JPS59189651A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59189651A
JPS59189651A JP6476183A JP6476183A JPS59189651A JP S59189651 A JPS59189651 A JP S59189651A JP 6476183 A JP6476183 A JP 6476183A JP 6476183 A JP6476183 A JP 6476183A JP S59189651 A JPS59189651 A JP S59189651A
Authority
JP
Japan
Prior art keywords
zirconium oxide
layer
photoresist
substrate
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6476183A
Other languages
Japanese (ja)
Inventor
Shunji Nakao
中尾 俊二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP6476183A priority Critical patent/JPS59189651A/en
Publication of JPS59189651A publication Critical patent/JPS59189651A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable the insulating isolation among the electrodes as well as to extremely reduce the leakage current even at the operation with high temperature by using zirconium oxide for an insulating material to form the isolation region. CONSTITUTION:On a semi-insulating GaAs substrate 1, a buffer layer 2 and further on that an N type active layer 3 are epitaxially grown. A photoresist 8 is coated and patterning is done to expose the substrate surface 10 to become an insulating isolation region. Etching is done from the substrate surface 10 so far as etching proceeds into the buffer layer 2 and zirconium oxide 9 is stuck to the whole surface of the substrate so as to equalize its thickness to the depth of etching. Then the photoresist 8 and the zirconium oxide layer 9 on said photoresist 8 are removed by an organic solvent. After that, the heat treatment is performed in order to increase the tightness of the contact of the zirconium oxide layer 9 and the buffer layer 2. The electrodes such as a gate 4, a source 5 and a drain 6 are formed and each electrode is lead out on the zirconium oxide layer 9 and then the electrode pads are formed.

Description

【発明の詳細な説明】 本発明は半導体装置VC関し、特に電極間や素子間全電
気的に分離するための分領域をもった半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device VC, and more particularly to a semiconductor device having a separate region for electrically isolating electrodes and elements.

半導体装置VCおける分離領域は分離すべき領域間k 
’m:気的VC絶縁することも重要であるが、容易VC
形成し借ることも重要である0例えは、集積回路装置に
おけるPN接合分離は、不純物の基板への拡散VCより
形成されて容易にできるが、絶縁性の点では今−歩であ
り、また分離領域が占める面積も大きくなる。そこで酸
化膜等の絶縁材料で分離領域を形成することが見直され
、近年の半導体装置製造技術の発達もあって、絶縁材料
による分離領域の形成が容易になった。絶縁材料として
は耐熱性等の観点からシリコン酸化物がよく使われてい
る。
The isolation region in the semiconductor device VC is separated by the distance k between the regions to be separated.
'm: Although it is important to electrically insulate VC, it is easy to insulate VC.
For example, PN junction isolation in integrated circuit devices can be easily formed by diffusing impurities into the substrate, but it is still a step forward in terms of insulation, and isolation The area occupied by the region also increases. Therefore, the idea of forming isolation regions using insulating materials such as oxide films has been reconsidered, and with recent developments in semiconductor device manufacturing technology, it has become easier to form isolation regions using insulating materials. Silicon oxide is often used as an insulating material from the viewpoint of heat resistance.

ところで、低消費電力等から半導体装置VCおける動作
電流はま丁ま丁小さくなってきている。このため、半導
体装置のリーク電流が問題視されるようになった1丁な
わち、従来の半導体装置では。
By the way, the operating current in the semiconductor device VC is becoming smaller and smaller due to lower power consumption and the like. For this reason, leakage current in semiconductor devices has become a problem in conventional semiconductor devices.

リーク電流全無視できるような大きさの動作電流が流れ
ていたが、動作電流が小さくなるに従って。
The operating current was so large that the leakage current was negligible, but as the operating current became smaller.

リーク電流は無視できなくなってくる。このことからし
ても、前述のPN接合による素子間分離は不充分であり
、絶縁材料による素子間分離が好ましい。ところが、従
来から使われているシリコン酸化物VCよる分離は動作
電流が非常に小さい半導体装置では充分でないことがわ
かった。特に動作温度が高いほど、絶縁性が劣化してリ
ーク電流が増大することがわかった。これはシリコン酸
化物の絶縁抵抗の温度上昇VCよる低下率が比較的太き
いからである。
Leakage current can no longer be ignored. From this point of view, the isolation between elements using the aforementioned PN junction is insufficient, and isolation between elements using an insulating material is preferable. However, it has been found that the conventional isolation using silicon oxide VC is not sufficient for semiconductor devices whose operating current is very small. In particular, it was found that the higher the operating temperature, the more the insulation deteriorates and the leakage current increases. This is because the rate of decrease in insulation resistance of silicon oxide due to temperature rise VC is relatively large.

不発明者は絶縁材料VCよる分離領域VCさらに検討?
加えた結果、絶縁材料として酸化ジルコニウム全便用す
ることによって絶縁性がさらに同上すること全発見した
。酸化ジルコニウムは絶縁抵抗が高く、かつ温度上昇に
よる低下率は小さい。また、スパッタ法を使うことrC
より酸化ジルコニウムを基板に容易lこ形成し得る。こ
のよ’>vchv化ジルコニウムによる分離領域を使用
すれば、半導体装置の特性は増々向上されるであろう。
Will the non-inventor further consider isolation region VC using insulating material VC?
As a result, it was discovered that the insulation properties were further improved by using zirconium oxide as an insulating material. Zirconium oxide has high insulation resistance, and its rate of decrease due to temperature rise is small. In addition, using sputtering method
Zirconium oxide can be easily formed on the substrate. If such a separation region made of zirconium chloride is used, the characteristics of the semiconductor device will be further improved.

以下、本発明の実施例全図田Jvcより詳述する。Hereinafter, embodiments of the present invention will be described in detail from Zenzuta Jvc.

第1図は本発明の一実施例會示し、これはGaAsショ
ットキー障壁ゲートFETvc適用したものである・ まず、第2図(a)VC示すように、(100) 結晶
面?主面と−rb半絶縁性Ga As基板1に1013
〜t 014cm−3のキャリア濃度金もつバッファ層
2を3〜7μmの厚さで、さらにその上に0.5〜1.
5 X 10 ” 7cm”−3のキャリア濃度をもつ
n型能動層3全O,5〜0.9μm の厚さで連続的V
Cエピタキシャル成長する・ 次に、第1図(b)I/c示すようVC,フォトレジス
ト8?塗布し通常のリングラフィ技術で素子動作領f 
バターニングし絶縁分離領域となる基板表面10を露出
させる。このとき、絶縁分離領域となる基板の断面が(
011)および(011)結晶面VCなるようにパター
ニングする。
FIG. 1 shows an embodiment of the present invention, in which a GaAs Schottky barrier gate FETvc is applied. First, as shown in FIG. 2 (a) VC, (100) crystal plane? 1013 on the main surface and -rb semi-insulating GaAs substrate 1
A buffer layer 2 having a carrier concentration of ~t 014 cm-3 and a thickness of 3 to 7 μm is further applied on top of the buffer layer 2 having a carrier concentration of gold of 0.5 to 1.5 μm.
n-type active layer 3 with a carrier concentration of 5 x 10"7 cm"-3, continuous V with a thickness of 5-0.9 μm
C epitaxially grows.Next, as shown in FIG. 1(b) I/C, VC and photoresist 8? The device operating area f is coated using normal phosphorography technology.
The substrate surface 10 is patterned to expose the insulation isolation region. At this time, the cross section of the substrate that will become the insulation isolation region is (
011) and (011) crystal planes VC.

次に、第1図(C)VC示すように、例えば硫酸H28
04と過酸化水素水H2U2混合液で、ノクツ7ア層2
におよそ2000〜3000λ入り込むまで基板表面1
0からエツチングし、第1図(d)に示すようにスノく
ツタリング法VCより酸化ジルコニウムをエツチング深
さと等しい厚みになるように全面に付着させる。
Next, as shown in FIG. 1(C) VC, for example, sulfuric acid H28
04 and hydrogen peroxide solution H2U2 mixture, Nokutsu 7A layer 2
until it penetrates approximately 2000-3000λ into the substrate surface 1.
Etching is performed from zero, and zirconium oxide is deposited on the entire surface by the snot-cutting VC method to a thickness equal to the etching depth, as shown in FIG. 1(d).

そして、第1図(e)VC示すように素子動作領域上の
フォトレジスト8およびその上の酸化ジルコニウム層9
を有機溶済により取り除く所謂リフトオフ加工を行う。
Then, as shown in FIG.
A so-called lift-off process is performed to remove the carbon by dissolving the organic material.

その後、酸化ジルコニウム層9とバッファ層2との密着
性全増丁りめVC図示しない100〜500℃の水素H
2ガスあるいは不活性ガス(Ar、N2)雰囲気下で熱
処理を施丁。
After that, the adhesion between the zirconium oxide layer 9 and the buffer layer 2 was completely increased.
Heat treatment is performed under two gas or inert gas (Ar, N2) atmosphere.

次に、第1図(f)に示すように従来から実施されてい
る方法でゲート4.ソース5.ドレイン6の電極形成ヲ
行い、各々の電極yas化ジルコニウム層9の上VC引
き出し電極パッドケ形成する。
Next, as shown in FIG. 1(f), the gate 4. Source 5. An electrode for the drain 6 is formed, and a VC lead electrode pad is formed on each electrode yas-ized zirconium layer 9.

以上詳細に説明したようVC,不発明によれば。According to VC, non-invention as explained in detail above.

絶縁性の高い醸化ジルコニウム層用いるため電極間の絶
縁分離が可能となり高温動作時でもリーク電流は極めて
小さい。It、絶縁層9表面と能動層3表曲とが同一高
さにあることから素子表面上が平担化され電極配線の断
線は起こらない効果がある。
The use of a highly insulative fermented zirconium layer enables insulation separation between electrodes, resulting in extremely low leakage current even during high-temperature operation. Since the surface of the insulating layer 9 and the surface of the active layer 3 are at the same height, the surface of the element is flattened and there is an effect that disconnection of the electrode wiring does not occur.

尚、本発明はディスクリートのみならずiCの素子間絶
縁分離VCも適用でき、また、基板素材としてはGaA
s以外の他の半導体材料も可能である。
Note that the present invention can be applied not only to discrete VC but also to IC inter-element isolation VC, and the substrate material may be GaA.
Other semiconductor materials besides s are also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(f)は本発明の一実施例を工程順に
示した断面図である。 1・・・・・半絶縁性G a A s基板、2・・・・
・・ノくツファ層、3・・・・n型能動層、4・・・・
・ゲート、5−・・・ソース、6・・・・・・ドレイン
、7・・・・・・メサ段差部、8・・・・・・フォトレ
ジスト、9・・・・・・酸化ジルコニウム、10・・・
・・・基板表面。 −1□ノ
FIGS. 1(a) to 1(f) are cross-sectional views showing an embodiment of the present invention in the order of steps. 1...Semi-insulating GaAs substrate, 2...
...Nokutufa layer, 3...n-type active layer, 4...
・Gate, 5--Source, 6--Drain, 7--Mesa step, 8--Photoresist, 9--Zirconium oxide, 10...
...Surface of the board. -1□ノ

Claims (1)

【特許請求の範囲】[Claims] 絶縁材料で分離領域全形成した半導体装置VCおいて、
前記絶縁材料VC#化ジルコニウム全使用したことを特
徴と“する半導体装置。
In a semiconductor device VC in which the isolation region is entirely formed with an insulating material,
A semiconductor device characterized in that the insulating material VC# zirconium is completely used.
JP6476183A 1983-04-13 1983-04-13 Semiconductor device Pending JPS59189651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6476183A JPS59189651A (en) 1983-04-13 1983-04-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6476183A JPS59189651A (en) 1983-04-13 1983-04-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59189651A true JPS59189651A (en) 1984-10-27

Family

ID=13267483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6476183A Pending JPS59189651A (en) 1983-04-13 1983-04-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59189651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680131A (en) * 1992-07-01 1994-03-22 Moore Business Forms Inc Processing device and method for label without release paper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680131A (en) * 1992-07-01 1994-03-22 Moore Business Forms Inc Processing device and method for label without release paper

Similar Documents

Publication Publication Date Title
GB1144328A (en) Solid-state circuit consisting of a semiconductor body with active components, passive components, and conducting paths
US3518506A (en) Semiconductor device with contact metallurgy thereon,and method for making same
US2945286A (en) Diffusion transistor and method of making it
JPS59189651A (en) Semiconductor device
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
US3087100A (en) Ohmic contacts to semiconductor devices
JP2879841B2 (en) Manufacturing method of planar diode
JPS5940571A (en) Semiconductor device
JPS5834943A (en) Semiconductor device and manufacture thereof
KR0161869B1 (en) A semiconductor device
JPS60186036A (en) Semiconductor substrate and manufacture thereof
JP2511023B2 (en) Bidirectional thyristor
JPS622781Y2 (en)
JPS58164241A (en) Manufacture of semiconductor device
JPH0666275B2 (en) Method for manufacturing semiconductor device
JPS6118874B2 (en)
JPS61288467A (en) Semiconductor device and manufacture thereof
JPS6022368A (en) Semiconductor device
JPS59155143A (en) Manufacture of semiconductor device
JPS5877240A (en) Semiconductor device and manufacture thereof
JPS5879761A (en) Semiconductor device
JPH04357841A (en) Structure of bipolar transistor and manufacture thereof
JPS6319870A (en) Semiconductor integrated circuit
JPH0396280A (en) Conductivity-modulation mosfet
JPS59175766A (en) Semiconductor device and manufacture thereof