JPS59190232A - Preparation of parent material of optical fiber - Google Patents
Preparation of parent material of optical fiberInfo
- Publication number
- JPS59190232A JPS59190232A JP6124083A JP6124083A JPS59190232A JP S59190232 A JPS59190232 A JP S59190232A JP 6124083 A JP6124083 A JP 6124083A JP 6124083 A JP6124083 A JP 6124083A JP S59190232 A JPS59190232 A JP S59190232A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- substrate
- gas
- burner
- longitudinal direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
本発明(r′i光通信用光ファイ・く母材の製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber base material for r'i optical communications.
石英ガラス系光フアイバ母材の製造方法の1(・こ、所
謂外付けCVD法と呼ばれるものがある。One of the methods for manufacturing a silica glass optical fiber base material is the so-called external CVD method.
この方法(は、ベイトと呼ばれる棒4大の、!1℃体の
外周に、基体を回転させつつかつ基体と原オ」供給用バ
ーナとを基体の長手方向(こ相対移動させながらバーナ
かもガラス微粒ゴーを吹き付け、基体の外周にガラス微
粒子の堆積層を形成するというものである。In this method, four large rods called baits are placed around the outer periphery of a !1°C body while rotating the base body and a supply burner. Fine glass particles are sprayed to form a deposited layer of glass particles around the outer periphery of the substrate.
かメる夕1イ4(げCVD法では、外部からの不純物の
混入を防止するため、ガラス微粒子の堆積工程は清浄な
雰囲気内で行なわれる。In the CVD method, the step of depositing glass particles is performed in a clean atmosphere in order to prevent impurities from entering from the outside.
第1図は従来の外(JけCV D法を示すもので、ガス
取入01.1と、これらに相対向して設けらnた排気口
2.2とを有する堆積室3内に(は、ベイト等の棒状の
基体4が回転自在に設置されていると共(ここの基体4
1こ向けてカラス厚相供給用のバーナ5が設置されてい
る。FIG. 1 shows the conventional CVD method, in which a deposition chamber 3 having a gas intake 01.1 and an exhaust port 2.2 provided opposite to these is placed in a deposition chamber 3. In this case, a rod-shaped base 4 such as bait is rotatably installed (the base 4 here
A burner 5 for supplying a glass thick phase is installed facing the same direction.
ガラス機端チの堆積に際して(は、基体4を回転させか
つ基体4またはバーナ5の何れか一方が基体4の長手方
向(こ移動さぜられることになる。When depositing the glass end, the base body 4 is rotated and either the base body 4 or the burner 5 is moved in the longitudinal direction of the base body 4.
しかしかかる従来の方法(こあっては、得られ/こl!
JAJにしばしば泡が発生ずるという問題があつ /こ
。However, such conventional methods (this way, it is not possible to obtain / this!
There is a problem that bubbles often occur in JAJ.
このよう(こ発泡した母相からは泡が如何0こ微小であ
っても伝送損失の大きな光ファイバしがイ!1ら〕1.
ず、/(’、が大きい場合にはファイバ化することずら
−Cさなかつ/c0
この発泡の原因(・寸、堆積室3内(こ浮遊しているガ
ラス微粒子−が、バーナ5の炎があたっていない基体4
の部分にイ」着し、とのイ」着したガラス微粒子が焼結
処理時(こ発?色すること(こあると推定されている。In this way, no matter how small the bubbles are from the foamed matrix, optical fibers with large transmission losses are produced!1 etc.]1.
If /(') is large, it will not be made into a fiber. Substrate 4 that is not touched
It is estimated that the fine glass particles that have adhered to the surface of the glass may become discolored during the sintering process.
/i\発明tqt 、排気口をバーナと相対向する位置
(こ設け、ガスをガラス微粒子堆積層の長手方向に流す
こと(こよって上記問題点を解決しようというもので、
これを図1niに示す¥施fタリを9照しながら説明す
ると、第2図に示すよう(こ、ガス取入D 10.10
を有する堆積室11内にベイト舌の棒状の基体12を回
転自在に設置し、この基体12を囲むよう(こ同基体1
2から所定の間隔をおいて円筒状の筒体13を設置する
。/i\Invention tqt The idea is to provide the exhaust port at a position opposite to the burner and to flow the gas in the longitudinal direction of the glass fine particle deposit layer (thus solving the above problem,
This can be explained by referring to the figure 9 shown in Figure 1ni, and as shown in Figure 2 (gas intake D
A rod-shaped base body 12 of a bait tongue is rotatably installed in a deposition chamber 11 having a
A cylindrical body 13 is installed at a predetermined interval from 2.
この筒体13;こ(は、これに向けて設置さえしたバー
ナ14からの火炎が1次き抜は自在4・火炎[]15が
設けられていると共に同火炎口15と相対向する位置、
好捷しくけ筒体13のはY中央部に(は排気口16が設
けられており、同り1気[二」16を介して筒体13と
堆)lA至11の外部とは連通状態(こなっている。This cylindrical body 13 is provided with a flame 15 which allows the flame from the burner 14 installed facing it to be drawn out for the first time, and a position opposite to the flame port 15.
The cylindrical body 13 is in communication with the outside of the cylinder 11 (an exhaust port 16 is provided at the center of the cylinder 13, and the cylinder 13 is connected to the cylinder 13 through the 1st air 16). (This is happening.
上記基体12の外周(こガラス微粒子を吹き(’Jけ、
ガラス微粒子堆積層17を形成する際(こば、基体12
を回転させると共(こ四基体12をその長手方向?こ′
i往復動せるかまたはバーナ14を基体12の長手方向
沿い(こ往復動させる。The outer periphery of the base 12 (blow glass fine particles)
When forming the glass fine particle deposition layer 17 (copper, substrate 12
(The four bases 12 are rotated in their longitudinal direction.)
The burner 14 can be reciprocated along the longitudinal direction of the base body 12.
バーナ14を移動させる場合1こは、筒体13もバーナ
14と連動させる。When moving the burner 14, the cylindrical body 13 is also moved in conjunction with the burner 14.
か−る装置を用いて母材を製造するには、基体12を回
転させつつ基体14またはバーナ12を基体14の長手
方向に往復動させる。In order to manufacture a base material using such an apparatus, the base body 14 or the burner 12 is reciprocated in the longitudinal direction of the base body 14 while the base body 12 is rotated.
バーナ12には所定の原料Aを供給すると共(こ排気口
16に吸引力を作用させると、ガス取入1110,10
からフィルタ18を介して空気でηのガス13が堆積室
11内に流入し、流入したカス■3は筒体130両端か
らその内部に入り、カラス微粒子堆積層17の長手方向
に沿って流れ、4J1気口6から流出する。When a predetermined raw material A is supplied to the burner 12 (and when a suction force is applied to the exhaust port 16, the gas intakes 1110, 10
A gas 13 of η flows into the deposition chamber 11 through the filter 18, and the flowed scum 3 enters the inside of the cylinder 130 from both ends and flows along the longitudinal direction of the crow fine particle deposition layer 17. It flows out from 4J1 air port 6.
この際ガスB +は、堆積しなかったガラス微粒子−を
同伴して排気口16から流出する。At this time, the gas B+ flows out from the exhaust port 16, accompanied by the undeposited glass particles.
尚、」−記の如く基体12としてベイトを用いる場合(
こ:は、ガラス微粒子堆積後ベイトを引抜くことにる・
るが、ベイトの代り(こコア用−またはコア及びクラッ
ド用のガラス棒を用いてもよく、この場合(こ(はガラ
ス棒−4υ材の一部として使用されることになる。In addition, when bait is used as the substrate 12 as described in "-" (
This is to pull out the bait after the glass particles are deposited.
However, instead of the bait, a glass rod for the core or for the core and cladding may be used; in this case, the glass rod will be used as part of the 4υ material.
ここでより具体的な例について述べると、〔具体例1〕
バーナ14(こ、02、H2及び5iCt、1 を供給
し、す1気口16の減圧度を調節してガス取入l−11
0,10から入ったカスをガラス微粒頂堆)1111層
1了に沿って流れるようにし、適当なガラス微粒子の堆
積層を形成した(支)、同層をヘリウ化し、これを線引
してコア径5 Q l1m z外径]25μmの光ファ
イバに加工したところ、波長085μmで損失が2.4
dB/Kmという低い値が得られた0
〔具体例2〕
テーバの付いた直径約5mのアルミナ製へイトの外周に
、コア及びクラッドとなるべきガラス微粒子堆積層を形
成するため、バーす14にコア用の原料5iCA4、G
eCl4 及びB B r 3 とクラッド用の原料
SiC/:4及び■3Br3と、1−I2及び02とを
供給し、刊気口16の減圧度を調節してガスをガラス微
粒子堆積ハ’ri Nlいに流しつつガラス微粒子堆積
層を形成した後、ベートを引抜き、同堆積層をヘリウム
カス雰囲気中で約1500℃に加熱して透明ガラス化し
たところ泡の発生は全くみもれなかった。Here, a more specific example will be described. [Specific Example 1] Burner 14 (02, H2, and 5iCt, 1) is supplied, and the degree of depressurization of the 1-1 air port 16 is adjusted to take in gas 1-11.
The debris that entered from 0 and 10 was allowed to flow along the 1111 layer of glass fine particles (top layer) to form an appropriate deposited layer of glass fine particles (support). When processed into an optical fiber with core diameter 5 Q l1m z outer diameter] 25 μm, the loss was 2.4 at a wavelength of 085 μm.
A low value of dB/Km was obtained. [Example 2] In order to form a glass fine particle deposit layer to become the core and cladding on the outer periphery of a tapered alumina hat with a diameter of approximately 5 m, a bar 14 Raw material for core 5iCA4,G
eCl4 and BBr3, raw materials for cladding SiC/:4 and ■3Br3, and 1-I2 and 02 are supplied, and the degree of pressure reduction of the air inlet 16 is adjusted to supply the gas to the glass particle deposition ha'riNl. After forming a layer of fine glass particle deposits while flowing the glass, the bait was pulled out and the deposited layer was heated to about 1500° C. in a helium scum atmosphere to make it transparent vitrified. No bubbles were observed at all.
以上のように不発明番こおいてCζバーナと相対向する
位置に排気口を設けておき、カスを基体の長手方向沿い
に流しつつバーナから基体にガラス微粒子を吹きイ」け
るのて、バーナから噴出しfc JAよ体に堆積しない
ガラス微粒子はガヌベこ同伴されて4フ1気口から流出
することになり、したがって同機わξ子が火炎のあたっ
ていない基体のjXli分(こイ・]着することがなく
、このため付着した做才)ン子汐;焼結時(こ発泡する
というようなことがなく、発?包のみられない1υイ2
が得られること(こなる。As described above, an exhaust port is provided at a position opposite to the Cζ burner, and glass fine particles are blown from the burner to the base while flowing the scum along the longitudinal direction of the base. The glass particles ejected from the fc JA body and not deposited on the body will be entrained by the Ganube and flow out from the 4th vent, so that the glass particles ejected from the fuselage will be absorbed by the amount of jXli of the base body that has not been hit by the flame. 1υi 2) There is no foaming during sintering, and no bubbles can be seen during sintering.
be obtained.
41ン1曲の簡11′IfL説明
第1図(rま従来の方法を示す説明図、第2図は不発明
に係る方法の説明図である。Simple 11'IfL explanation of 41 songs in one piece Figure 1 is an explanatory diagram showing a conventional method, and Figure 2 is an explanatory diagram of a method according to an uninvented method.
10・・・・・ガス取入口
1 1 ・・・・・ 堆才JIi 室12・・・・・
基体
14・・・・・バーナ
16・・・・・4」1気口
17・・・・・ガラス微粒子堆積層
慣許出呵1人
代用)人 弁理士 井 液 誠10... Gas intake port 1 1... Gasai JIi chamber 12...
Substrate 14...Burner 16...4'' 1 Air port 17...Glass fine particle deposit layer 1 person (substitute) Patent attorney Makoto Izu
Claims (2)
自在に設置略れたガラスイ拳等の棒状の基体の外周番こ
、バーナからガラス微粒子を1次きも1けてガラス微粒
子堆積層を堆積層を堆積させる)℃ファイバ母材の製造
方法において、」二記ノく−すと相7J向する位1而こ
上記排気口を設けておき、上言己」イ1イ青室に月又り
入れられ/こガスを」二言己基体の長丁一方向沿いに流
しつつ・く−ナから上記棒状の基体(こ)lラス微粒子
を吹き付けることを特徴とする元ファイバ母拐の製造方
法。(1) A gas intake port and an air bleed port are rotatably installed in a deposition chamber, and glass particles are deposited on the outer periphery of a rod-shaped base such as a glass fist. In the method for manufacturing a fiber base material (depositing a layer), the above exhaust port is provided at a location facing the phase 7J and the space 7J is placed in the blue chamber. A former fiber matrix is characterized in that the above-mentioned rod-shaped substrate is sprayed with fine particles from a blower while flowing the gas along one direction along the length of the substrate. manufacturing method.
を特徴とする特許%’?+水の化1jl’+第1頂記−
或の元ファイバ母44の製造方法。(2) Waste f: From both ends of the substrate to the center (patent characterized by flowing in the opposite direction%'? + water conversion 1jl' + first apex -
A method of manufacturing a certain original fiber motherboard 44.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6124083A JPS59190232A (en) | 1983-04-07 | 1983-04-07 | Preparation of parent material of optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6124083A JPS59190232A (en) | 1983-04-07 | 1983-04-07 | Preparation of parent material of optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59190232A true JPS59190232A (en) | 1984-10-29 |
JPS6261543B2 JPS6261543B2 (en) | 1987-12-22 |
Family
ID=13165504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6124083A Granted JPS59190232A (en) | 1983-04-07 | 1983-04-07 | Preparation of parent material of optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59190232A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6297138U (en) * | 1985-12-09 | 1987-06-20 | ||
JPH02243521A (en) * | 1989-03-16 | 1990-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Fluoride glass rod lens, its production and apparatus therefor |
US6321573B1 (en) * | 1998-06-25 | 2001-11-27 | Heraeus Quarzglas Gmbh & Co. Kg | Process and apparatus for manufacturing a porous SiO2 preform |
US7694536B2 (en) | 2004-03-18 | 2010-04-13 | Shin-Etsu Chemical Co., Ltd. | Manufacturing apparatus of porous glass base material and glass base material for optical fiber |
EP2206689A1 (en) * | 2008-12-26 | 2010-07-14 | Shin-Etsu Chemical Co., Ltd. | Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch |
JP2012193066A (en) * | 2011-03-16 | 2012-10-11 | Furukawa Electric Co Ltd:The | Method for producing optical fiber matrix and device for producing optical fiber matrix |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4976538A (en) * | 1972-11-25 | 1974-07-24 | ||
JPS5183539A (en) * | 1975-01-20 | 1976-07-22 | Hitachi Ltd | SHUSOKUGATAHIKARIFUAIBANO SEIZOSOCHI |
JPS53162152U (en) * | 1977-05-26 | 1978-12-19 | ||
JPS5414753U (en) * | 1977-07-04 | 1979-01-30 |
-
1983
- 1983-04-07 JP JP6124083A patent/JPS59190232A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4976538A (en) * | 1972-11-25 | 1974-07-24 | ||
JPS5183539A (en) * | 1975-01-20 | 1976-07-22 | Hitachi Ltd | SHUSOKUGATAHIKARIFUAIBANO SEIZOSOCHI |
JPS53162152U (en) * | 1977-05-26 | 1978-12-19 | ||
JPS5414753U (en) * | 1977-07-04 | 1979-01-30 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6297138U (en) * | 1985-12-09 | 1987-06-20 | ||
JPH02243521A (en) * | 1989-03-16 | 1990-09-27 | Nippon Telegr & Teleph Corp <Ntt> | Fluoride glass rod lens, its production and apparatus therefor |
US6321573B1 (en) * | 1998-06-25 | 2001-11-27 | Heraeus Quarzglas Gmbh & Co. Kg | Process and apparatus for manufacturing a porous SiO2 preform |
KR100586369B1 (en) * | 1998-06-25 | 2006-06-08 | 헤래우스 크바르츠글라스 게엠베하 & 컴파니 케이지 | PROCESS AND APPARATUS FOR MANUFACTURING A POROUS SiO2 PREFORM |
US7694536B2 (en) | 2004-03-18 | 2010-04-13 | Shin-Etsu Chemical Co., Ltd. | Manufacturing apparatus of porous glass base material and glass base material for optical fiber |
EP2206689A1 (en) * | 2008-12-26 | 2010-07-14 | Shin-Etsu Chemical Co., Ltd. | Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch |
JP2012193066A (en) * | 2011-03-16 | 2012-10-11 | Furukawa Electric Co Ltd:The | Method for producing optical fiber matrix and device for producing optical fiber matrix |
Also Published As
Publication number | Publication date |
---|---|
JPS6261543B2 (en) | 1987-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59190232A (en) | Preparation of parent material of optical fiber | |
TWI237624B (en) | Apparatus for fabricating soot preform for optical fiber | |
CN1938234B (en) | Equipment for producing porous glass base material | |
JPS6251902B2 (en) | ||
JP3551006B2 (en) | Method for producing porous preform for optical fiber | |
JP3154768B2 (en) | Manufacturing method of preform preform for optical fiber | |
JP7399835B2 (en) | Method for manufacturing porous glass deposit for optical fiber | |
JPS649831A (en) | Production of preform for optical fiber | |
JP4449272B2 (en) | Method for producing glass particulate deposit | |
JP3710020B2 (en) | Optical fiber preform manufacturing equipment | |
JPS58167442A (en) | Production of optical fiber parent material | |
JPS61227937A (en) | Preparation of parent material for optical fiber | |
JP2001294440A (en) | Method for manufacturing preform ingot for optical fiber and preform for optical fiber obtained by processing this preform ingot | |
JP3619637B2 (en) | Porous optical fiber preform manufacturing equipment | |
JPS59152234A (en) | Preparation of parent material for optical fiber | |
JPH01203238A (en) | Production of optical fiber preform | |
JPS6011241A (en) | Manufacture of base material for optical fiber | |
JPS63156032A (en) | Formation of suit for preform | |
JP2601948Y2 (en) | Equipment for manufacturing porous preform for optical fiber | |
JP2846048B2 (en) | Method for producing porous glass base material | |
JPS643030A (en) | Production of parent material for optical fiber | |
JPH02145449A (en) | Production of preform for optical fiber | |
JPS6217037A (en) | Production of base material for optical fiber | |
JPS63100034A (en) | Method and apparatus for manufacturing light guide path soot preform | |
JPH06271327A (en) | Production of optical fiber porous glass preform |