JPS59189976A - Lining method for hollow pipe - Google Patents

Lining method for hollow pipe

Info

Publication number
JPS59189976A
JPS59189976A JP6369483A JP6369483A JPS59189976A JP S59189976 A JPS59189976 A JP S59189976A JP 6369483 A JP6369483 A JP 6369483A JP 6369483 A JP6369483 A JP 6369483A JP S59189976 A JPS59189976 A JP S59189976A
Authority
JP
Japan
Prior art keywords
hollow tube
hollow pipe
lining
lining material
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6369483A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kitano
北野 泰宏
Teruo Okuda
奥田 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP6369483A priority Critical patent/JPS59189976A/en
Publication of JPS59189976A publication Critical patent/JPS59189976A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To easily manufacture a hollow pipe having suitable wear and corrosion resistance, etc., by charging a lining material in a hollow pipe, hermetically sealing said pipe in an unoxidizing atmosphere, heating it, and then rotatively cooling it. CONSTITUTION:A lining material in a powdery or cluster state is charged in a hollow pipe, and the interior of said hollow pipe is held in an unoxidizing atmosphere such as an inert or vacuum one and hermetically sealed f to isolate it from the open air. Thereafter, the hollow pipe is heated g pref. under a stationary condition to melt the lining material, rotated h to perform centrifugal casting and then cooled i. Hence, the hollow pipe having the treated inner surface is easily manufactured at a low cost.

Description

【発明の詳細な説明】 この発明は、中空管たとえば樹脂成形機用シリンダ等の
内面に耐摩耗耐食合金などをライニングするのに使用さ
れる中空管のライニング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hollow tube lining method used for lining the inner surface of a hollow tube, such as a cylinder for a resin molding machine, with a wear-resistant and corrosion-resistant alloy.

耐摩耗性ならびに耐食性か要求される部材としては1例
えは、樹脂成形機1モルタルポンプ、スラリーポンプ、
コンプレッサ等に使用するシリンダがある。
Examples of parts that require wear resistance and corrosion resistance include resin molding machines, mortar pumps, slurry pumps,
There are cylinders used in compressors, etc.

一方、樹脂成形体中にガラス繊維、炭素繊維。On the other hand, glass fiber and carbon fiber are included in the resin molded body.

金属繊維等の補強材を混入させて、樹脂成形体の強度、
難燃性、耐摩耗性等の緒特性を向上させようとすること
が近年多くなってきている。したがって、樹脂成弯機の
シリンダ部分においては、樹脂に加えた補強材や添加剤
による摩耗が少ないこと、および樹脂や添加剤等から出
るガスによる腐食が少ないことなど、従来以上の厳しい
特性が要求されている。
By mixing reinforcing materials such as metal fibers, the strength of the resin molded body,
In recent years, attempts have been made to improve the properties of materials such as flame retardancy and abrasion resistance. Therefore, the cylinder part of a resin forming machine is required to have stricter characteristics than before, such as less wear due to reinforcing materials and additives added to the resin, and less corrosion due to gases emitted from the resin and additives. has been done.

ところで、従来の樹脂成形機におけるシリンダでは、窒
化鋼から深穴用ドリルを用いたBTA方式でシリンダ部
品を成形し、その後シリンダ内面に窒化処理を施して表
面硬化することにより表面に耐摩耗性を付与するように
していた。
By the way, in cylinders in conventional resin molding machines, cylinder parts are molded from nitrided steel using the BTA method using a deep hole drill, and then the inner surface of the cylinder is nitrided and hardened to provide wear resistance to the surface. I was trying to grant it.

しかし、この窒化処理したシリンダは表面の耐摩耗性に
は優れているが、その反面、耐食性が劣っているため、
特に特殊樹脂の射出成形機用シリンダやモルタルポンプ
用シリンダのように強い腐食環境および摩耗環境に曝さ
れた場合には、その寿命が短いという欠点を有していた
However, although this nitrided cylinder has excellent surface wear resistance, it has poor corrosion resistance.
In particular, when exposed to strong corrosive and abrasive environments, such as special resin cylinders for injection molding machines and cylinders for mortar pumps, they have the disadvantage of short service life.

そのため、耐食性および耐遼耗性を兼ね備え、かつ安価
な新合金の開発が強く望まれていた。そして、この要請
に基ついていくつかの新合金か開発されているが、いず
れも高価であり、シリンダ部品の素材として単独で用い
ることは、シリンダの製造原価を引き」−げ経済上好ま
しくないという問題点を有していた。
Therefore, there has been a strong desire to develop a new alloy that is both corrosion resistant and wear resistant and inexpensive. Several new alloys have been developed based on this request, but they are all expensive, and it is said that their use alone as a material for cylinder parts is economically undesirable because it reduces the manufacturing cost of the cylinder. It had some problems.

、そこで、これらの問題点を解決する従来法としては、
シリンダの内面に耐摩耗耐食性合金を溶射法治肉盛溶接
法でライニングする方法が考えられている。t Lかし
ながら、この方法ては、4’1.!樹脂の銅山成形機用
シリンダの内径が25〜50mm程度と小さい上、長尺
(300〜1200mm)である場合には、内径部分に
トーチを入れて溶射あるいは肉盛溶接する必要があるた
め、作業が訊しく困難であるという問題点を有していた
Therefore, the conventional method to solve these problems is as follows.
A method has been considered in which the inner surface of the cylinder is lined with a wear-resistant and corrosion-resistant alloy by thermal spraying or overlay welding. However, in this method, 4'1. ! The inner diameter of the resin cylinder for the copper mine forming machine is small at about 25 to 50 mm, and if it is long (300 to 1200 mm), it is necessary to insert a torch into the inner diameter part and perform thermal spraying or overlay welding, so the work is difficult. The problem was that it was difficult and complicated.

この発明は、このような従来の問題点を解消するために
なされたもので、粉粒状もしくは塊片状等のライニング
素材を装入した中空管内を不活性雰囲気あるいは真空雰
囲気等よりなる非酸化性雰囲気にして加熱することによ
りライニング素材を溶解し、次いて前記中空管を回転し
て遠心鋳造することにより、例えば特殊樹脂の射出成形
機用シリンダに好適な耐摩耗耐食性合金を内面にライニ
ングした中空管を容易にかつ低コストで製造することが
できる中空管のライニング方法を提供することを目自9
としている。
This invention was made to solve these conventional problems, and the inside of a hollow tube charged with a lining material in the form of powder or chunks is heated to a non-oxidizing atmosphere such as an inert atmosphere or a vacuum atmosphere. The lining material is melted by heating in an atmosphere, and then the hollow tube is rotated and centrifugally cast, whereby the inner surface is lined with a wear-resistant and corrosion-resistant alloy suitable for, for example, cylinders for special resin injection molding machines. The aim is to provide a hollow tube lining method that allows hollow tubes to be manufactured easily and at low cost9.
It is said that

すなわち、この発明による中空管のライニング方法は、
中空管の内面にライニングを施すにあたり、前記中空管
内に粉粒状もしくは塊片状等のライニング素材を装入す
るとともに当該中空管内を不活性雰囲気あるいは真空雰
囲気等よりなる非醇化性雰囲気にし且つ内部を密閉して
外気と遮断した後、前記中空管をより望ましくは静止状
態で加熱して前記ライニング素材を溶解し、次いで回転
し遠心鋳造して冷却するようにしたことを特徴としてい
る。
That is, the method for lining a hollow tube according to the present invention is as follows:
When lining the inner surface of a hollow tube, a lining material in the form of powder or chunks is charged into the hollow tube, and the inside of the hollow tube is made into a non-melting atmosphere such as an inert atmosphere or a vacuum atmosphere. After the hollow tube is sealed and isolated from the outside air, the hollow tube is preferably heated in a stationary state to melt the lining material, and then rotated and centrifugally cast, and then cooled.

以下、この発明の実施態様を図面に基づいて詳細に説明
する。
Hereinafter, embodiments of the present invention will be described in detail based on the drawings.

第1図および第2図はこの発明による中空管のライニン
グ方法の一例を示す各々工程ブロック図および第1図の
主な工程における中空管の断面状態を示す説明図であっ
て、図において、1はシリンダ母噴゛などの金属中空管
、2は金属中空管1の内壁面にライニングするペレット
状のライニング素材、3は密閉蓋である。
1 and 2 are process block diagrams showing an example of the hollow tube lining method according to the present invention, and explanatory diagrams showing the cross-sectional state of the hollow tube in the main steps of FIG. , 1 is a metal hollow tube such as a cylinder base injection, 2 is a pellet-like lining material lining the inner wall surface of the metal hollow tube 1, and 3 is a sealing lid.

金属中空管1は例えば炭素鋼から深穴用ドリル・を用い
たBTA方式で成形されるもので、特殊樹脂の射出成形
機用シリンダ部品を製造する際にはシリンダ母管となる
。この金属中空管1の内径d、は、第2図(d)に示す
ライニング中空管4たとえばシリンダ部品の内径d2よ
り、所定の片肉厚のライニングをするのに必要な分1.
たけ大径になるように形成されている(第2図(a)参
照)。
The metal hollow tube 1 is molded, for example, from carbon steel by the BTA method using a deep hole drill, and serves as a cylinder main tube when manufacturing cylinder parts for injection molding machines of special resin. The inner diameter d of the metal hollow tube 1 is 1.0 mm larger than the inner diameter d2 of the lining hollow tube 4, for example, a cylinder part, shown in FIG.
It is formed to have an extremely large diameter (see FIG. 2(a)).

一方、ライニング素材2は例えばCo−Cr−Ni −
B系自溶性合金などの耐摩耗耐食合金を溶解炉たとえば
電気炉、高周波誘導炉などで溶解してペレット状に作成
してなるもので、金属中空管1の内壁面にライニングを
施す素材として使用されるものである。
On the other hand, the lining material 2 is, for example, Co-Cr-Ni −
It is made into pellets by melting wear-resistant and corrosion-resistant alloys such as B-based self-fluxing alloys in a melting furnace, such as an electric furnace or a high-frequency induction furnace, and is used as a material for lining the inner wall surface of the hollow metal tube 1. It is used.

次に、このペレット状のライニング素材2を、金属中空
管1の内壁面に所定の片肉厚1.でライニングするのに
必要な量だけ秤量し、この量だけ金属中空管l内に装入
する。そして、金属中空管1内にペレット状のライニン
グ素材2を装入した状態で、金属中空管l内を不活性雰
囲気あるいは真空雰囲気等の非酸化性雰囲気にしてその
両端を電閉蓋3で塞ぐ。この際、金属中空管1内を非酸
化性雰囲気にする方法としては、ペレット状のライニン
グ素材2を金属中空管l内に装入した後、金属中空管1
内の空気をアルゴン(Ar)ガスで置換し、その両端を
密閉蓋3で塞ぐようにする(第2図(b)参照)。さら
に好ましくは、ペレット状のライニング素材2を金属中
空管1内に装入してその両端を密閉M3で塞いだ後、一
方の密閉蓋3に設けた図示しない吸込口を介して真空ポ
ンプで減圧して金属中空管1の内部を真空にし、その後
前記吸込口を塞ぐようにする。
Next, this pellet-shaped lining material 2 is applied to the inner wall surface of the metal hollow tube 1 to a predetermined thickness of 1. Weigh out the amount necessary for lining, and charge this amount into the metal hollow tube l. Then, with the pellet-like lining material 2 charged into the hollow metal tube 1, the inside of the hollow metal tube 1 is made into a non-oxidizing atmosphere such as an inert atmosphere or a vacuum atmosphere, and both ends of the tube are covered with electrically closed lids 3. Block it with At this time, as a method to make the inside of the metal hollow tube 1 a non-oxidizing atmosphere, after charging the pellet-shaped lining material 2 into the metal hollow tube 1,
The air inside is replaced with argon (Ar) gas, and both ends are closed with airtight lids 3 (see FIG. 2(b)). More preferably, the pellet-shaped lining material 2 is charged into the metal hollow tube 1 and both ends thereof are closed with sealing M3, and then a vacuum pump is inserted through a suction port (not shown) provided in one of the sealing lids 3. The pressure is reduced to create a vacuum inside the metal hollow tube 1, and then the suction port is closed.

次に、このようにして非酸化性雰囲気としプ(状態で、
金属中空管1を例えば前記Co−Cr−N1−B系自溶
合金の場合に約1200°Cに加熱した炉内に装入し、
この炉内で所定の時間保持し、金属中空管l内のペレッ
ト状のライニング素材2を不活性雰囲気中あるいは真空
雰囲気中で溶解する。こうしてフッ1定の時間を経過し
た後、金属中空管lを炉内から取り出し、直ちに図示し
ない遠心機に装着して遠心機モーターを起動させて所定
の回転速度で遠心鋳造を開始する(第2[Δ(C)参照
)。この遠心鋳造に際しての遠心力を与えるために回転
方向としては、水平軸と垂直軸のいずれも用いることが
できるが、シリンダ部品のように小径でかつ長尺である
場合には、第2図(C)に示すように水平軸とすること
が好ましい。この遠心機による回転は金属中空管lが8
00°Cに冷却されるまて続行し、その時点で遠心機モ
ーターを停止する。その後、金属中空管1を室温まで徐
冷する。
Next, in this way, create a non-oxidizing atmosphere.
For example, in the case of the Co-Cr-N1-B self-fluxing alloy, the metal hollow tube 1 is charged into a furnace heated to about 1200°C,
This furnace is kept in the furnace for a predetermined period of time, and the pellet-shaped lining material 2 inside the metal hollow tube 1 is melted in an inert atmosphere or a vacuum atmosphere. After a predetermined period of time has elapsed, the metal hollow tube l is taken out of the furnace and immediately attached to a centrifuge (not shown), the centrifuge motor is started, and centrifugal casting is started at a predetermined rotational speed. 2 [see Δ(C)). In order to apply centrifugal force during centrifugal casting, either a horizontal axis or a vertical axis can be used as the rotation direction, but in the case of a small diameter and long cylinder part, as shown in Fig. 2 ( It is preferable to use the horizontal axis as shown in C). The rotation by this centrifuge is 8 times
Continue until cooled to 00°C, at which point stop the centrifuge motor. Thereafter, the metal hollow tube 1 is slowly cooled to room temperature.

次いで、金属中空管1をシリンダ部品としての所定長さ
に切断して密閉蓋3を取り除くとともに、第2図(d)
に示すように、ライニング5の表面をホーニング加工な
どの研削仕上げを施してライニング中空管4を得る。
Next, the metal hollow tube 1 is cut to a predetermined length as a cylinder component, the sealing lid 3 is removed, and the metal tube 1 is cut into a predetermined length as a cylinder component, and the sealing lid 3 is removed, as shown in FIG. 2(d).
As shown in FIG. 2, the surface of the lining 5 is subjected to a grinding finish such as honing to obtain the lined hollow tube 4.

このように、この発明によるシリンダ等の中空管のライ
ニング方法においてlよ、不活性雰囲気あるいは真空雰
囲気等の非酸化性雰囲気にある中空管1内でペレット状
等のライニング素材2を溶解したのち炉出しして遠心鋳
造を行うため、ライニング5に供する素材が酸化されず
、さらに遠心力の作用により金属中空管lの内壁面に大
きな静圧を加えて拡散溶着するため均一でかつ強固なラ
イニング層が得られる。
As described above, in the method for lining a hollow tube such as a cylinder according to the present invention, a lining material 2 such as a pellet is melted in the hollow tube 1 in a non-oxidizing atmosphere such as an inert atmosphere or a vacuum atmosphere. Since the material used for the lining 5 is then taken out of the furnace and centrifugally cast, it is not oxidized, and the centrifugal force applies a large static pressure to the inner wall surface of the hollow metal tube l for diffusion welding, resulting in a uniform and strong weld. This results in a lining layer.

さらに、ライニゲ素材を金属中空管lに封入した状態で
遠心鋳造して凝固させるため、金属中空省・1の内部は
保温の状態ん維持しつつ、金属中空管1の外周部から徐
々に冷却される。このことは、金属中空管lの内壁面に
拡散溶着した自溶合金等のライニング素材2が金属中空
管1の外周側から冷却されて徐々に凝固するため、指向
凝固が可能であることを意味し、凝固の際に生ずる収縮
孔は皆無となる。
Furthermore, since the reinige material is centrifugally cast and solidified while sealed in the metal hollow tube 1, the inside of the metal hollow tube 1 is kept warm, and gradually starts from the outer periphery of the metal hollow tube 1. cooled down. This means that directional solidification is possible because the lining material 2, such as a self-fluxing alloy, diffusion-welded to the inner wall surface of the hollow metal tube 1 is cooled from the outer circumferential side of the hollow metal tube 1 and gradually solidifies. This means that there are no shrinkage pores that occur during solidification.

5  次に、この発明の一実施例について説明する。5 Next, one embodiment of the present invention will be described.

まず、表に示す化学成分のCo基酎耐耗酎耐合金を電気
炉にて1480’Cで再溶解してペレット状の自溶合金
を作成した。
First, a Co-based wear-resistant alloy having the chemical components shown in the table was remelted at 1480'C in an electric furnace to create a self-fluxing alloy in the form of pellets.

次に、この自溶合金を外径100mm、内径32mm、
長さ1000 mm(71炭素611!(SC)製シリ
ングの中に、当該シリンダの内壁面に片肉厚3mmのラ
イニングを行うのに必要な量だけ入れたのち、シリンダ
内をアルゴン(Ar)カスで置換して前記シリンダの両
端を炭素鋼製布閉蓋で封じ、その後約1200°Cの炉
内に装入して加熱し、加熱により前記自溶合金を溶解し
た後にシリンダを炉内から取り出し、前記シリンダを遠
心機に装着して回転しつつ800°Cまで冷却し、その
後室温まで徐冷し、次いでシリンダを所定長さの寸法に
切断および切削仕上げして目的とするシリンダ部品を製
造した。
Next, this self-fluxing alloy was made into an outer diameter of 100 mm, an inner diameter of 32 mm,
After filling a cylinder with a length of 1000 mm (71 carbon 611! (SC)) with the amount necessary to line the inner wall of the cylinder with a thickness of 3 mm on one side, the inside of the cylinder was filled with argon (Ar) gas. After that, the cylinder was replaced with carbon steel and its ends were sealed with carbon steel cloth lids, and then placed in a furnace at about 1200°C and heated, and after the self-fluxing alloy was melted by heating, the cylinder was taken out from the furnace. The cylinder was mounted on a centrifuge and cooled to 800°C while rotating, and then gradually cooled to room temperature.Then, the cylinder was cut to a predetermined length and finished by cutting to produce the desired cylinder part. .

4Uられたシリンダ部品!品の内面を観察したところ、
耐J情耗耐食性層が均一に形成されているとともに収縮
孔もほとんどないことがわかった。またシリンダ内面の
切削においては表面が高硬度化したにもかかわらす被削
性が良好であることが確認された。
4U cylinder parts! When I observed the inside of the product,
It was found that the J wear and corrosion resistant layer was uniformly formed and had almost no shrinkage pores. Furthermore, in cutting the inner surface of the cylinder, it was confirmed that the machinability was good despite the hardness of the surface.

以上説明してきたように、この発明によれば、中空管の
内面にライニングを施すにあたり、前記中空管内に粉粒
状もしくは塊片状等のライニング素材を装入するととも
に当該中空管内を不活性雰囲気あるいは真空雰囲気等よ
りなる非酸化性雰囲気にし且つ内部を密閉して外気と遮
断した後、前記中空管を加熱して前記ライニング素材を
溶解モルタルポンプ用シリンダのように耐摩耗耐食性を
要求する用途等に適する中空管を容易にかつ低コストで
製造することができるという顕著な効果を有する。
As explained above, according to the present invention, when lining the inner surface of a hollow tube, a lining material in the form of powder or chunks is charged into the hollow tube, and the inside of the hollow tube is kept in an inert atmosphere. Alternatively, after creating a non-oxidizing atmosphere such as a vacuum atmosphere and sealing the inside to isolate it from the outside air, the hollow tube is heated and the lining material is melted. Applications that require wear and corrosion resistance, such as cylinders for mortar pumps. This method has the remarkable effect that hollow tubes suitable for the following applications can be manufactured easily and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による中空管のライニング方法の一実
施態様を示す工程ブロック図、第2図(a)〜(d)は
第1図の主な工程における状態を示す中空管の断面図で
ある。 l・・・中空管、2・・・ライニング素材、3・・・塞
閉蓋、4・・・ライニング中空省、5・・・ライニング
。 特許出願人  大同赫殊鋼株式会社 代理人弁理士 小  塩   豊 第1図 −420− 第2図
FIG. 1 is a process block diagram showing an embodiment of the hollow tube lining method according to the present invention, and FIGS. 2(a) to (d) are cross sections of the hollow tube showing states in the main steps of FIG. It is a diagram. l...Hollow tube, 2...Lining material, 3...Closing lid, 4...Lining hollow saving, 5...Lining. Patent Applicant: Daido Hekushuko Co., Ltd. Representative Patent Attorney Yutaka Oshio Figure 1-420- Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)中空管の内面にライニングを施すにあたり、前記
中空管内に粉粒状もしくは塊片状等のライニング素材を
装入するとともに当該中空管内を不活性雰囲気あるいは
真空雰囲気等よりなる非酸、化性雰囲気にし且つ内部を
布間して外気と遮断した後、前記中空管を加熱して前記
ライニング素材を溶解し、次いで回転し遠心鋳造して冷
却することを特徴とする中空管のライニング方法。
(1) When lining the inner surface of a hollow tube, a lining material in the form of powder or chunks is charged into the hollow tube, and the inside of the hollow tube is kept in an inert atmosphere or vacuum atmosphere, etc. The lining of the hollow tube is characterized in that the hollow tube is heated to melt the lining material after the inside thereof is made into a neutral atmosphere and isolated from the outside air by using cloth, and then the hollow tube is rotated and centrifugally cast to be cooled. Method.
JP6369483A 1983-04-13 1983-04-13 Lining method for hollow pipe Pending JPS59189976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6369483A JPS59189976A (en) 1983-04-13 1983-04-13 Lining method for hollow pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6369483A JPS59189976A (en) 1983-04-13 1983-04-13 Lining method for hollow pipe

Publications (1)

Publication Number Publication Date
JPS59189976A true JPS59189976A (en) 1984-10-27

Family

ID=13236735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6369483A Pending JPS59189976A (en) 1983-04-13 1983-04-13 Lining method for hollow pipe

Country Status (1)

Country Link
JP (1) JPS59189976A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177144A1 (en) * 2011-06-23 2012-12-27 Pu Teknikk As Tubular body coated with an internal wear coating and method of manufacturing such a coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110865A (en) * 1974-07-17 1976-01-28 Akira Imanaka Kinzokukano goseijushide naimenhifukusuruhooho oyobi sochi
JPS526776A (en) * 1975-07-04 1977-01-19 Daiwa Kogyo Co Method of coating protective film on inside of metal pipe
JPS5230877A (en) * 1975-09-03 1977-03-08 Daiwa Kogyo Co Method of coating protective film on inside of metal pipe

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5110865A (en) * 1974-07-17 1976-01-28 Akira Imanaka Kinzokukano goseijushide naimenhifukusuruhooho oyobi sochi
JPS526776A (en) * 1975-07-04 1977-01-19 Daiwa Kogyo Co Method of coating protective film on inside of metal pipe
JPS5230877A (en) * 1975-09-03 1977-03-08 Daiwa Kogyo Co Method of coating protective film on inside of metal pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177144A1 (en) * 2011-06-23 2012-12-27 Pu Teknikk As Tubular body coated with an internal wear coating and method of manufacturing such a coating

Similar Documents

Publication Publication Date Title
JP3258201B2 (en) Method for producing casting from molten metal of reactive metal and mold
CA2197135A1 (en) Process and device for melting and casting of metals in mould
CA2448361A1 (en) Method for producing metallic iron
CN110343913A (en) A kind of aluminium base high strength composite and preparation method thereof
CN101269412B (en) Production of abrasion-proof ceramic composite mold steel plate with self-propagating method
CN104646644A (en) Double-liquid bi-metal composite pipe
KR100388509B1 (en) METHOD FOR MANUFACTURING BIMETHER Abrasive Wheel and Grinding Wheel Obtained Thereby
US6490793B1 (en) Method of manufacture of as-cast composite roll
JP2889192B2 (en) Apparatus for producing powdered magnet material
US4005741A (en) Method for the fabrication of tube products
JPS59189976A (en) Lining method for hollow pipe
Wei et al. Centrifugal casting
CN108941437A (en) A kind of manufacturing method of high abrasion Integral-type screw conveyor blade
JPS5893805A (en) Manufacture of steel body with antiabrasive pore
CN1565775A (en) Manufacturing technique of bimetallic compound pipe
JPS616242A (en) Fiber reinforced metallic composite material
CN1053763A (en) The control method of rate of heat extraction in the model casting
WO2004101197A3 (en) Method for centrifugal casting
JP2008246550A (en) Method for manufacturing preform, preform, and cast-in product using preform
US2670511A (en) Method of lining bearings
RU2160652C2 (en) Method for applying babbitt onto bearing surface
KR100287965B1 (en) Method for producing alloy tube using high frequency induced heating source
KR100192917B1 (en) Method for producing brake rotor
JP3405481B2 (en) Composite cylinder for molding machine
John et al. The shaping of materials