JPS59189724A - Capacitor array type a/d converter - Google Patents

Capacitor array type a/d converter

Info

Publication number
JPS59189724A
JPS59189724A JP6411283A JP6411283A JPS59189724A JP S59189724 A JPS59189724 A JP S59189724A JP 6411283 A JP6411283 A JP 6411283A JP 6411283 A JP6411283 A JP 6411283A JP S59189724 A JPS59189724 A JP S59189724A
Authority
JP
Japan
Prior art keywords
capacitor
mum
capacitor array
unit
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6411283A
Other languages
Japanese (ja)
Inventor
Michiya Kubokawa
道矢 久保川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP6411283A priority Critical patent/JPS59189724A/en
Publication of JPS59189724A publication Critical patent/JPS59189724A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type

Abstract

PURPOSE:To improve the A/D conversion precision by constituting a capacitor array with a capacitor, which includes plural capacitors of minimum units, as a constitution unit to generate the value of the capacitor array with a high precision. CONSTITUTION:A capacitor CR where 4 capacitors whose one side has a length L are one constitution unit is shown in Fig. (1). Its capacity is 4L<2>XCox(F) and is equal to that of a conventional capacitor. When one of 4 capacitors is used for adjustment as shown in Fig. (2), the adjustment unit is L(mum)X1(mum)XCox(F/ mum<2>), and a capacitor Cs is generated with a precision twice as high as that of conventional unit 2XL(mum)X1(mum)XCox(F/mum<2>). With respect to the other C7-C0, integer-fold number of CRs are used as conventional, and for example, 8 CRs are used as C7 and 4 CRs are used as C6.

Description

【発明の詳細な説明】 本発明は2ステージコンデンサアレイ型A / D変換
器において、最小単位のコンデンサを複数含むコンデン
サを構成単位としてコンデンサアレイを構成したA /
 D変換器に関する。本発明で扱う2ステージコンデン
サアレイ型A / D変換器(8btt)の基本的回路
構成の概念図は第1図に示すように構成単位のコンデン
サの容量を1に規格化するとそれぞれの値は’7 (1
4)=8.0゜(15)=4 、 a、  (i 2)
=2 、04(11)” 1 + ’ s  (10)
 = 8 w C2(9) = 4 e C5(8)=
2#0Rc7)tc@  (6)=i wag(15)
=16/15になる。コンデンサアレイ型のA/D変換
器の精度は各々のコンデンサの値の相対精度で決まるこ
とは一般に良く知られている。ここで集積回路でこのA
 / D変換器を作る場合に問題になるのはこれらのコ
ンデンサの作り方である。しかしC75C6s・・・・
・・・・・、Oo 、ORに関してはaフ〜C1はC8
,ORの整数倍の容量であることを考慮し、C7はOR
を構成m位として8個用いるというように以下06〜c
1までのコンデンサは容易に作ることができる。ところ
がOf+は構成単位の16715倍であり、またA/D
精度にも大きく影響するためその作り方は難しい。集積
回路におけるコンデンサの構造の一例は第2図に示され
るようにAAl 、ゲート酸化膜2.拡散層3の3つで
構成されるが、この容量はゲート酸化膜2の面積で決ま
る。そのため08を作るときにはこの面積を変えなけれ
ばならない。従来の方法では[;!J3−(1)のf1
1¥成単位に対して第3図−(2)に示すようにある一
辺をΔL1/l m変えて16/15になるように調整
していた。しかし一般にこのΔL1は集積回路のパター
ン設aI上の都合から、例えば1μm 、 2μ情と離
散イ1(+をとらざるを得ないのである。従って従来方
法によるC8の値の調整単位はoox(F/μ想2)を
jltl面位当たりのゲート容量とすれば2I、(μm
 ) X 1 (/i m ) X Oox (F /
μtn2)である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a two-stage capacitor array type A/D converter, in which a capacitor array is constructed using a capacitor including a plurality of minimum unit capacitors as a constituent unit.
Regarding D converter. The conceptual diagram of the basic circuit configuration of the two-stage capacitor array type A/D converter (8btt) handled in this invention is shown in Figure 1. When the capacitance of the constituent unit capacitor is normalized to 1, each value is ' 7 (1
4)=8.0゜(15)=4 , a, (i 2)
=2,04(11)"1+'s(10)
= 8 w C2(9) = 4 e C5(8)=
2#0Rc7)tc@(6)=i wag(15)
=16/15. It is generally well known that the accuracy of a capacitor array type A/D converter is determined by the relative accuracy of the values of each capacitor. Here, in the integrated circuit, this A
/ When making a D converter, the problem is how to make these capacitors. However, C75C6s...
..., Oo, for OR, af~C1 is C8
, Considering that the capacity is an integral multiple of OR, C7 is OR
The following 06~c
Capacitors up to 1 can be easily made. However, Of+ is 16715 times the constituent unit, and A/D
It is difficult to make it because it greatly affects accuracy. An example of the structure of a capacitor in an integrated circuit is shown in FIG. 2 using AAl, gate oxide film 2. It is composed of three diffusion layers 3, and its capacitance is determined by the area of the gate oxide film 2. Therefore, when making 08, this area must be changed. In the conventional method [;! J3-(1) f1
As shown in Figure 3-(2), one side was adjusted by ΔL1/l m for 1 unit to make it 16/15. However, in general, this ΔL1 has to take a discrete value of 1 μm, 2 μm, and 1 (+) due to the pattern design aI of the integrated circuit. Therefore, the unit of adjustment of the value of C8 according to the conventional method is oox (F /μm2) is the gate capacitance per jltl plane, then 2I, (μm
) X 1 (/i m) X Oox (F/
μtn2).

つまり構成単位のORに対しては2/LX100(%)
単位の調整しかできないのである。このことはコンデン
サの一辺の長さLが大きければ問題はないが、−辺の長
さLが小さい場合には粗い調整しかできなくなりA /
 Dの精度は悪化する。集積回路におけるコンデンサは
他素子と比較してその占イffrii積は極めて大きい
ために、パターン設計に際しては出来るだけ小さくしな
ければならないことから、従来の方法によるC8の調整
ではA/Dの精度の向上が期待できないのは明らかであ
る。
In other words, for the OR of the constituent units, 2/LX100 (%)
All you can do is adjust the units. This will not be a problem if the length L of one side of the capacitor is large, but if the length L of the - side is small, only rough adjustment will be possible.
The accuracy of D deteriorates. Since the capacitor in an integrated circuit has an extremely large effrii product compared to other elements, it must be made as small as possible when designing the pattern. Therefore, adjusting C8 using the conventional method does not improve the precision of the A/D. It is clear that no improvement can be expected.

本発明はかかる欠点を除去したもので、その目的はコン
デンサアレイの01llの値を高い精度で作ることによ
り、A/D変換精度を向上させることにある。
The present invention eliminates such drawbacks, and its purpose is to improve A/D conversion accuracy by creating the value of 01ll of the capacitor array with high accuracy.

以下実施例に基づき本発明の詳細な説明する。The present invention will be described in detail below based on Examples.

第4図−(1)は−辺の長さLのコンデンサ4個を1つ
の構成単位としたコンデンサORを示している。この容
量は4L”X0ox(F)  であり、図3−(1)の
従来のものと等しい。第3図−(2)に示される従来の
Osに対して本発明では第4図−(2)のように4個の
コンデンサの内の1つを調整用に用いている。この具体
例での調整単位はL(l1m)xl(μgn ) X 
Oox (F /μrIL2ンであり、従来の2×L(
μ常)×1(μmン×0ox(F/μ惧2)と比べて2
倍の精度でコンデンサ08を作ることができる。他のC
0〜Coは従来通りにC1はORと同じものを8個、C
6は4個というように整数倍で用いれば良い。本発明の
一つの具体例として、−辺L(μ、rL)の正方形コン
デンサを最小単位にし、4個を合わせて構成中位にした
か、最小単位のコンデンサの容量を更に少なくすること
により、構成単位当たりの最小単位のコンデンサ数を増
加させれば、0日の調整は更に細かくすることが可能で
ある。
FIG. 4-(1) shows a capacitor OR in which four capacitors each having a length L on the negative side form one structural unit. This capacity is 4L"X0ox(F), which is equal to the conventional one shown in FIG. ), one of the four capacitors is used for adjustment.The adjustment unit in this specific example is L(l1m)xl(μgn)
Oox(F/μrIL2), which is different from the conventional 2×L(
2 compared to
Capacitor 08 can be made with twice the precision. other C
0 to Co are the same as before, C1 is the same as OR, 8 pieces, C
6 may be used in integral multiples, such as 4 pieces. As a specific example of the present invention, a square capacitor with side L (μ, rL) is made the minimum unit, and four capacitors are combined to form a medium configuration, or by further reducing the capacitance of the minimum unit capacitor, By increasing the number of minimum unit capacitors per constituent unit, it is possible to make the adjustment on day 0 more fine.

本発明は、2ステージコンデンサアレイ型A/′D変換
器において、コンデンサC8の値を従来方式に比べて更
に精度良く作ることができ、A/D変換精度に与える効
果は大きい。
According to the present invention, in a two-stage capacitor array type A/'D converter, the value of the capacitor C8 can be made more accurately than in the conventional method, and the effect on the A/D conversion accuracy is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2ステージコンデンサアレイ型A/D変換器の
姑本的回路構成の概念図。 1・・・・・・コンデンサアレイ ン・・・・・・コンパレータ 3・・・・・・スイッチ 4・・・・・・入力電圧 5・・・・・・参照電圧 6・・・・・・OR 7・・・・・・C。 8・・・・・・C1 9・・・・・・ C2 10・・・・・・ C3 11・・・・・・C1 12・・・・・・C11 16・・・・・・C6 14・・・・・・C7 15・・・・・・ C8 第2図は集積回路におけるコンデンサの構造図1・・・
・・・アルミ 2・・・・・・ゲート酸化膜 6・・・・・・拡散層 第3図(1)は従来方法による構成単位を示す図。 第3図(2)は従来方法によるC8の形を示す図。 第4図(1)は本発明による構成単位の具体例を示す図
。 第4図(2)は本発明によるOBの形の具体例を示す図
。 図中、1はいづれもゲート酸化膜の大きさを示している
。 以  上 出願人 株式会社識訪精工舎 鴬2図
FIG. 1 is a conceptual diagram of the original circuit configuration of a two-stage capacitor array type A/D converter. 1... Capacitor array... Comparator 3... Switch 4... Input voltage 5... Reference voltage 6... OR 7...C. 8...C1 9...C2 10...C3 11...C1 12...C11 16...C6 14. ...C7 15...C8 Figure 2 is a structural diagram of a capacitor in an integrated circuit 1...
. . . Aluminum 2 . . . Gate oxide film 6 . FIG. 3(2) is a diagram showing the shape of C8 according to the conventional method. FIG. 4(1) is a diagram showing a specific example of a structural unit according to the present invention. FIG. 4(2) is a diagram showing a specific example of the shape of the OB according to the present invention. In each figure, 1 indicates the size of the gate oxide film. Applicant: Shikiwa Seikosha Co., Ltd. 2

Claims (1)

【特許請求の範囲】[Claims] 集積回路化2ステージコンデンサアレイ型A/D変換器
において、最小単位のコンデンサを複数含むコンデンサ
を構成単位としてコンデンサアレイを構成することを特
徴とするコンデンサアレイ型A / D変換器。
An integrated circuit two-stage capacitor array type A/D converter, characterized in that a capacitor array is constructed using a capacitor including a plurality of minimum unit capacitors as a constituent unit.
JP6411283A 1983-04-12 1983-04-12 Capacitor array type a/d converter Pending JPS59189724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6411283A JPS59189724A (en) 1983-04-12 1983-04-12 Capacitor array type a/d converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6411283A JPS59189724A (en) 1983-04-12 1983-04-12 Capacitor array type a/d converter

Publications (1)

Publication Number Publication Date
JPS59189724A true JPS59189724A (en) 1984-10-27

Family

ID=13248658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6411283A Pending JPS59189724A (en) 1983-04-12 1983-04-12 Capacitor array type a/d converter

Country Status (1)

Country Link
JP (1) JPS59189724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873312B2 (en) 1995-02-21 2005-03-29 Seiko Epson Corporation Liquid crystal display apparatus, driving method therefor, and display system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6873312B2 (en) 1995-02-21 2005-03-29 Seiko Epson Corporation Liquid crystal display apparatus, driving method therefor, and display system

Similar Documents

Publication Publication Date Title
Dirac Generalized hamiltonian dynamics
CN106663202B (en) Capacitive fingerprint sensing device
TWI614511B (en) Test method and system
Bomar New second-order state-space structures for realizing low roundoff noise digital filters
JPS59189724A (en) Capacitor array type a/d converter
CN111324605B (en) Dynamic adjustment method and application for data hybrid storage in database
Lasdon et al. Optimal design of filters with bounded, lossy elements
JPS5924324A (en) Integrated circuit device
CN114364115A (en) Transverse wave excitation plasma array generator
Colding et al. Embedded minimal disks
Hsiao et al. The design and analysis of a fully integrated multiplying DLL with adaptive current tuning
JP3763150B2 (en) Mesh generation method and apparatus
Watanabe Generating functions and integral representations for the spherical functions on some classical Gelfand pairs
JPH0470121A (en) Frequency divider circuit
Litovski et al. Element Values of Cascaded Gm-C and Two-Phase Gm-C Filters
JP4663226B2 (en) Frequency multiplier circuit
JPS63193710A (en) Integration circuit
KR100334371B1 (en) A Peroid Assignment Method For Real Time System Design
US4464637A (en) Semi-active notch filter
JP3155029B2 (en) Sine wave generator
Pascu et al. On the planarity of bicolored digraph grammar systems
JPH114139A (en) Filter circuit
JPH01115213A (en) Noise eliminating circuit
Kang Extreme point results for robustness of control systems
Lerner et al. Asymptotically simple space‐time manifolds