JP3763150B2 - Mesh generation method and apparatus - Google Patents

Mesh generation method and apparatus Download PDF

Info

Publication number
JP3763150B2
JP3763150B2 JP19620695A JP19620695A JP3763150B2 JP 3763150 B2 JP3763150 B2 JP 3763150B2 JP 19620695 A JP19620695 A JP 19620695A JP 19620695 A JP19620695 A JP 19620695A JP 3763150 B2 JP3763150 B2 JP 3763150B2
Authority
JP
Japan
Prior art keywords
boundary
mesh
nodes
node
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19620695A
Other languages
Japanese (ja)
Other versions
JPH0927048A (en
Inventor
敦志 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP19620695A priority Critical patent/JP3763150B2/en
Publication of JPH0927048A publication Critical patent/JPH0927048A/en
Application granted granted Critical
Publication of JP3763150B2 publication Critical patent/JP3763150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Description

【0001】
【産業上の利用分野】
本発明は、解析対象形状の有限要素法解析などに使用するメッシュモデルの生成方法に関し、とくに、例えばモータのロータなど材質の異なる部材を組み合わせたモデルに適するメッシュ生成方法および装置に関する。
【0002】
【従来の技術】
従来、解析対象の形状データから有限要素法解析に用いるメッシュデータを生成する技術として、形状データによって表される形状モデルに対して形状分割ルールを適用し、形状モデルを複数の四辺形または三辺形の領域(パート)に分割し、そのパート内を各パートの境界線にメッシュサイズを与えてメッシュ分割し、メッシュモデルを生成するものが開示されている(例えば、特開平5−120385号)。
【0003】
【発明が解決しようとする課題】
ところが、上記従来技術では、パート内を各パートの境界線にメッシュサイズを与えてメッシュ分割し、メッシュモデルを生成するときに、解析解の精度を確保し、データ容量と演算時間の節約を図るために、各パート毎にメッシュサイズを変えてメッシュに粗密をつけて分割する。このとき、隣り合うパートの境界上の節点の数と位置を整合させる必要があるが、対話形式などにより解析者がパート境界の整合を取りながら各パートのメッシュサイズを入力していく。この解析者がメッシュサイズを入力するメッシュ作成作業は、作業が複雑で作業効率の低下をもたらし、特に、物理量の変化を考慮して複雑に粗密をつける必要のある部分においては、極めて多くの時間を要するという問題があった。
また、メッシュ形状は、解析精度の低下を避けるために、歪みの少ないことが要求されるが、解析者によってはメッシュ作成作業が複雑なためバラツキが生じ、メッシュモデルに歪みが生じることがあった。
本発明は、解析者のメッシュ作成作業における負担を軽減し、作業効率を向上させると共に、歪みの少ない形状のメッシュモデルが得られるメッシュ生成装置を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
上記問題を解決するため、本発明は、解析対象領域を分割して複数のパートを形成し、前記複数のパートをメッシュに分割する有限要素法解析用のメッシュ生成方法において、輪郭境界および共通境界上の境界上節点を、前記輪郭境界の1辺を等分化して粗い網目状に初期分割し、前記隣り合うパートで前記共通境界上の境界上節点数が異なる場合、前記両パートの前記共通境界上の境界上節点数の平均値を採用するか、多い方か少ない方のどちらかの前記境界上節点数を採用し、前記共通境界の線分を等分した位置に修正した前記境界上節点を生成し、前記パートに四角形状の粗な網目状メッシュがパート内に形成されるパート内節点を生成し、前記パート内節点を用いて四角形要素を作成し、前記境界上節点とその節点に近い前記パート内節点により粗な網目状メッシュを形成する三角形要素および四角形要素を作成し、前記粗な網目状メッシュの四角形要素を4分割し、三角形要素を3分割する細分化節点を生成し、前記細分化節点により前記四角形要素、前記三角形要素から小四角形要素に変換し、密な網目状メッシュを形成する方法である。また、解析対象領域を分割して複数のパートを形成する手段と、前記分割されたパートを細分化してメッシュに分割する手段とによりなる有限要素法解析用のメッシュ生成装置において、輪郭境界および共通境界上の境界上節点を、前記輪郭境界の1辺を等分化して粗い網目状に初期分割し、前記隣り合うパートで前記共通境界上の境界上節点数が異なる場合、前記両パートの前記共通境界上の境界上節点数の平均値を採用するか、多い方か少ない方のどちらかの前記境界上節点数を採用し、前記共通境界の線分を等分した位置に修正した前記境界上節点を生成する手段と前記パートに四角形状の粗な網目状メッシュがパート内に形成されるパート内節点を生成する手段よりなる節点生成部と、前記パート内節点を用いて四角形要素を作成する手段および前記境界上節点とその節点に近い前記パート内節点により粗な網目状メッシュを形成する三角形要素および四角形要素を作成する手段および前記粗な網目状メッシュの四角形要素を4分割し、三角形要素を3分割する細分化節点を生成して前記細分化節点により前記四角形要素、前記三角形要素から小四角形要素に変換し密な網目状メッシュを形成する手段とよりなる要素生成部とを備えたものである。また、前記小四角形要素の細分化節点を再配置して前記小四角形要素の形状を修正する要素形状修正部を備えたものである。
【0005】
【作用】
上記手段により、パートのメッシュサイズ、座標値あるいは材質などのデータに基づいて、パート境界上およびパート内部の節点を生成するとともに、共通境界の節点を整合し、その節点に基づいて要素生成部により三角形要素と四角形要素を作成して粗な網目状メッシュを形成する。次に、その三角形要素と四角形要素を更に小四角形要素に分割して細分化節点を生成し、その細分化節点によって小四角形要素を形成するとともに、更に要素形状修正部で小四角形要素の形状を修正して密な網目状メッシュを形成するので、自動的に精度の高いメッシュを作成することができる。
【0006】
【実施例】
以下、本発明を図に示す実施例について説明する。
図1は本発明の実施例を示すブロック図である。
図において、1はメッシュ生成装置で、節点生成部2、要素(メッシュ)生成部3および要素形状修正部4から構成されている。メッシュ生成装置1の入力は、形状入力装置から得た解析対象の形状データと形状データに与えるパートのメッシュサイズとを基にしてパート作成装置にて作成されたパートのデータである。パートのデータは、四角形などの部分的な領域を示す座標値、メッシュサイズおよび材質である。
節点生成部2は、パート境界上の節点を生成するパート境界上節点生成部21と、パート内部に格子状に配列された節点を生成するパート内節点生成部22とから構成されている。
要素生成部3は、パート内部の節点による四角形要素作成部31と、パート境界上の節点とそれに近いパート内部の節点による三角形・四角形要素作成部32と、要素の細分割による小四角形要素への変換部33とから構成されている。
【0007】
ここで、図2に示す解析対象領域の形状に基づいて、メッシュを形成する方法を説明する。
図2は、二つの材質A,Bからなる3個のパート51、52、53からなり、各パートは外界との境界6をもち、境界6は他のパートと関係がなく、輪郭を形成する輪郭境界61と、隣り合うパートとの境界である共通境界62、63からなっている。すなわち、パート51とパート52は隣り合うパートとの境界である共通境界62をもち、パート52とパート53は共通境界63を持っている解析対象領域の形状の一例を示す。
パート境界上節点生成部21では、図3(a)、(b),(c)に示すように、輪郭境界61および共通境界62、63上の境界上節点71を、例えば輪郭境界61の1辺を等分割するなどして粗い網目状に初期分割する。隣り合うパートで共通境界上の節点71の数が異なる場合には、図4に示すように、例えば両パートの共通境界上の節点数の平均値を採用するか、多い方か少ない方のどちらかの節点数を採用して、共通境界の線分を等分した位置に修正した節点を設け、共有化する。
すなわち、パート51とパート52の初期の共通境界62の節点の数は、それぞれ3および6であるから、整合した後の共通境界62の節点数は4となる。また、パート52とパート53の初期の共通境界63の節点数は6と7であるから、整合した後の共通境界63の節点数は6としている。
パート内節点作成部22は、図4に示すように、写像関数を用いてパート51および52に四角形状の粗な網目状のメッシュがパート内に形成されるパート内節点72を生成する。
要素生成部3の四角形要素作成部31は、パート内節点生成部22で生成したパート内部のパート内節点72を用いて、四角形要素81を作成する。
また、三角形・四角形要素作成部32では、パート境界上節点生成部21で生成した境界上節点71と、その節点に近いパート内節点72を用いて、粗網目状のメッシュを形成する三角形要素82および四角形要素83を作成する。
他のパートについても同様にして四角形要素81、三角形要素82および四角形要素83を作成し、粗な網目状のメッシュを形成する。
四角形要素への変換部33は、上記のようにして作成した四角形要素81および四角形要素83は4分割、三角形要素82は3分割する細分化節点9を生成して、図5に示すように、細分化節点9により四角形要素81、83および三角形要素82から小四角形要素91に変換し、密な網目状メッシュを形成する。
【0008】
以上により、パート51、52、53内に小四角形要素91の密な網目状メッシュが生成されることになる。
この後、全パートについて上記を繰り返せば、解析領域全体の小四角形要素91よりなる密な網目状メッシュが生成される。
要素形状修正部4は、上記のように作成した小四角形要素91の形状を、例えばラプラシアン法などの形状修正法を用い、極端に面積変化がないように歪みの大きい要素に関する節点71、72および9を再配置して、図6に示すような密な網目状メッシュに修正する。
ここで、パート51と52は、材質が同じなので、共通境界62上の境界上節点71は、パート51と52の内部にあればよく、この場合、共通境界62上の境界上節点71は要素形状修正部4で歪んだ要素の節点として認識され、境界上節点71とその近辺の節点の隣り合う要素の面積が緩やかに変化するように移動される。
以上により、解析精度の良いメッシュが得られ、完成したメッシュはメッシュ表示装置へ送られて表示されたり、メッシュデータベースへ格納される。
【0009】
【発明の効果】
以上述べたように、本発明によれば、パートのメッシュサイズ、座標値あるいは材質などのデータを形状入力装置に格納しておき、そのデータをパート作成装置を介してメッシュ生成装置に入力し、パート境界上およびパート内部の節点を生成するとともに、共通境界の節点を整合し、その節点に基づいて要素生成部により小四角形要素に分割し、更に要素形状修正部で要素の形状を修正するようにしてあるので、自動的に精度の高いメッシュを作成することができ、メッシュ作成時間の大幅な削減、ひいては解析時間の短縮が可能となる効果がある。
【図面の簡単な説明】
【図1】 本発明の実施例を示すブロック図である。
【図2】 本発明の実施例の解析対象領域の形状を示す平面図である。
【図3】 本発明の実施例の解析対象領域のパートを示す平面図である。
【図4】 本発明の実施例の解析対象領域のパートを三角形要素、四角形要素に分割した状態を示す平面図である。
【図5】 本発明の実施例の解析対象領域のパートを小四角形要素に分割した状態を示す平面図である。
【図6】 本発明の実施例の解析対象領域のパートの小四角形要素を修正した状態を示す平面図である。
【符号の説明】
1 メッシュ生成装置、2 節点生成部、21 パート境界上節点生成部、22 パート内節点生成部、3 要素生成部、31 四角形要素作成部、32 三角形・四角形要素作成部、33 四角形要素への変換部、4 要素形状修正部、51、52、53 パート、61 輪郭境界、62、63 共通境界、71 境界上節点、72 パート内節点、81 四角形要素、82 三角形要素、83 四角形要素、91 小四角形要素
[0001]
[Industrial application fields]
The present invention relates to a method for generating a mesh model used for finite element analysis of a shape to be analyzed, and more particularly to a mesh generation method and apparatus suitable for a model in which members of different materials such as a rotor of a motor are combined.
[0002]
[Prior art]
Conventionally, as a technique for generating mesh data used for finite element analysis from shape data to be analyzed, a shape division rule is applied to the shape model represented by the shape data, and the shape model is divided into a plurality of quadrilaterals or three sides. There is disclosed a technique of dividing a shape into regions (parts), and dividing the inside of the part by giving a mesh size to the boundary line of each part to generate a mesh model (for example, Japanese Patent Laid-Open No. 5-120385). .
[0003]
[Problems to be solved by the invention]
However, in the above prior art, when the mesh size is given to the boundary line of each part to divide the mesh and a mesh model is generated, the accuracy of the analytical solution is ensured, and the data capacity and calculation time are saved. Therefore, the mesh size is changed for each part, and the mesh is divided into coarse and dense meshes. At this time, it is necessary to match the number and position of the nodes on the boundary between adjacent parts, but an analyst inputs the mesh size of each part while matching the part boundary by an interactive format or the like. This mesh creation work, in which the analyst inputs the mesh size, is complicated and results in a reduction in work efficiency, especially in the parts that need to be complicated and dense in consideration of changes in physical quantities. There was a problem of requiring.
In addition, the mesh shape is required to have less distortion in order to avoid a decrease in analysis accuracy, but some analysts may have variations due to the complexity of mesh creation work, which may cause distortion in the mesh model. .
An object of the present invention is to provide a mesh generation apparatus that can reduce a burden on an analyst in mesh creation, improve work efficiency, and obtain a mesh model having a shape with less distortion.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, the present invention provides an outline boundary and a common boundary in a mesh generation method for finite element method analysis in which an analysis target region is divided to form a plurality of parts and the plurality of parts are divided into meshes. When the upper boundary node is initially divided into a rough mesh shape by equally dividing one side of the contour boundary, and the number of nodes on the boundary on the common boundary is different between the adjacent parts, the common of both parts On the boundary, the average value of the number of nodes on the boundary on the boundary is adopted, or the number of nodes on the boundary, whichever is larger or smaller, is adopted, and the line segment of the common boundary is corrected to an equally divided position. A node is generated, a node in the part in which a rectangular mesh mesh is formed in the part is formed in the part, a rectangular element is created using the node in the part, the node on the boundary and its node Close to the part Triangular elements and quadrilateral elements forming a coarse mesh mesh are created by nodes, the quadrilateral elements of the coarse mesh mesh are divided into four, subdivided nodes that divide the triangular elements into three are generated, and the subdivided nodes In this method, the square element and the triangular element are converted into small square elements to form a dense mesh mesh . Further, in a mesh generating apparatus for finite element method analysis comprising means for dividing a region to be analyzed to form a plurality of parts and means for subdividing the divided parts into meshes, the contour boundary and common The boundary node on the boundary is initially divided into a coarse mesh by equally dividing one side of the contour boundary, and when the number of nodes on the boundary on the common boundary is different between the adjacent parts, Adopting the average value of the number of nodes on the boundary on the common boundary, or adopting the number of nodes on the boundary, whichever is larger or smaller, and correcting the boundary to a position where the line segment of the common boundary is equally divided Creates a quadrilateral element using a node generation unit comprising means for generating an upper node, means for generating a node in the part in which a rectangular mesh mesh is formed in the part, and the node in the part You The means and the boundary on the nodes with means and quadrilateral element of the coarse reticulated mesh to create a triangular element and quadrilateral element forming said coarse reticulated mesh by part in nodes near the node 4 is divided, triangular elements An element generation unit comprising means for generating a finely divided node by dividing the square element into three and dividing the square element by the subdivided node and converting the triangular element into a small square element to form a dense mesh mesh It is. In addition, an element shape correction unit that corrects the shape of the small square element by rearranging the subdivision nodes of the small square element is provided.
[0005]
[Action]
By the above means, nodes on the part boundary and inside the part are generated based on data such as part mesh size, coordinate value, or material, and the nodes of the common boundary are matched, and the element generation unit based on the nodes Triangular and quadrilateral elements are created to form a coarse mesh. Next, the triangular element and the quadrilateral element are further divided into small quadrilateral elements to generate subdivided nodes. The subdivided nodes are used to form small quadrilateral elements, and the shape of the small quadrilateral elements is further changed by the element shape correction unit. Since a dense mesh mesh is formed by modification, a highly accurate mesh can be automatically created.
[0006]
【Example】
The present invention will be described below with reference to embodiments shown in the drawings.
FIG. 1 is a block diagram showing an embodiment of the present invention.
In the figure, reference numeral 1 denotes a mesh generation apparatus, which includes a node generation unit 2, an element (mesh) generation unit 3, and an element shape correction unit 4. The input of the mesh generation device 1 is part data created by the part creation device based on the shape data to be analyzed obtained from the shape input device and the mesh size of the part given to the shape data. The part data includes coordinate values indicating a partial area such as a quadrangle, mesh size, and material.
The node generation unit 2 includes a part boundary node generation unit 21 that generates nodes on the part boundary, and an intra-part node generation unit 22 that generates nodes arranged in a grid within the part.
The element generation unit 3 includes a quadrilateral element creation unit 31 based on nodes inside the part, a triangle / quadrature element creation unit 32 based on the nodes on the part boundary and the nodes inside the part that are close thereto, and a small quadrilateral element by subdivision of the elements. It is comprised from the conversion part 33. FIG.
[0007]
Here, a method of forming a mesh based on the shape of the analysis target region shown in FIG. 2 will be described.
FIG. 2 includes three parts 51, 52, and 53 made of two materials A and B. Each part has a boundary 6 with the outside world, and the boundary 6 has no relation to other parts and forms a contour. It consists of a common boundary 62, 63, which is a boundary between the contour boundary 61 and adjacent parts. That is, part 51 and part 52 have a common boundary 62 that is a boundary between adjacent parts, and part 52 and part 53 show an example of the shape of the analysis target region having a common boundary 63.
In the part boundary upper node generation unit 21, as shown in FIGS. 3A, 3 </ b> B, and 3 </ b> C, the boundary upper node 71 on the contour boundary 61 and the common boundaries 62 and 63 is set to, for example, 1 of the contour boundary 61. An initial division is made into a coarse mesh by dividing the sides equally. When the number of nodes 71 on the common boundary is different between adjacent parts, as shown in FIG. 4, for example, the average value of the number of nodes on the common boundary of both parts is adopted, whichever is greater or smaller By adopting the number of nodes, a modified node is provided at the position where the line segment of the common boundary is equally divided and shared.
That is, since the numbers of nodes of the initial common boundary 62 of the parts 51 and 52 are 3 and 6, respectively, the number of nodes of the common boundary 62 after matching is 4. Further, since the number of nodes at the initial common boundary 63 of parts 52 and 53 is 6 and 7, the number of nodes at the common boundary 63 after matching is set to 6.
As shown in FIG. 4, the intra-part node creation unit 22 generates a intra-part node 72 in which a square mesh mesh is formed in the parts 51 and 52 using the mapping function.
The quadrangular element creation unit 31 of the element generation unit 3 creates the quadrangular element 81 using the part internal node 72 generated by the part internal node generation unit 22.
Further, the triangle / quadrangle element creation unit 32 uses the upper boundary node 71 generated by the upper part boundary node generation unit 21 and the inner node 72 near the node to form a triangular element 82 that forms a coarse mesh. And the square element 83 is created.
Similarly, the quadrilateral element 81, the triangular element 82, and the quadrilateral element 83 are created for the other parts to form a coarse mesh.
The rectangular element conversion unit 33 generates the subdivided nodes 9 in which the quadrilateral element 81 and the quadrilateral element 83 created as described above are divided into four, and the triangular element 82 is divided into three, and as shown in FIG. The subdivided nodes 9 are converted from the quadrilateral elements 81 and 83 and the triangular element 82 to the small quadrilateral element 91 to form a dense mesh mesh.
[0008]
As a result, a dense mesh mesh of small square elements 91 is generated in the parts 51, 52, and 53.
Thereafter, if the above is repeated for all the parts, a dense mesh-like mesh composed of small square elements 91 in the entire analysis region is generated.
The element shape correction unit 4 uses, for example, a shape correction method such as a Laplacian method for the shape of the small square element 91 created as described above, and the nodes 71 and 72 relating to elements with large distortion so as not to have an extremely large area change. 9 is rearranged and corrected to a dense mesh mesh as shown in FIG.
Here, since the parts 51 and 52 are made of the same material, the upper boundary node 71 on the common boundary 62 only needs to be inside the parts 51 and 52. In this case, the upper boundary node 71 on the common boundary 62 is an element. The shape correcting unit 4 recognizes the node as a distorted element, and moves so that the area of the element adjacent to the node 71 on the boundary and the adjacent node changes gradually.
As described above, a mesh with high analysis accuracy is obtained, and the completed mesh is sent to a mesh display device for display or stored in a mesh database.
[0009]
【The invention's effect】
As described above, according to the present invention, data such as part mesh size, coordinate value or material is stored in the shape input device, and the data is input to the mesh generation device via the part creation device, Nodes on and within the part boundary are generated, the nodes on the common boundary are aligned, the element generation unit divides them into small square elements based on the nodes, and the element shape correction unit corrects the element shape Therefore, it is possible to automatically create a highly accurate mesh, and there is an effect that the mesh creation time can be greatly reduced and the analysis time can be shortened.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a plan view showing the shape of a region to be analyzed according to an embodiment of the present invention.
FIG. 3 is a plan view showing a part of an analysis target area according to the embodiment of the present invention.
FIG. 4 is a plan view showing a state in which a part of an analysis target area according to an embodiment of the present invention is divided into a triangular element and a quadrangular element.
FIG. 5 is a plan view showing a state in which a part of an analysis target area according to an embodiment of the present invention is divided into small square elements.
FIG. 6 is a plan view showing a state where a small square element of a part of an analysis target area according to an embodiment of the present invention is corrected.
[Explanation of symbols]
1 mesh generation device, 2 node generation unit, 21 part boundary upper node generation unit, 22 part internal node generation unit, 3 element generation unit, 31 quadrilateral element creation unit, 32 triangle / quadrature element creation unit, 33 conversion to quadrilateral element Part, 4 element shape correction part, 51, 52, 53 part, 61 contour boundary, 62, 63 common boundary, 71 boundary upper node, 72 part inner node, 81 square element, 82 triangular element, 83 square element, 91 small square element

Claims (3)

解析対象領域を分割して複数のパートを形成し、前記複数のパートをメッシュに分割する有限要素法解析用のメッシュ生成方法において、
輪郭境界および共通境界上の境界上節点を、前記輪郭境界の1辺を等分化して粗い網目状に初期分割し、
前記隣り合うパートで前記共通境界上の境界上節点数が異なる場合、前記両パートの前記共通境界上の境界上節点数の平均値を採用するか、多い方か少ない方のどちらかの前記境界上節点数を採用し、前記共通境界の線分を等分した位置に修正した前記境界上節点を生成し、
前記パートに四角形状の粗な網目状メッシュがパート内に形成されるパート内節点を生成し、
前記パート内節点を用いて四角形要素を作成し、
前記境界上節点とその節点に近い前記パート内節点により粗な網目状メッシュを形成する三角形要素および四角形要素を作成し、
前記粗な網目状メッシュの四角形要素を4分割し、三角形要素を3分割する細分化節点を生成し、
前記細分化節点により前記四角形要素、前記三角形要素から小四角形要素に変換し、密な網目状メッシュを形成することを特徴とするメッシュ生成方法。
In the mesh generation method for the finite element method analysis that divides the analysis target region to form a plurality of parts and divides the plurality of parts into meshes,
The boundary nodes on the boundary and the common boundary are initially divided into coarse meshes by equally dividing one side of the boundary,
When the number of nodes on the boundary on the common boundary is different between the adjacent parts, the average value of the number of nodes on the boundary on the common boundary of the two parts is adopted, or the boundary that is either larger or smaller Adopting the number of upper nodes, generating the upper boundary node modified to the position where the common boundary line segment is equally divided,
Generating a node in the part in which a rectangular mesh mesh having a rectangular shape is formed in the part;
Create a square element using the nodes in the part,
Create triangular and quadrilateral elements that form a coarse mesh mesh with the nodes on the boundary and the nodes in the part close to the nodes;
A quadrilateral element of the coarse mesh mesh is divided into four, and a subdivided node that divides the triangular element into three is generated;
A mesh generation method comprising: converting the quadrilateral element or the triangular element into a small quadrilateral element by the subdividing nodes to form a dense mesh mesh .
解析対象領域を分割して複数のパートを形成する手段と、前記分割されたパートを細分化してメッシュに分割する手段とによりなる有限要素報解析用のメッシュ生成装置において、
輪郭境界および共通境界上の境界上節点を、前記輪郭境界の1辺を等分化して粗い網目状に初期分割し、前記隣り合うパートで前記共通境界上の境界上節点数が異なる場合、前記両パートの前記共通境界上の境界上節点数の平均値を採用するか、多い方か少ない方のどちらかの前記境界上節点数を採用し、前記共通境界の線分を等分した位置に修正した前記境界上節点を生成する手段と前記パートに四角形状の粗な網目状メッシュがパート内に形成されるパート内節点を生成する手段よりなる節点生成部と、
前記パート内節点を用いて四角形要素を作成する手段および前記境界上節点とその節点に近い前記パート内節点により粗な網目状メッシュを形成する三角形要素および四角形要素を作成する手段および前記粗な網目状メッシュの四角形要素を4分割し、三角形要素を3分割する細分化節点を生成して前記細分化節点により前記四角形要素、前記三角形要素から小四角形要素に変換し密な網目状メッシュを形成する手段とよりなる要素生成部とを備えたことを特徴とするメッシュ生成装置。
In a mesh generation apparatus for finite element information analysis comprising means for dividing a region to be analyzed to form a plurality of parts and means for subdividing the divided parts into meshes,
When the boundary boundary and the boundary boundary node on the common boundary are initially divided into a coarse mesh shape by equally dividing one side of the boundary boundary, the number of nodes on the boundary on the common boundary is different between the adjacent parts, The average value of the number of nodes on the boundary on the common boundary of both parts is adopted, or the number of nodes on the boundary, whichever is greater or smaller, is adopted, and the line segment of the common boundary is equally divided. A node generator comprising: means for generating the corrected node on the boundary; and means for generating a node in the part in which a square-shaped coarse mesh mesh is formed in the part ;
Means for creating a quadrilateral element using the nodes in the part, means for creating a triangular element and a quadrilateral element that form a coarse mesh-like mesh by the nodes on the boundary and the nodes in the part close to the node, and the coarse mesh A quadrilateral element of the mesh mesh is divided into four, and a subdivided node that divides the triangular element into three is generated, and the subdivided node converts the quadrilateral element and the triangular element into a small quadrilateral element to form a dense mesh mesh. mesh generation apparatus characterized by comprising a further comprising element generator and means.
前記小四角形要素の細分化節点を再配置して前記小四角形要素の形状を修正する要素形状修正部を備えた請求項2記載のメッシュ生成装置。  The mesh generation device according to claim 2, further comprising an element shape correcting unit that rearranges the subdivided nodes of the small square element to correct the shape of the small square element.
JP19620695A 1995-07-07 1995-07-07 Mesh generation method and apparatus Expired - Fee Related JP3763150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19620695A JP3763150B2 (en) 1995-07-07 1995-07-07 Mesh generation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19620695A JP3763150B2 (en) 1995-07-07 1995-07-07 Mesh generation method and apparatus

Publications (2)

Publication Number Publication Date
JPH0927048A JPH0927048A (en) 1997-01-28
JP3763150B2 true JP3763150B2 (en) 2006-04-05

Family

ID=16353970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19620695A Expired - Fee Related JP3763150B2 (en) 1995-07-07 1995-07-07 Mesh generation method and apparatus

Country Status (1)

Country Link
JP (1) JP3763150B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043035A1 (en) * 2022-08-24 2024-02-29 Jfeスチール株式会社 Press forming analysis method, press forming fracture determining method for press-formed article, press-formed article manufacturing method, press forming analysis device, and press forming analysis program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763934B2 (en) * 2001-09-06 2011-08-31 株式会社日本総合研究所 3D mesh generation method, rotating machine magnetic field analysis method, 3D mesh generation apparatus, rotating machine magnetic field analysis apparatus, computer program, and recording medium
JP5227436B2 (en) * 2011-03-18 2013-07-03 住友ゴム工業株式会社 How to create a finite element model of filler compounded rubber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890383B2 (en) * 1992-04-22 1999-05-10 シャープ株式会社 Mesh making device
JP2642070B2 (en) * 1994-11-07 1997-08-20 インターナショナル・ビジネス・マシーンズ・コーポレイション Method and system for generating quadrilateral mesh

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043035A1 (en) * 2022-08-24 2024-02-29 Jfeスチール株式会社 Press forming analysis method, press forming fracture determining method for press-formed article, press-formed article manufacturing method, press forming analysis device, and press forming analysis program

Also Published As

Publication number Publication date
JPH0927048A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
TWI609403B (en) Drawing data creation method and charged particle beam drawing device
JP3763150B2 (en) Mesh generation method and apparatus
JP4639292B2 (en) 3D mesh generation method
Knabner et al. Conditions for the invertibility of the isoparametric mapping for hexahedral finite elements
JPH11195139A (en) Sculptured surface generating device, method therefor and providing medium
JPH11224352A (en) Mesh generating device
JPH02194477A (en) Mesh generator by mapping method
JPH11144093A (en) Method and device for analytic mesh generation
JPH09270026A (en) Device and method for generating free curved surface
JPH06180725A (en) Approximate transformation device from parametric curve to b-spline curve
JP3823596B2 (en) Data compression method for motion simulation
JPH02230379A (en) Mesh generating system by mapping method
JPS6059474A (en) Picture converter
JPH04195259A (en) Numerical analytic node generating method
JPH06103372A (en) Geometrical conversion processing system for image data
JP3658006B2 (en) Finite element division method and apparatus
JPH0527901B2 (en)
JP2998689B2 (en) How to map image data
JP3545896B2 (en) Analysis mesh generator
JP2699342B2 (en) Image conversion method
JPH06176111A (en) Sticking form calculation device
KR20240102904A (en) Apparatus and method for bilinear upsampling operation
JP2715453B2 (en) Drawing method
JP2001076171A (en) Three-dimensional shape processing system and its curved surface dividing method
JP2004287578A (en) Automatic numbering device, method, and program

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees