvement of thin steel sheets with a carbon content of up to 0.15% by weight (hereinafter simply expressed in %) by annealing. This is a development result aimed at improving drawability, and this annealing is particularly advantageously suited for continuous annealing of cold-rolled steel sheets, but it may also be applied to hot-rolled steel sheets, and furthermore, it can be applied to hot-rolled steel sheets. It is also effective in such batch annealing, and is generally positioned in the field of technology related to annealing thin steel sheets.

(問題点) 絞り加工が施される薄鋼板に必要な材料特性としては ■ 降伏点が低いこと ■ 延性が優れていること、 ■ そしてとくにランクフォード値(r値)が高いこと である。(problem) The material properties required for thin steel sheets that are subjected to drawing processing are: ■ Low yield point ■ Excellent ductility; ■ And especially high Lankford value (r value) It is.

これらの3特性は、いずれも鋼板の軟質性と深い関係が
あジ、一般的には軟質であるほどよシ高度の絞り加工が
可能であるのに反し、高張力鋼板のごとき硬質なものは
、絞り性に劣ると云える。
All of these three properties are closely related to the softness of the steel sheet; in general, the softer the steel sheet, the higher the degree of drawing possible. , it can be said that the drawability is inferior.

従来硬質な鋼については、複合組織にするような低降伏
点化により加工性の向上が図られるが、これのみによっ
てはいわゆる絞り性の改善を達し得ない。
Conventionally, the workability of hard steel can be improved by lowering the yield point by creating a composite structure, but this alone cannot improve the so-called drawability.

すなわち一般に高張力鋼板のr値は低いからであり、そ
の理由としては、高張力化するための添加成分であるM
n 、 Si+ P + OおよびNなどによって薄鋼
板の絞9加工性向上に有利な[1t)集合組織の発達が
阻害されることによる。とけ云え所期した高い引張り強
さを確保するために上記強化成分の添加量を減少させ得
す、この点背反関係にある。
In other words, the r value of high-strength steel sheets is generally low, and the reason for this is that M, which is an additive component to increase the tensile strength,
This is because the development of [1t) texture, which is advantageous for improving drawing workability of thin steel sheets, is inhibited by N, Si+P+O, N, and the like. However, in order to ensure the desired high tensile strength, the amount of the reinforcing component added can be reduced, which is a trade-off.

一万で強化成分の量と種類を制限する以外にも、r値を
向上させる主な手段としては、熱延条件や冷延条件さら
には、焼なまし条件全制御することが試みられている。
In addition to limiting the amount and type of reinforcing components, the main means to improve the r value is to fully control hot rolling conditions, cold rolling conditions, and annealing conditions. .

しかし折角の努力にも拘らず従来の高張力鋼板のうち、
箱型焼な甘し材ではP添加アルミキルド低炭素鋼、また
連続焼なまし材については・Nb又はTiミラ加したア
ルミキルド極低炭素鋼がわずかに満足な絞り加工性をも
つにすぎない。
However, despite all efforts, among the conventional high tensile strength steel plates,
For box-fired sweetened materials, P-added aluminum-killed low carbon steel, and for continuously annealed materials, aluminum-killed ultra-low carbon steel with Nb or Ti mira addition have only slightly satisfactory drawing workability.

前者のP添加鋼は、連続焼なましで高いr値を得ること
ができず、また後者のNbまたはTi添加鋼については
、製造原価が高いという欠点を伴うのみならず、いずれ
も高r値鋼板としては40kgf/、−以上の引張ジ強
さを得ることが困難な不利も看過できない。
The former P-added steel cannot obtain a high r-value through continuous annealing, and the latter Nb- or Ti-added steel not only has the disadvantage of high manufacturing costs but also has a high r-value. The disadvantage that it is difficult to obtain a tensile strength of 40 kgf/- or more cannot be overlooked as a steel plate.

そこで薄鋼板の成分組成の如何によらずまた熱延、冷延
などの条件に拘らず、高r値を得ることができれば薄鋼
板の使途の著しい増大を図ることができ、その利益は甚
大である。
Therefore, if it is possible to obtain a high r-value regardless of the composition of the thin steel sheet or the conditions of hot rolling or cold rolling, the uses of the thin steel sheet can be significantly increased, and the benefits are enormous. be.

(開発研究の端緒) 以上のべた問題点に関し発明者は、冷延薄鋼板を、その
AC□点以上の種々の温度に加熱後一定時間保持した後
冷却し、その途中でAr□変態終了(すなわち600″
C〕に至る間における冷却速度全種々に変えて実験を行
ったところ、その材料のr値が該冷却速度に強く影響さ
れることを知見した。
(Start of development research) Regarding the above-mentioned problems, the inventor heated a cold-rolled thin steel sheet to various temperatures above its AC□ point, held it for a certain period of time, and then cooled it. i.e. 600″
When experiments were conducted with various cooling rates during the process of reaching C], it was found that the r value of the material was strongly influenced by the cooling rate.

この実験は、0 : 0.15%、 Si : 0.3
5%、 In: O,Sa%、 p : o、oa%、
 Al: 0.04%、 Hb :0.02%でN :
 0.006%を含むアルミキルド鋼を、通常工程に従
う熱延および塗延工程にて板厚0.7mmとした冷延薄
鋼板を、供試材に用いた。
In this experiment, 0: 0.15%, Si: 0.3
5%, In: O, Sa%, P: o, oa%,
Al: 0.04%, Hb: 0.02%, N:
A cold-rolled thin steel plate made of aluminum-killed steel containing 0.006% and made into a thickness of 0.7 mm by hot-rolling and coating-rolling processes according to the normal process was used as a test material.

この供試材をAC工〜Ac8両変態点間の温度範囲、い
わゆるα、γ2相組織領域にあたる780°Cに加熱し
、1分間保持後、その温度からAr工変態点温度以下と
判断される600°Cまでを、種々の冷却速度で冷却し
、その後は室温まで空冷したのちr値を測定したところ
、上記600℃に至る平均冷却速度Vを横軸にとった第
1図のへ曲線に示すように、平均冷却速度Vの値が低い
ほどr値の著しい向上がもたらされる事実を知った。
This sample material was heated to 780°C, which corresponds to the temperature range between the AC process and Ac8 transformation points, which is the so-called α and γ two-phase structure region, and after holding for 1 minute, it was determined that the temperature was below the Ar process transformation point temperature. When the r value was measured after cooling to 600°C at various cooling rates and then air cooling to room temperature, it was found to be the curve shown in Figure 1, where the horizontal axis is the average cooling rate V up to 600°C. As shown, it has been found that the lower the value of the average cooling rate V, the more remarkable the improvement in the r value is brought about.

この意表外の結果に鑑み、上記供試鋼よりも炭素含有量
の低い次表1に示す成分をもつ、やはり0.7朋の冷延
薄鋼板を供試鋼CB) 、 ((3)に用い、それぞれ
加熱温度を800”Cと、890°0に変えただけでは
ソ上述したところと同様な実験を行い、第1図にCB)
 、 CO)各曲線で示す結果を得た。
In view of this unexpected result, a cold-rolled thin steel sheet with a carbon content of 0.7 mm and having the components shown in Table 1 below, which has a lower carbon content than the above-mentioned test steel, was used as the test steel CB), ((3) Experiments similar to those described above were conducted, except that the heating temperature was changed to 800"C and 890°C, respectively.
, CO) The results shown in each curve were obtained.

表1 ここでとくに供試鋼(0)はP添加にょる高張力鋼板で
極低炭素化により、本来的にr値が高いにも拘らず、は
ぼ30%に及ぶようなr値上外は特籏に値する。
Table 1 Here, in particular, the sample steel (0) is a high-strength steel plate with P addition, and due to ultra-low carbonization, even though it has an inherently high r value, the r value exceeds the r value by about 30%. is worthy of special recognition.

第1図から明らかなように各炭素含有量レンジに拘らず
、何れの供試鋼においても均しくr値上外がもたらされ
る理由は、冷却中におけるオーステナイトからフェライ
トへの変態速度が遅くなることに由来し、このような挙
動については、これまでに報告された事例に接していな
い。
As is clear from Figure 1, the reason why the r value is uniformly high and low in all the sample steels regardless of the carbon content range is that the rate of transformation from austenite to ferrite during cooling is slow. , and there have been no reported cases of this behavior to date.

(発明の目的) そこで上記の基礎実験を踏まえ、炭素含有量0.15%
以下の薄鋼板のr値改善による絞り性の向上をもたらす
ことが、この発明の目的である。
(Purpose of the invention) Therefore, based on the above basic experiment, carbon content of 0.15%
It is an object of the present invention to improve drawability by improving the r value of a thin steel sheet as described below.

(発明の構成) ここに上掲供試鋼(AJ 、 CB)およびCG)はそ
れらの炭素含有量レンジに応じてそれぞれほぼ1.2゜
1.4および1.7ヲこえるr値の確保は、事実上のr
値の改善と云い得るところ、これらのr値が保証され得
る上記の冷却速度は、第1図に従って〔%0 ) 0.
15%につき、1.6°C/秒以下((A)鋼〕、同じ
< 0.04%では5°C/秒以下((B)鋼9、そし
て同に(0,005%のとき4IO″C/秒以下((C
)鋼)であり、従ってCにて炭素含有量(%)をあられ
しまたVにて冷却速度(℃/秒)を示すとき両者の積C
−Vを0.2以下にすることにより、上記r値の向上が
実現されるわけである。
(Structure of the Invention) The above-mentioned test steels (AJ, CB) and CG) have r values exceeding approximately 1.2°, 1.4° and 1.7°, respectively, depending on their carbon content ranges. , de facto r
According to FIG. 1, the above cooling rate at which these r values can be guaranteed is [%0) 0.
1.6 °C/s at 15% ((A) steel), 5 °C/s at < 0.04% ((B) steel 9, and the same (4IO at 0,005%) ″C/sec or less ((C
) steel), therefore, when C indicates the carbon content (%) and V indicates the cooling rate (℃/sec), the product of both C
By setting −V to 0.2 or less, the above r value can be improved.

すなわちこの発明は、炭素含有量0.15%以下の薄鋼
板を焼なましするに当ジ、AO〜Ac a両液態点間の
温度に加熱又は均熱すること、該加熱又は均熱後の冷却
に際して600″Cに至る間に次式(1) %式%(1) C:薄銅板の炭素含有量(%) ■:平均冷却速度  (”07秒) に示す条件を満す冷却制御を行うことの結合になる薄鋼
板の絞り加工性改善法であり、これによジ前記課題を有
利に解決できる。
In other words, this invention requires heating or soaking to a temperature between AO and Aca liquid points when annealing a thin steel sheet with a carbon content of 0.15% or less, and During cooling, cooling control is performed to satisfy the conditions shown in the following formula (1) % formula % (1) C: Carbon content of thin copper plate (%) ■: Average cooling rate (07 seconds) This is a method for improving drawing workability of thin steel sheets that combines the following steps, and can advantageously solve the above-mentioned problems.

ここに炭素含有量につき0.15%以下を限定するのは
、これを上まわる炭素含有量に由来する高い引張強さの
故にr値の絶対値が低く、かつ延性が劣り、元来高度の
絞り加工性が要求される材料としては適合せず、またそ
ればか9ではなく、溶接性が劣化して利用範囲が制約さ
れるからである。
The reason why the carbon content is limited to 0.15% or less is that the absolute value of the r value is low due to the high tensile strength derived from the carbon content exceeding this, and the ductility is poor, and This is because it is not suitable as a material that requires drawability, and not only that, but also because its weldability deteriorates and its range of use is restricted.

これに反し炭素含有量0.15%以下のときその近傍に
おいてそれなりの引張り強さをもつため薄鋼板のr値は
1.0程度であるのに比し、(A)鋼につきすでにのべ
たようにして絞り加工にも供用さ   □れ得る1、2
程度以上にr値を高めることができ、こうして炭素含有
量0.15%以下の薄鋼板の利用価値が拡大され得る。
On the other hand, when the carbon content is 0.15% or less, the r value of a thin steel sheet is about 1.0 because it has a certain tensile strength in the vicinity. It can also be used for drawing processing.
It is possible to increase the r value more than a certain degree, and in this way, the utility value of thin steel sheets with a carbon content of 0.15% or less can be expanded.

一万0.005%のような極低炭素薄鋼板についても元
来r値の絶対値が高いにも拘らず、(C)鋼についてす
でにのべたような、一層のr値の改善による、絞り件の
向上に有利な適合が成就され得る。
Even though ultra-low carbon thin steel sheets such as 10,005% have originally a high absolute value of r value, it is possible to reduce the reduction by further improving the r value as already mentioned for (C) steel. Adaptations advantageous to improving the situation can be achieved.

またCB)鋼におけるような低炭素鋼にあっても極低炭
素であるCO)@4の最低値にほぼ匹敵するようなr値
の上昇をもたらすことができる。
Furthermore, even in low carbon steels such as CB) steels, it is possible to bring about an increase in r value that is almost comparable to the lowest value of CO)@4, which is an extremely low carbon steel.

この発明によるr値の改善は、炭素0.15%以下を要
件とするがそれ以外の合金成分として811.20%、
 In 1.20 % 、 P O,11%、 A# 
0.05%。
The improvement of r value by this invention requires 0.15% or less of carbon, but the other alloy components are 811.20%,
In 1.20%, PO, 11%, A#
0.05%.

Nb  O,05% 、 T土 0.08 % 、  
B  O,005% 、  N  O,006%、 V
 O,01%以内の如@を合宿させることによる必要な
引張強さなどの特性にあわせ具備させることができる。
Nb O, 05%, T soil 0.08%,
BO,005%, NO,006%, V
It can be provided according to the required properties such as tensile strength by entraining O, 01% or less.

次に焼な1しに際し、その鋼のAcm〜Ac8両変態点
の間の温度に加熱又は均熱するのは、上掲の実験の結果
に従い、α、γの2程組織領域からILrz変態虞直下
への徐冷、それもとくに炭素含有量に依存する冷却速度
の特定により、フェライト変態速度を低下させることに
より、炭素以外の合金成分含有量に対して殆ど影響なし
に、上記特筆すべきr値の改善が遂げられるのであり、
それ故焼なましのための加熱又は均熱温度域は上記の範
囲でなければならない。
Next, during annealing, heating or soaking to a temperature between the Acm and Ac8 transformation points of the steel is done to reduce the risk of ILrz transformation from the α and γ structural regions, according to the results of the above experiments. By reducing the ferrite transformation rate by slow cooling directly below, especially by specifying the cooling rate that depends on the carbon content, the above-mentioned noteworthy r The value can be improved,
Therefore, the heating or soaking temperature range for annealing must be within the above range.

つぎに焼なまし力日熱後の徐冷終了温度は、上記2程共
存温度領域を徐冷することによってはじめて上掲のr値
改善をもたらすことができ、Ar□変態点直下までの徐
冷を要し、鋼の成分組成や冷却速度による、Ar□変態
点の変化を考慮に入れて600°Cに限定される。
Next, the end temperature of slow cooling after annealing under solar heat can bring about the r-value improvement mentioned above only by slow cooling in the above two coexisting temperature ranges, and slow cooling to just below the Ar□ transformation point. The temperature is limited to 600°C, taking into account changes in the Ar□ transformation point depending on the steel composition and cooling rate.

薄鋼板につき高いr値を得るのに必要な冷却速度と炭素
含有量の関係についてはすでにのべたとおりである。
The relationship between the cooling rate and carbon content necessary to obtain a high r value for a thin steel sheet has already been described.

以上冷延による薄鋼板についてそのr値改善の実験に従
って述べたが、この発明によ、る効果は次に実施例での
べるように熱延薄鋼板で同様に期待できる。
The above description has been made based on experiments to improve the r value of cold-rolled thin steel sheets, but the effects of the present invention can be similarly expected for hot-rolled thin steel sheets, as will be described in Examples below.

(実施例〕 次に表2に示す成分組成の転炉鋼を、通常の工程で連続
鋳造後熱間圧延した熱延薄板(供試鋼煮8.16)、ま
たさらに冷間圧延を加えた冷延薄板(供試鋼Al〜7.
A9〜15)を表2に併記した均熱条件、冷却条件にて
焼なまし処理したのち、各試片のr値を測定し、同様に
併せ示した。
(Example) Next, converter steel having the composition shown in Table 2 was continuously cast in a normal process and then hot-rolled into a hot-rolled thin plate (sample steel boiling 8.16), which was further cold-rolled. Cold-rolled thin plate (sample steel Al~7.
A9 to 15) were annealed under the soaking conditions and cooling conditions listed in Table 2, and then the r value of each specimen was measured and shown in the same manner.

同表にて供試鋼A 8 、16は熱延鋼板を焼なましし
ただけのものであジ、通常熱延鋼板のr値は、A 16
に示すとおり1.]、、0程度であるが、この発明方法
により焼きなましをすればA8に示すとおρ1.2程度
のr値とすることができ、絞り性を改善することができ
る。
In the same table, the test steels A 8 and 16 are simply annealed hot rolled steel sheets, and the r value of normal hot rolled steel sheets is A 16.
As shown in 1. ],, about 0, but by annealing according to the method of the present invention, it is possible to obtain an r value of about ρ1.2 as shown in A8, and the drawability can be improved.

供試銅属1〜7.煮9〜11は極低炭素鋼からC: 0
.15%までの冷延鋼板について前述の(1)式に適合
する冷却速度にて600’Oまで冷却した場合のr値を
この発明による規制から逸脱した比較銅属13〜15.
12と対比して示した。同表に示すとおりカミ熱温度域
と、冷却到達温度の要件を満たしかつ(1)式に適合す
るようにC量に応じて冷却速度v2選択することにより
、C以外の成分組は熱延鋼板を、連続節なましもしくは
箱型焼なましに適用してr値を大幅に向上させ、優れた
絞v性を得ることができる。
Test copper metals 1 to 7. Boiled 9 to 11 are made from ultra-low carbon steel C: 0
.. Comparative copper metals 13 to 15 which deviate from the regulation according to the present invention have r values when cold-rolled steel sheets of up to 15% are cooled to 600'O at a cooling rate that conforms to the above-mentioned formula (1).
It is shown in comparison with 12. As shown in the same table, by selecting the cooling rate v2 according to the amount of C so as to satisfy the requirements for the heating temperature range and the ultimate cooling temperature and to conform to equation (1), the composition of components other than C can be reduced to hot rolled steel sheets. By applying this to continuous knot annealing or box annealing, the r value can be greatly improved and excellent drawing properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、C含有量の異なる冷延薄鋼板のr値におよぼ
す、同鋼板の加熱温度からAr工変態点温度に至るまで
の平均冷却速度の影響を示したグラフである。 特許出願人 川崎製鉄株式会社
FIG. 1 is a graph showing the influence of the average cooling rate from the heating temperature of the steel sheet to the Ar transformation point temperature on the r value of cold rolled thin steel sheets having different C contents. Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 L 炭素含有量0.15重重量以下の薄鋼板全焼なまし
するに尚り、 AC工〜Ac8両変態点間の温度に加熱又は均熱するこ
と、 該加熱又は均熱後の冷却に際して600°Cに至る間に
下記式に示す条件を満す冷却制御を行うこと、 の結合になる薄銅板の絞ジ加工性改善法。 記 C−V  ≦ 0.2 C:薄鋼板の炭素含有量、(重量%〕 V=平均冷却速度、(”0/秒)
[Scope of Claims] L: Heating or soaking to a temperature between AC process and Ac8 transformation points when completely annealing a thin steel plate with a carbon content of 0.15 weight or less, said heating or soaking. A method for improving drawability of a thin copper plate, which combines the following steps: performing cooling control that satisfies the conditions shown in the following formula while the temperature reaches 600°C during subsequent cooling. C-V ≦ 0.2 C: Carbon content of thin steel plate, (wt%) V = average cooling rate, (0/sec)
JP6236983A 1983-04-11 1983-04-11 Method for improving drawability of steel sheet Pending JPS59190330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6236983A JPS59190330A (en) 1983-04-11 1983-04-11 Method for improving drawability of steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6236983A JPS59190330A (en) 1983-04-11 1983-04-11 Method for improving drawability of steel sheet

Publications (1)

Publication Number Publication Date
JPS59190330A true JPS59190330A (en) 1984-10-29

Family

ID=13198130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6236983A Pending JPS59190330A (en) 1983-04-11 1983-04-11 Method for improving drawability of steel sheet

Country Status (1)

Country Link
JP (1) JPS59190330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167721A (en) * 1984-09-10 1986-04-07 Kawasaki Steel Corp Manufacture of non-aging cold rolled steel plate by continuous annealing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296920A (en) * 1976-02-10 1977-08-15 Nippon Kokan Kk <Nkk> Production of non-aging type cold rolled steel sheet for deep drawing by continuous annealing
JPS5651530A (en) * 1979-10-03 1981-05-09 Kobe Steel Ltd Continuous annealing method of cold rolled steel plate
JPS5655524A (en) * 1979-10-05 1981-05-16 Kobe Steel Ltd Production of cold-rolled steel plate for press forming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296920A (en) * 1976-02-10 1977-08-15 Nippon Kokan Kk <Nkk> Production of non-aging type cold rolled steel sheet for deep drawing by continuous annealing
JPS5651530A (en) * 1979-10-03 1981-05-09 Kobe Steel Ltd Continuous annealing method of cold rolled steel plate
JPS5655524A (en) * 1979-10-05 1981-05-16 Kobe Steel Ltd Production of cold-rolled steel plate for press forming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167721A (en) * 1984-09-10 1986-04-07 Kawasaki Steel Corp Manufacture of non-aging cold rolled steel plate by continuous annealing

Similar Documents

Publication Publication Date Title
JP3875725B2 (en) Method for producing cold-rolled sheet or strip with good formability
JPS6383230A (en) Production of high-strength cold rolling steel sheet having excellent quenching hardenability and press formability
JPS5826408B2 (en) Manufacturing method for low yield ratio, high tensile strength hot rolled steel sheet with excellent workability
JPS631374B2 (en)
JPS59190330A (en) Method for improving drawability of steel sheet
US4594114A (en) Process for producing strip of corrosion resistant alloy steel
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JPS5856023B2 (en) Cold-rolled steel sheet with excellent deep drawability
CN115323139B (en) Preparation method of ferrite band steel and ferrite band steel
CN115491598B (en) 1180 MPa-grade phase-change induced plasticity steel and preparation method thereof
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
JPH04120243A (en) High tensile strength cold rolled steel sheet and its production
JPH0617140A (en) Production of cold rolled steel sheet for deep drawing
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JPS61130423A (en) Production of cold rolled steel sheet having excellent deep drawability
JPH0225518A (en) Production of hot-rolled steel sheet having excellent deep drawability
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
EP2980227A1 (en) Steel sheet and method for producing same
JPH03199312A (en) Production of high-tensile cold rolled steel sheet for deep drawing
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JPS5989723A (en) Manufacture of steel sheet for working by continuous casting and direct hot rolling
JPS62250126A (en) Manufacture of cold rolled steel sheet having superior press formability
JPS6240313A (en) Production of extra-thick tempered steel material
JPH04210427A (en) Production of hot rolled steel plate excellent in deep drawability
JPH0860298A (en) Steel sheet for di can, excellent in necking workability and pressure resisting strength